CD97 on Activated Endothelial Cells Thy-1 (CD90)

Total Page:16

File Type:pdf, Size:1020Kb

CD97 on Activated Endothelial Cells Thy-1 (CD90) Thy-1 (CD90) Is an Interacting Partner for CD97 on Activated Endothelial Cells Elke Wandel, Anja Saalbach, Doreen Sittig, Carl Gebhardt and Gabriela Aust This information is current as of September 25, 2021. J Immunol 2012; 188:1442-1450; Prepublished online 30 December 2011; doi: 10.4049/jimmunol.1003944 http://www.jimmunol.org/content/188/3/1442 Downloaded from References This article cites 37 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/188/3/1442.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Thy-1 (CD90) Is an Interacting Partner for CD97 on Activated Endothelial Cells Elke Wandel,*,† Anja Saalbach,‡ Doreen Sittig,* Carl Gebhardt,‡ and Gabriela Aust* Leukocyte recruitment in response to inflammatory signals is governed, in part, by binding to Thy-1 (CD90) on activated endothelial cells (EC). In this study, we characterized the adhesion G-protein coupled receptor CD97, present on peripheral myeloid cells, as a novel interacting partner for Thy-1. CD97 was upregulated on polymorphonuclear cells (PMNC) of patients with psoriasis. In psoriatic skin lesions, CD97+ myeloid cells colocalized with Thy-1+ EC of small vessels in microabscesses, suggesting an interaction between CD97 and Thy-1 that was further examined by adhesion and protein-binding assays. PMNC and cell lines stably overexpressing CD97 adhered specifically to Thy-1+–activated human dermal EC, Thy-1+ CHO cells, and immobilized Thy-1 protein. Binding of the CD97+ CHO clones correlated with their CD97 expression level. Soluble CD97 bound + specifically to immobilized Thy-1 protein, as well as Thy-1 –activated EC and CHO cells. In all assays, cellular adhesion or protein Downloaded from binding was blocked partially by CD97 and Thy-1–blocking mAb. Our data suggested that CD97 interacts via its stalk with Thy-1 because mAb directed to the stalk of CD97 showed stronger blocking compared with mAb to its epidermal growth factor-like domains, and binding was calcium independent. Moreover, soluble CD97 without the stalk and soluble EMR2, containing highly homologous epidermal growth factor-like domains but a different stalk, failed to bind. In summary, binding of leukocytes to activated endothelium mediated by the interaction of CD97 with Thy-1 is involved in firm adhesion of PMNC during inflammation and may play a role in the regulation of leukocyte trafficking to inflammatory sites. The Journal of Immunology, 2012, 188: 1442– http://www.jimmunol.org/ 1450. eukocyte extravasation into perivascular tissue plays a tating their subsequent migration into lesions of psoriatic skin (4– key role in inflammatory diseases. This recruitment re- 6). However, blocking of CD11b/CD18 did not result in complete L quires leukocyte interaction with vascular endothelium inhibition of Thy-1–mediated adhesion of myeloid cells to acti- and consists of multiple consecutive steps, including the capture vated EC (6). This suggests the presence of an additional inter- of circulating leukocytes, subsequent leukocyte rolling, arrest, acting partner of Thy-1 involved in Thy-1–mediated adhesion of firm adhesion, and ensuing diapedesis. The cascade occurs by myeloid cells to activated EC. by guest on September 25, 2021 sequential activation-dependent interactions between endothelial CD97, a member of the epidermal growth factor (EGF)–seven- cell (EC) adhesion molecules and their specific ligands on leu- span transmembrane (TM7) subfamily of adhesion (class B2) G kocytes. protein-coupled receptors (7), shows a hematopoietic expression Thy-1 (CD90), a highly glycosylated GPI-anchored cell surface profile that merits its consideration as a potential ligand for protein with a molecular mass ∼35 kDa, is a receptor on EC, Thy-1 on activated EC. CD97 is a cell surface receptor present belonging to the Ig superfamily, and is involved in arrest and firm in peripheral neutrophils, monocytes, and activated lymphocytes adhesion of leukocytes to the endothelium (1, 2). In humans, Thy- (8). CD97 is expressed as a heterodimer of a noncovalently 1 expression is restricted to activated EC, fibroblasts, neuronal bound extracellular a-chain, represented by tandemly arranged + cells, and a subset of peripheral CD34 stem cells (3). Adhesion of EGF domains and a stalk, and a b-chain, composed of the TM7 + neutrophils to activated Thy-1 EC, mediated by Thy-1/Mac-1 and a short intracellular portion. Both chains result from intra- (CD11b/CD18) interaction, is one attachment mechanism facili- cellular autocatalytic cleavage (9). The CD97 