Energy Management Is Sent Free of Charge to Individuals Who Meet the Publisher’S Strict Terms of Control

Total Page:16

File Type:pdf, Size:1020Kb

Energy Management Is Sent Free of Charge to Individuals Who Meet the Publisher’S Strict Terms of Control EM-WIN20-FC_Layout 1 07/12/2020 12:07 Page 1 WINTER 2020 CHP RENEWABLE TECHNOLOGY INSULATION As organisations With renewable being Pipe Insulation has coordinate their economic the energy source been selected for recovery from the global most resilient to a Grade 1 listed pandemic, CHP can COVID-19 lockdown Georgian spa deliver impressive energy measures, we examine hotel in Buxton. But and cost savings 9 four ways to digitalise your grid 29 why was it chosen? 32 EM-WIN20-EDF:EM-WIN20-EDF 16/12/2020 12:31 Page 1 EM-WIN20-PG03_Layout 1 14/12/2020 14:47 Page 3 CONTENTSCOVER STORY CONTENTS p6 CHP RENEWABLE TECHNOLOGY INSULATION As organisations With renewable being Pipe Insulation has coordinate their economic the energy source been selected for recovery from the global most resilient to a Grade 1 listed pandemic, CHP can COVID-19 lockdown Georgian spa deliver impressive energy measures, we examine hotel in Buxton. But and cost savings 9 four ways to digitalise your grid 29 why was it chosen? 32 Diesel Rotary Uninterruptible Power Supply NEWS Monitoring & metering Looking into the benefits of Power 26. Taking the right steps towards energy Continuity’s Diesel Rotary 4. Plans for underwater energy monitoring Uninterruptible Power Supply super-highway in development 27. Monitoring an energy 5. Project to develop near zero emissions self-sufficient water internal combustion engine announced reclamation plant FEATURES Renewable technology To ensure that you continue to receive 29. Grid digitalisation: how your free personal copy of this Combined heat & power (CHP) COVID-19 is accelerating change magazine, please fill in the reader registration card, or register online at 9. Six reasons why CHP is good for business 30. Harnessing the ground’s geothermal www.connectingindustry.com potential 10. The hidden value of compressed air heat recovery 31. Keeping solar shining Energy Management is sent free of charge to individuals who meet the publisher’s strict terms of control. Building Management Systems Insulation Annual subscription rates are: 12. Building-in digitalization 32. A kool solution for insulating historic building pipework UK - £45.00 14. Smart solutions for smart buildings Overseas - £103.00 Connecting Industry, London Road, 17 Eco power Maidstone, Kent, ME16 8LY 17. A volt from the blue: How electric vehicles Tel: 01622 687031 can give back to the grid www.datateam.co.uk Registered in England No 1771113 Boilers, pumps & valves © 2020 Datateam Business Media Ltd 19. Energy efficient process heating HVAC 21. Making district heating more sustainable 22. High ceilings, low energy 31 23. A sustainable approach to plate heat exchangers The statements and opinions expressed in connectingindustry/Instrumentation magazine are not those of the editor or Datateam Business Media Ltd unless described as such Lighting & controls 24. Let there be light! www.facebook.com/EMmagazineDatateam 25. Learning about the benefits of LED lighting @CI_EnergyMan EDITOR ADVERTISING MANAGER CIRCULATION ENQUIRIES Rachael Morling Lisa Smith Tel: 01580 883844 Tel: 01622 687031 Tel: 01622 699179 [email protected] [email protected] [email protected] PUBLISHING DIRECTOR PRODUCTION MANAGER Louise Tiller Claire Noe Tel: 01622 699129 Tel: 01622 607963 [email protected] / ENERGYMANAGEMENT ENERGY MANAGEMENT | WINTER 2020 3 EM-WIN20-PG04+05_Layout 1 01/12/2020 15:43 Page 4 For the latest news, follow us on Twitter: @CI_EnergyMan, Facebook or LinkedIn PLANS FOR UNDERWATER ENERGY SUPER-HIGHWAY IN DEVELOPMENT east of Scotland, a hub for offshore renewables, “CoP26 will provide the perfect opportunity for down to two points in the north-east of the UK to showcase its innovation, progress and England, Selby and Hawthorn Point. leadership in tackling climate change and we are The east coast of Scotland is already home to proud to be major partners in the event. almost 1GW of operational offshore wind farms “We firmly believe the UK can achieve its with a further 4.4GW in the pipeline, and up to ambitious net zero targets but it must be done 10GW predicted following the outcome of the next through investment and innovation in essential Scottish offshore wind leasing round, Scotwind. projects like the Eastern Link, providing benefits Survey works along the route have recently for customers and society in the long term. commenced, with construction works currently “CoP’s success is, in part, thanks to the expected to take place from 2024. collaboration of sectors, industries and countries Three of the UK’s largest energy firms have Alistair Phillips-Davies, chief executive of SSE, and we are looking forward to exploring this confirmed they are developing plans to deliver an said: “The development of the East Coast link is mammoth opportunity with SSE and national Grid.” underwater super-highway