a-chain has been thought to be shed from the membrane of CD97-expressing cells. *Research Laboratories, Department of Surgery, University of Leipzig, 04103 Leip- It is very likely identical to soluble CD97 (sCD97), detected in zig, Germany; †Translational Center for Regenerative Medicine, University of Leip- zig, 04103 Leipzig, Germany; and ‡Department of Dermatology, Venerology, and synovial fluid of rheumatoid arthritis patients (10). As the result of Allergology, University of Leipzig, 04103 Leipzig, Germany alternative splicing in humans, three isoforms exist: CD97 Received for publication December 2, 2010. Accepted for publication November 17, (EGF1,2,5), CD97(EGF1,2,3,5), and CD97(EGF1–5). CD97 shows 2011. remarkable homology to the EGF-TM7 receptor EMR2 (CD312) This work was supported in part by a grant from the German Federal Ministry of (11), especially within the EGF-like domains. Although both re- Education and Research (BMBF, Projekttra¨ger Ju¨lich, 0315883, to E.W.) and by grants from the German Research Foundation (AU132/7-1 to G.A. and SA863/2-1 ceptors are present at high levels in immune cells, the overall to A.S.). expression pattern, ligand binding, and, thus, function are dissim- Address correspondence and reprint requests to Prof. Gabriela Aust, Research Lab- ilar (12). oratories, Department of Surgery, University of Leipzig, Liebigstraße 20, 04103 Signal transduction through CD97 and EMR2 is still unknown. Leipzig, Germany. E-mail address: [email protected] Because truncation of the TM7 region disrupted CD97-increased Abbreviations used in this article: CFDA, carboxyfluorescein diacetate succinimidyl ester; EC, endothelial cell; EGF, epidermal growth factor; HDMEC, human dermal single random cell migration (13), and binding of a specific Ab microvascular endothelial cell; hFc, human Fc; mFC, murine Fc-tag; MFI, mean to EMR2 regulated human neutrophil function (14), signaling fluorescence intensity; PMNC, polymorphonuclear cell; sCD97, soluble CD97; through EGF-TM7 receptors seems very likely. sEMR2, soluble EMR2; TM7, seven-span transmembrane. In this study, we identified Thy-1 as a potential new ligand Copyright Ó 2012 by The American Association of Immunologists, Inc. 0022-1767/12/$16.00 of CD97 and demonstrated that PMNC interact specifically, via www.jimmunol.org/cgi/doi/10.4049/jimmunol.1003944 The Journal of Immunology 1443 CD97, with Thy-1 expressed in activated EC, thus mediating leu- Patients kocytic adhesion. Patients aged $18 y (n = 15; 11 males; mean age, 49.7 6 20 y) with plaque-type psoriasis that had been refractory to topical treatment with Materials and Methods external glucocorticoids or vitamin D3 analogs within the last 4 wk were Ab included in the study. Age- and sex-matched normal subjects (n = 12; 10 males; mean age, 47.7 6 14 y) were used as controls. The study was The CD97EGF mAb (clone BL-Ac/F2 (8) detects a glycosylation-dependent approved by the University of Leipzig Ethics committee. All persons gave epitope within the first two EGF-like domains of CD97 and EMR2 (15). The their written consent prior to their enrollment into the study. The study was CD97stalk mAb (clone CLB-CD97/3) (16) binds to the stalk region of the conducted in accordance with the guidelines of the World Medical Asso- CD97 a-chain. The rabbit polyclonal CD97 Ab was purchased from Sigma- ciation’s Declaration of Helsinki. Aldrich Chemie (Munich, Germany). The mAb 1B5 binds to the fourth EGF-like domain present only in the largest isoform of CD97 and EMR2 Immunohistology (17). The Thy-1 mAb clone AS02 does not block Thy-1–dependent cell Cryostat sections of patients with psoriasis were stained for double im- adhesion, whereas clone BC9 does (3, 18). The CD55 mAb (clone BRIC 216), binding to the short consensus repeat 3 domain of CD55, was pur- munofluorescence and analyzed by laser-scanning microscopy or for simple chased from the International Blood Reference Group laboratory (Bristol, immunohistology, as described (20). U.K.). The CLB-CD97L/1 mAb, binding to the short consensus repeat 1 do- Cell separation and cell culture main of CD55 (19), and the EMR2 mAb (clone 1A2) (11) were kind gifts of J. Hamann (University of Amsterdam, Amsterdam, The Netherlands). Both Human dermal microvascular EC (HDMEC) and HUVEC were prepared, as CD55 mAb inhibit binding of erythrocytes to COS-7 cells transfected with described (21). HDMEC were cultured in EGM-MV media (Promocell, CD97(1,2,5) cDNA (19). The mAb to avb3 integrin (clone LM609) and the Heidelberg, Germany). Only preparations with .95% CD31+ EC were used a b polyclonal Ab to 5 1 integrin were purchased from Millipore (Schwal- (21).