that will see the north one of the most exciting energy developments nicola Shaw, UK executive director at national Sea become the hidden power house of Europe. over recent decades. It is essential to delivering Grid, said: “This project will help transport enough The Eastern Link will be made up of some of the the UK’s 40GW offshore wind target by 2030 renewable electricity for around 4.5 million homes world’s longest subsea HVDC cables with a and critical to our own commitment to build a across the UK and will become part of the combined capacity of up to 4GW. The project will network for net zero emissions. backbone of the UK’s energy system. It’s a great be led by SSE, ScottishPower and national Grid, “With the eyes on the UK ahead of CoP26 example of companies working together on setting off from Peterhead and Torness. next year, this project clearly demonstrates impressive engineering feats that will help the The cables will significantly increase the how the UK is leading the world in tackling the country hit its net zero carbon target by 2050. UK’s capacity for clean, green, renewable power, climate emergency and supporting thousands of www.nationalgrid.com enabling enough electricity for around four jobs and supply chain opportunities.” www.scottishpower.com million homes to travel up to 440km from the Keith Anderson, CEo of ScottishPower, said: https://sse.co.uk/home FIAT CHrySLEr AUToMoBILES SELECTS THE UK AS A TESTBED For EV InnoVATIon Fiat Chrysler Automobiles (FCA) and Kaluza, a leading times when carbon intensity is lowest and energy Mitsubishi Electric has announced intelligent energy platform, have entered into a is cheapest, without the need for a separate smart that SAV has become a Value Added reseller (VAr), joining the Memorandum of Understanding aimed at exploring charge point. At scale, this would enable drivers to manufacturer as a specialist provider how to deliver cheaper, simpler and more sustainable benefit from reduced bills, lower carbon emissions and of central plant rooms for heat EV charging services to FCA’s customers through a seamless in-app charging experience oriented networks and energy metering and Kaluza’s pioneering cloud platform. around their individual needs. monitoring systems. During the first phase of their partnership, the two A select group of Fiat 500 EV customers in the UK “At SAV, we’ve been pushing companies will develop a smart charging service for will be invited to trial the smart charging service hard over the years to lower heat Fiat 500 EV customers using the Kaluza platform. during the first half of 2021, and provide ongoing network design and operating temperatures, to improve efficiency The direct-to-car technology will leverage live data feedback through dedicated forums. and enable inclusion of more low from local grid operators to shift car charging to www.fcagroup.com carbon heat sources. Mitsubishi Electric’s heat pumps fit perfectly into this journey as heat pump CoPs Welcome to the Winter issue of SIEMENS POWERS are optimised in low temperature Energy Management, published as ZERO-EMISSION BUSES heat networks,” said Jan Hansen, the temperatures have started to director for SAV Systems. www.sav-systems.com drop, the heating’s being turned up, In partnership with Tower Transit, and the tumble dryer is working Siemens Smart Infrastructure has overtime in many homes – leading provided the charging infrastructure ByteSnap Design has launched an electric vehicle (EV) charging many of us to think about rising for 37 new fully-electric double division, Versinetic. The new division energy bills and climate change. decker buses in London. will provide a range of hardware, Just recently, Prime Minister Boris Johnson announced his ‘Ten Point Westbourne Park garage is software and consultancy services all Plan’ for a ‘green industrial revolution’. The plan includes such areas the operator’s first depot with under one roof for manufacturers of as: offshore wind production; the generation of low carbon hydrogen; fully electric routes with power EV charge points. advancing nuclear as a clean energy source; accelerating the transition infrastructure, maintenance and www.bytesnap.com to electric vehicles; research projects for zero emission planes and charging facilities. Here, Siemens ships; greener and more energy efficient homes and public buildings, provided 34 AC and four DC Sicharge Vital Energi is set to support heat and much more. Expected to create around 250,000 jobs, the Plan will units (AC22 & UC200), supplying network skills development with the opening of a £2million training help the UK move towards its net zero target. a total charging power of two centre at its Blackburn HQ. As can be seen in the pages of this issue, there are many ways to megawatts. Buses are recharged Gary Fielding, chairman of Vital reduce emissions and save energy. In this issue, for example, we find primarily overnight or during Energi, said: “As a company out: how Combined Heat & Power (CHP) can deliver impressive energy operational breaks via the AC22s.
Recommended publications
  • Protocol for Equipment Verification Testing For
    CHAPTER 3 EPA/NSF ETV EQUIPMENT VERIFICATION TESTING PLAN COAGULATION AND FILTRATION FOR THE REMOVAL OF MICROBIOLOGICAL AND PARTICULATE CONTAMINANTS Prepared By: NSF International 789 Dixboro Road Ann Arbor, Michigan 48105 Copyright 2002 NSF International 40CFR35.6450. Permission is hereby granted to reproduce all or part of this work, subject to the limitation that users may not sell all or any part of the work and may not create any derivative work therefrom. Contact ETV Drinking Water Systems Center Manager at (800) NSF-MARK with any questions regarding authorized or unauthorized uses of this work. April 2002 Page 3-1 TABLE OF CONTENTS Page 1.0 APPLICATION OF THIS VERIFICATION TESTING PLAN .....................................3-6 2.0 INTRODUCTION ................................................................................................................3-6 3.0 GENERAL APPROACH.....................................................................................................3-7 4.0 OVERVIEW OF TASKS.....................................................................................................3-7 4.1 Task A: Characterization of Feed Water ................................................................................3-7 4.2 Task B: Initial Test Runs........................................................................................................3-7 4.3 Task 1: Verification Testing Runs..........................................................................................3-7 4.4 Task 2: Feed Water and Finished Water
    [Show full text]
  • How Is the Thermal Performance of Solar Heating Systems Influenced by Thermal Stratification in the Heat Storage
    Literature study How is the thermal performance of solar heating systems influenced by thermal stratification in the heat storage Prepared as part of SolNet PhD course No. 13 “Heat Storage for Solar Heating Systems” held during 17-23 May 2014 at Danish Technical University, Lyngby, Copenhagen, Denmark Adrian Pugsley (University of Ulster, Jordanstown, UK) Stefano Poppi (Dalarna University, Borlänge, Sweden) 22 May 2014 1 Contents Literature study ............................................................................................. 1 How is the thermal performance of solar heating systems influenced by thermal stratification in the heat storage ....................................................................... 1 1 Introduction ............................................................................................. 3 1.1 Aim ................................................................................................... 3 1.2 Objectives .......................................................................................... 3 1.3 Solar water heating systems overview ................................................... 3 1.3.1 Tank and heat exchanger arrangements .............................................. 3 1.3.2 Passive and active systems ............................................................. 4 1.4 Definition of thermal stratification ......................................................... 5 1.5 Sanitary considerations ........................................................................ 5 2 The importance
    [Show full text]
  • Comparing Modes of Operation for Residential Ceiling Fans to Achieve Thermal Destratification 12/15/2014
    WHITE PAPER COMPARING MODES OF OPERATION FOR RESIDENTIAL CEILING FANS TO ACHIEVE THERMAL DESTRATIFICATION 12/15/2014 Credit: Thomas Lesser, Research Engineer Jay Fizer, Research-and-Development Laboratory Manager Christian Taber, Applications Engineer Overview Conventional wisdom says to reverse the direction of a ceiling fan’s rotation in the winter. Heat rises, filling a room with warm air from the top down and requiring heaters to run longer to achieve a desired ambient air temperature at the height of the thermostat and occupants. Running a fan in reverse helps move this heat across the ceiling and down the walls, recirculating the warm air through the space. Fans have been capable of reversing direction for decades, and legislation was passed in 2007 that required ceiling fans to have a reverse function. The logic behind reversing a fan is simple: since running fans in the forward direction creates a cooling effect through air movement, reversing those fans helps recirculate heat in the winter without creating an uncomfortable cooling draft. Big Ass Fans is aiming to prove that there’s a more energy-efficient and comfortable way to address heating conservation with ceiling fans. This study compared the effects of paddle fan reversal with Big Ass Fans’ Haiku ceiling fan, operating in the forward direction at lower speed settings than a paddle fan. Hypothesis Primary Hypothesis: Reverse Operation Is Less Efficient Reversing a paddle fan is not the best way to efficiently recirculate heat and fight heat stratification. A Haiku ceiling fan, operating in the forward direction, can destratify a room more efficiently than paddle ceiling fans operating in reverse.