Recommended publications
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • General Discussion
    UvA-DARE (Digital Academic Repository) EGF-TM7 receptors: A diverse and still evolving family of receptors on the leukocyte surface Matmati, M. Publication date 2008 Link to publication Citation for published version (APA): Matmati, M. (2008). EGF-TM7 receptors: A diverse and still evolving family of receptors on the leukocyte surface. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 Chapter 6 General Discussion GENERAL DISCUSSION Since their identification, starting about 15 years ago, a growing amount of data has accumulated about the structure, the expression, the ligands and, more recently, also the functional implications of EGF-TM7 receptors. Studies with antibody treatment and gene targeting in mice and antibody treatment of human cells in vitro, led to the implication of EGF-TM7 receptors in the trafficking of granulocytes, the generation of efferent antigen specific regulatory T cells and the potentiation of different granulocyte effector functions [1-4].
    [Show full text]
  • CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma
    International Journal of Molecular Sciences Article CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma 1, 2,3,4, 5 6 7 Ju-Fang Liu y, Chiang-Wen Lee y, Chih-Yang Lin , Chia-Chia Chao , Tsung-Ming Chang , Chien-Kuo Han 8, Yuan-Li Huang 8, Yi-Chin Fong 9,10,* and Chih-Hsin Tang 8,11,12,* 1 School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City 11031, Taiwan; [email protected] 2 Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan; [email protected] 3 Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan 4 Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan 5 School of Medicine, China Medical University, Taichung 40402, Taiwan; [email protected] 6 Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan; [email protected] 7 School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City 11221, Taiwan; [email protected] 8 Department of Biotechnology, College of Health Science, Asia University, Taichung 40402, Taiwan; [email protected] (C.-K.H.); [email protected] (Y.-L.H.) 9 Department of Sports Medicine, College of Health Care, China Medical University, Taichung 40402, Taiwan 10 Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin 65152, Taiwan 11 Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan 12 Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan * Correspondence: [email protected] (Y.-C.F.); [email protected] (C.-H.T.); Tel.: +886-4-2205-2121-7726 (C.-H.T.); Fax: +886-4-2233-3641 (C.-H.T.) These authors contributed equally to this work.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • Molecular Characterization of Clonal Human Renal Forming Cells Cohen-Zontag Osnat , Gershon Rotem , Harari-Steinberg Orit , Kant
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.978254; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Molecular characterization of clonal human renal forming cells Cohen-Zontag Osnat1,7,*, Gershon Rotem1,7,*, Harari-Steinberg Orit1,7,*, Kanter Itamar4, Omer Dorit1,7 , Pleniceanu Oren1,7, Tam Gal4, Oriel Sarit4, Ben-Hur Herzl8,9 , Katz Guy1,3,5,7, Zohar Dotan2,7, Kalisky Tomer4,#, Dekel Benjamin1, 6,7,#,^, Pode- Shakked Naomi1,3,7,#. 1Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel 2Dept of Urology, Sheba Medical Center, Tel-Hashomer, Israel 3The Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel 4Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel. 5The Joseph Buchman Gynecology and Maternity Center, Sheba Medical Center, Tel- Hashomer, Israel 6Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel 7Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel 8L.E.M. Laboratory of Early Detection, Nes Ziona, Israel 9Department of Obstetrics and Gynecology, Assaf Harofeh Medical Center, Tzrifin, Israel *These first authors contributed equally to this work #These senior authors contributed equally to this work ^Correspondence: Benjamin Dekel MD, PhD Pediatric Stem Cell Research Institute Edmond & Lily Safra Children's Hospital, Sheba Medical Center E-mails: [email protected] or [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.978254; this version posted March 6, 2020.