    [Show full text]
  • Market Characterization of Indoor Cannabis Cultivation
    Emerging Technologies Market Characterization of Indoor Cannabis Cultivation ET20SCE8030 Prepared by: Emerging Products Customer Service Southern California Edison April 2021 Indoor Cannabis Market Characterization ET20SCE8030 Acknowledgements Southern California Edison’s Emerging Products (EP) group is responsible for this project. It was developed as part of Southern California Edison’s Emerging Technologies Program under internal project number ET20SCE8030. Energy Resource Integration, LLC (ERI) conducted this study with the overall guidance and management from Dave Rivers and Edwin Hornquist. For more information on this project, contact [email protected]. Disclaimer This report was prepared by Southern California Edison (SCE) and funded by California utility customers under the auspices of the California Public Utilities Commission. Reproduction or distribution of the whole or any part of the contents of this document without the express written permission of SCE is prohibited. This work was performed with reasonable care and in accordance with professional standards. However, neither SCE nor any entity performing the work pursuant to SCE’s authority make any warranty or representation, expressed or implied, with regard to this report, the merchantability or fitness for a particular purpose of the results of the work, or any analyses, or conclusions contained in this report. The results reflected in the work are generally representative of operating conditions; however, the results in any other situation may vary depending upon
    [Show full text]
  • Comparison of Computational Results with a Low-G Nitrogen Slosh And
    Comparison of Computational Results with a Low-g, Nitrogen Slosh and Boiling Experiment Mark. E. M. Stewart1 VPL at NASA Glenn Research Center, Cleveland, Ohio, 44135 Jeffrey P. Moder2 NASA Glenn Research Center, Cleveland, Ohio, 44135 This paper compares a fluid/thermal simulation, in Fluent, with a low-g, nitrogen slosh and boiling experiment. In 2010, the French Space Agency, CNES, performed cryogenic nitrogen experiments in a low-g aircraft campaign. From one parabolic flight, a low-g interval was simulated that focuses on low-g motion of nitrogen liquid and vapor with significant condensation, evaporation, and boiling. The computational results are compared with high-speed video, pressure data, heat transfer, and temperature data from sensors on the axis of the cylindrically shaped tank. These experimental and computational results compare favorably. The initial temperature stratification is in good agreement, and the two-phase fluid motion is qualitatively captured. Temperature data is matched except that the temperature sensors are unable to capture fast temperature transients when the sensors move from wet to dry (liquid to vapor) operation. Pressure evolution is approximately captured, but condensation and evaporation rate modeling and prediction need further theoretical analysis. Nomenclature 2 a, acg = acceleration, acceleration of center of gravity, m/s ALAT = Air Liquide Advanced Technology CNES = Centre National d’Etudes Spatiales Cp, Cv = specific heat at constant pressure and constant volume, J/kg-K c = VOF fraction, unitless
    [Show full text]
  • Destratair Brochure
    The most effective destratification & air distribution system Minimising energy use and reducing heating and cooling costs DESTRATAIR TECHNICAL INFORMATION DESTRATAIR TECHNICAL INFORMATION BENEFITS What is DestratificationBENEFITS ? Why Destratair ? Minimising energy usage by redistribution of • Exceptional Performance in a • Flexible Control high level warm air. compact design All units are speed controllable making Minimising energy usage by redistributionAir Distributionof • Exceptional - The Destratair Performance product in ais unique in that• Flexible it Control Thermal destratification is the process of mixingDestratification to within 1ºC. commissioning of the system quick and Destratair utilizes the total heat available becomes the prime air mover not only pushing hot air back the internal air in a buildinghigh to leveleliminate warm air.stratified compact design efficient. All units are speed controllable making layershowever and genera achieveted, and redistributestemperature it equalization down into the Destratificationoccupied zone, to withinbut distributing 1ºC. the heatedcommissioning or of the system quick and Destratair utilizes the total• Energyheat available Efficient throughoutcounteracting the the naturalspace. tendencyAir stratification of the occurs cooled air evenly around the space. efficient. however generated, and redistributesMinimising it energy usage by redistribution • Easy Maintenance inhot allair tobuildings rise to the andunderside can ofresult the roof. in dramatic • Energy Efficient counteracting the natural tendencyof high level ofDestratair the warm air. fansUp to are 20% wall saving mounted in at Lowabout level 3m mounting from the of floorunits means easy temperature differences from floor to ceiling and and throw air upMinimising across the energy roof usage creating by redistribution an air movement• back Easy Maintenance System design utilising Destratairhot air as to the rise to the undersidefabric of relatedthe roof.
    [Show full text]
  • Cfd Simulation of Stratified Thermal Energy Storage Tank Ecovat
    Ecovat® Seasonal Thermal Energy Storage CFD SIMULATION OF STRATIFIED THERMAL ENERGY STORAGE TANK ECOVAT PREPARED BY: HAMED KHATAM BOLOURI SANGJOEEI SUPERVISION BY: ECOVAT TEAM Winter 2021 Abstract Ecovat as a stratified thermal storage tank brings the possibility of making optimal use of renewable energy demands flexibility for heating and cooling. Regarding utilization of Thermal stratification in the storage tank, some unbalancing for thermal stratification would emerge during charging and discharging. In this project, a Computational Fluid Dynamics investigation on Ecovat is performed to determine the effects of inlet hot water, thermocline thickness, temperature difference between inlet water and existing water in tank, and position of diffusers on the mixing and thermocline formation, which influenced the performance of Ecovat systems and thermal stratification. Furthermore, the CFD model would be Proposed for the the whole Ecovat system (Diffusers and Tank) for the first time and this model can be utilized to simulate the Ecovat with custom dimensions based on the client’s requirements. CFD Simulation will demonstrate how the Ecovat system will work in real operational cases. ii | P a g e Table of Contents Abstract ............................................................................................................................... ii Table of Contents ............................................................................................................... iii List of Figures ....................................................................................................................
    [Show full text]
  • Solar Combi Systems Department of Civil Engineering
    Elsa Andersen Department of Civil Engineering Solar Combi Systems Department of Civil Engineering Civil of Department Systems Combi Solar Elsa Andersen Solar Combi Systems Department of Civil Engineering Report no R-156 2007 ISSN 1601-2917 ISBN 978-87-7877-228-2 P H D T H E S I S BYG • DTU Solar Combi Systems Elsa Andersen Ph.D. Thesis Department of Civil Engineering Technical University of Denmark 2007 Solar Combi System Copyright (c), Elsa Andersen, 2007 Printed by DTU-Tryk Department of Civil Engineering ISBN number: 9788778772282 ISSN number: 1601-2917 Preface This thesis is submitted as a fulfilment of the requirement for the Danish Ph.D. degree. The thesis is divided into two parts. The first part introduces the motivation and highlights the major findings and conclusions. The second part is a collection of papers, presenting the research in details. Ten papers are written, all of them with more than one author. Below is listed the division of labour in preparing the papers: Paper I. Thermal performance of Danish solar combi systems in practice and in theory, Journal of Solar Energy Engineering, Vol. 126, pp. 744 – 749, May 2004. Elsa Andersen has written the paper. Louise Jivan Shah has carried out the parameter analysis for solar combi systems shown in Figures 8 and 9 and proof-read the paper. Simon Furbo has supervised the Ph.D. study and proof-read the paper. Paper II. The influence of weather on the thermal performance of solar heating systems, submitted to Journal of Solar Energy, May 2007. Elsa Andersen has written the paper.