    [Show full text]
  • G-Protein-Coupled Receptor Signaling and Polarized Actin Dynamics Drive
    RESEARCH ARTICLE elifesciences.org G-protein-coupled receptor signaling and polarized actin dynamics drive cell-in-cell invasion Vladimir Purvanov, Manuel Holst, Jameel Khan, Christian Baarlink, Robert Grosse* Institute of Pharmacology, University of Marburg, Marburg, Germany Abstract Homotypic or entotic cell-in-cell invasion is an integrin-independent process observed in carcinoma cells exposed during conditions of low adhesion such as in exudates of malignant disease. Although active cell-in-cell invasion depends on RhoA and actin, the precise mechanism as well as the underlying actin structures and assembly factors driving the process are unknown. Furthermore, whether specific cell surface receptors trigger entotic invasion in a signal-dependent fashion has not been investigated. In this study, we identify the G-protein-coupled LPA receptor 2 (LPAR2) as a signal transducer specifically required for the actively invading cell during entosis. We find that 12/13G and PDZ-RhoGEF are required for entotic invasion, which is driven by blebbing and a uropod-like actin structure at the rear of the invading cell. Finally, we provide evidence for an involvement of the RhoA-regulated formin Dia1 for entosis downstream of LPAR2. Thus, we delineate a signaling process that regulates actin dynamics during cell-in-cell invasion. DOI: 10.7554/eLife.02786.001 Introduction Entosis has been described as a specialized form of homotypic cell-in-cell invasion in which one cell actively crawls into another (Overholtzer et al., 2007). Frequently, this occurs between tumor cells such as breast, cervical, or colon carcinoma cells and can be triggered by matrix detachment (Overholtzer et al., 2007), suggesting that loss of integrin-mediated adhesion may promote cell-in-cell invasion.
    [Show full text]
  • Human Kidney Clonal Proliferation Disclose Lineage-Restricted Precursor Characteristics
    www.nature.com/scientificreports OPEN Human kidney clonal proliferation disclose lineage‑restricted precursor characteristics Osnat Cohen‑Zontag1,7,10, Rotem Gershon1,7,10, Orit Harari‑Steinberg1,7,10, Itamar Kanter4, Dorit Omer1,7, Oren Pleniceanu1,7, Gal Tam4, Sarit Oriel4, Herzel Ben‑Hur8,9, Guy Katz1,3,5,7, Zohar Dotan2,7, Tomer Kalisky4,11, Benjamin Dekel1,6,7,11* & Naomi Pode‑Shakked1,3,7,11 In‑vivo single cell clonal analysis in the adult mouse kidney has previously shown lineage‑restricted clonal proliferation within varying nephron segments as a mechanism responsible for cell replacement and local regeneration. To analyze ex‑vivo clonal growth, we now preformed limiting dilution to generate genuine clonal cultures from one single human renal epithelial cell, which can give rise to up to 3.4 * ­106 cells, and analyzed their characteristics using transcriptomics. A comparison between clonal cultures revealed restriction to either proximal or distal kidney sub‑lineages with distinct cellular and molecular characteristics; rapidly amplifying de‑diferentiated clones and a stably proliferating cuboidal epithelial‑appearing clones, respectively. Furthermore, each showed distinct molecular features including cell‑cycle, epithelial‑mesenchymal transition, oxidative phosphorylation, BMP signaling pathway and cell surface markers. In addition, analysis of clonal versus bulk cultures show early clones to be more quiescent, with elevated expression of renal developmental genes and overall reduction in renal identity markers, but with an overlapping expression of nephron segment identifers and multiple identity. Thus, ex‑vivo clonal growth mimics the in‑vivo situation displaying lineage‑restricted precursor characteristics of mature renal cells. These data suggest that for reconstruction of varying renal lineages with human adult kidney based organoid technology and kidney regeneration ex‑vivo, use of multiple heterogeneous precursors is warranted.