    [Show full text]
  • Evaluation of a Stratified Multi-Tank Thermal Storage for Solar Heating Applications
    EVALUATION OF A STRATIFIED MULTI-TANK THERMAL STORAGE FOR SOLAR HEATING APPLICATIONS by Cynthia Ann Cruickshank A thesis submitted to the Department of Mechanical and Materials Engineering In conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada June, 2009 Copyright © Cynthia Ann Cruickshank, 2009 Abstract A novel multi-tank thermal energy storage (TES) was evaluated experimentally and numerically. The multi-tank storage is based on the interconnection of standard hot water storage tanks by a single charge flow loop. Each tank is charged through a thermosyphon loop and natural convection heat exchanger (NCHE). Both series- and parallel-connected configurations were investigated and results show that high degrees of stratification can occur. To predict the performance of the series- and parallel-connected multi-tank TES, a numerical model was developed and implemented in the TRNSYS simulation environment. Laboratory tests were also conducted to measure the unit’s performance under charge conditions representative of combinations of clear and overcast days. The effects of rising and falling charge loop temperatures and power levels on storage temperatures and heat transfer rates were studied and indicated that sequential stratification was achieved in the series-connected storage. Under certain conditions, reverse flow through the thermosyphon loops was identified, leading to destratification and carry-over of heat to the downstream storage tanks. Consequently, a new model was developed and showed to model reverse thermosyphon operation. A subsequent analysis showed that these effects could be minimized by careful system design. To quantify the relative benefits of the sequentially stratified TES, values of exergy stored versus time were determined and compared against fully stratified and fully mixed storages.
    [Show full text]
  • Zero Gravity Cryogenic Vent System Concepts for Upper
    ZERO GRAVITY CRYOGENIC VENT SYSTEM CONCEPTS FOR UPPER STAGES Robin H. Flachbart James B. Holt Leon J. Hastings Space Transportation Directorate NASA- Marshall Space Flight Center ABSTRACT The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space, and would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray-bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray-bar system consists of a recirculation pump, a parallel flow concentric tube heat exchanger, and a spray-bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure.
    [Show full text]
  • GLEON 19 Poster Session and New Sites Abstract Book
    Poster Session Abstract Book GLEON 19 Lake Mohonk, NY, USA 27 Nov - 1 Dec 2017 Co-hosted by SUNY New Paltz, Mohonk Preserve and Cary Institute of Ecosystem Studies, and with additional generous support from NYC Department of Environmental Protection Last updated 2017-12-13 Table of Contents Poster Abstracts ................................................................ 3 Last name: A-C ........................................................................... 3 Last name: D-F .......................................................................... 19 Last name: G-J .......................................................................... 32 Last name: K-L ......................................................................... 46 Last name: M-Q ......................................................................... 63 Last name: R-V ......................................................................... 80 Last name: W-Z....................................................................... 101 New Site Abstracts ....................................................... 108 2 Poster Abstracts 1. Lauren M. ADKINS1, Craig Williamson1, Abby McBee1, Tom Fisher2 Application of geographic information systems (GIS) techniques to identify potential public health risks from waterborne disease among lakes and reservoirs experiencing browning 1Department of Biology, Miami University, Oxford, Ohio, USA 2Department of Statistics, Miami University, Oxford, Ohio, USA Long-term data from two lakes in northeastern Pennsylvania revealed a correlation
    [Show full text]
  • Thermal Destratification of Air Streams to Improve the Cooling Provisioning of Air-Cooled Data Centers
    THERMAL DESTRATIFICATION OF AIR STREAMS TO IMPROVE THE COOLING PROVISIONING OF AIR-COOLED DATA CENTERS by ANTO JOSEPH BARIGALA CHARLES PAULRAJ THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at The University of Texas at Arlington May 2019 Arlington, Texas Supervising Committee: Dr. Dereje Agonafer, Supervising Professor Dr. Abdolhossein Haji-sheikh Dr. Andrey Beyle Copyright by Anto Joseph Barigala Charles Paulraj 2019 ACKNOWLEDGEMENTS I would like to take this opportunity to express my sincerest appreciation to my supervising professor Dr. Dereje Agonafer for his exceptional support, guidance and inspiration throughout the course of my research work. The invaluable advice and timely support whenever required was the major driving force, which enabled me to complete my research work. I would like to thank Dr. Abdolhossein Haji Sheikh and Dr. Andrey Beyle for taking their time for serving as my committee members. I would also like to take this opportunity to thank Mr. Mark Seymour of Future Facilities for all his expertise and continuous support and feedback during the projects. His industrial expertise has been important for my research. Also, I would like to thank Ashwin Siddarth, Rajesh Kasukurthy and other lab mates for their invaluable support while working at the EMNSPC labs. I would like to thank all my friends in the EMNSPC team and my roommates who constantly supported me throughout my time here. Lastly, I would like to thank my parents Mr. Charles Paulraj Barigala Francis and Mrs. Jessia Margaret Selvaraj for their support both emotionally and financially, without which I would not have dreamt this far.
    [Show full text]