    [Show full text]
  • G-Protein-Coupled Receptor Heteromer Dynamics
    Commentary 4215 G-protein-coupled receptor heteromer dynamics Jean-Pierre Vilardaga1,2,*, Luigi F. Agnati3, Kjell Fuxe4 and Francisco Ciruela5 1Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA 2Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA 3IRCCS, San Camillo, Lido Venezia, Italy 4Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden 5Pharmacology Unit, Department of Pathology and Experimental Therapy, Faculty of Medicine, University of Barcelona, 08907 Barcelona, Spain *Author for correspondence ([email protected]) Journal of Cell Science 123, 000-000 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jcs.063354 Summary G-protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors, and have evolved to detect and transmit a large palette of extracellular chemical and sensory signals into cells. Activated receptors catalyze the activation of heterotrimeric G proteins, which modulate the propagation of second messenger molecules and the activity of ion channels. Classically thought to signal as monomers, different GPCRs often pair up with each other as homo- and heterodimers, which have been shown to modulate signaling to G proteins. Here, we discuss recent advances in GPCR heteromer systems involving the kinetics of the early steps in GPCR signal transduction, the dynamic property of receptor–receptor interactions, and how the formation of receptor heteromers modulate the kinetics of G-protein signaling. Key words: G-protein-coupled receptors, Heterodimers, Signaling Introduction the signaling and trafficking mechanisms of GPCRs is thus central G-protein-coupled receptors (GPCRs) constitute the main family for the development of new and safer therapies for many of cell surface receptors for a large variety of chemical stimuli physiological and psychological disorders.
    [Show full text]
  • G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes
    Int. J. Mol. Sci. 2014, 15, 1112-1142; doi:10.3390/ijms15011112 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes Benoît T. Roux 1 and Graeme S. Cottrell 2,* 1 Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK; E-Mail: [email protected] 2 Reading School of Pharmacy, University of Reading, Reading RG6 6UB, UK * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-118-378-7027; Fax: +44-118-378-4703. Received: 4 December 2013; in revised form: 20 December 2013 / Accepted: 8 January 2014 / Published: 16 January 2014 Abstract: G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types.
    [Show full text]
  • ADGRE2-NTF Is Regulated by Site- Specific N-Glycosylation
    www.nature.com/scientificreports OPEN Membrane-association of EMR2/ ADGRE2-NTF is regulated by site- specifc N-glycosylation Received: 19 December 2017 Yi-Shu Huang1,4, Nien-Yi Chiang1, Gin-Wen Chang1 & Hsi-Hsien Lin1,2,3 Accepted: 27 February 2018 The evolutionarily conserved adhesion G protein-coupled receptors (aGPCRs) play critical roles in Published: xx xx xxxx biological processes as diverse as brain development, cell polarity and innate immune functions. A defning feature of aGPCRs is the GPCR autoproteolysis inducing (GAIN) domain capable of self- catalytic cleavage, resulting in the generation of an extracellular N-terminal fragment (NTF) and a seven-transmembrane C-terminal fragment (CTF) involved in the cellular adhesion and signaling functions, respectively. Interestingly, two diferent NTF subtypes have previously been identifed, namely an NTF that couples non-covalently with the CTF and a membrane-associated NTF that tethers on cell surface independently. The two NTF subtypes are expected to regulate aGPCR signaling via distinct mechanisms however their molecular characteristics are largely unknown. Herein, the membrane-associated NTF of EMR2/ADGRE2 is investigated and found to be modifed by diferential N-glycosylation. The membrane association of EMR2-NTF occurs in post-ER compartments and site- specifc N-glycosylation in the GAIN domain is involved in modulating its membrane-association ability. Finally, a unique amphipathic α-helix in the GAIN domain is identifed as a putative membrane anchor of EMR2-NTF. These results provide novel insights into the complex interaction and activation mechanisms of aGPCRs. Characterized by a long extracellular domain (ECD) with cell-adhesion functions and a seven-transmembrane (7TM) domain with signaling functions, the adhesion G protein-coupled receptors (aGPCRs) have been impli- cated in diverse biological activities and human diseases1.
    [Show full text]
  • Interleukin-21 in Immunity and Autoimmunity
    Interleukin-21 in immunity and autoimmunity Alexis Vogelzang A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Medicine, University of New South Wales Mucosal Autoimmunity Unit, Garvan Institute of Medical Research Sydney, Australia Awarded September 2010 1 ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Alexis Vogelzang Date …………………………………………….............. 2 COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.
    [Show full text]