Fulvestrant-3-Boronic Acid (ZB716) Demonstrates Oral Bioavailability and Favorable Pharmacokinetic Profile in Preclinical ADME Studies

Total Page:16

File Type:pdf, Size:1020Kb

Fulvestrant-3-Boronic Acid (ZB716) Demonstrates Oral Bioavailability and Favorable Pharmacokinetic Profile in Preclinical ADME Studies pharmaceuticals Article Fulvestrant-3-Boronic Acid (ZB716) Demonstrates Oral Bioavailability and Favorable Pharmacokinetic Profile in Preclinical ADME Studies Jiawang Liu 1,2,†, Nirmal Rajasekaran 3,† , Ahamed Hossain 1, Changde Zhang 1 , Shanchun Guo 1, Borui Kang 1, Hunsoon Jung 3, Hongjoong Kim 3,* and Guangdi Wang 1,4,* 1 RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA; [email protected] (J.L.); [email protected] (A.H.); [email protected] (C.Z.); [email protected] (S.G.); [email protected] (B.K.) 2 College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA 3 Enhancedbio Inc., 19 Sangwon-gil, Seongdong-gu, Seoul 04779, Korea; [email protected] (N.R.); [email protected] (H.J.) 4 Zenopharm Inc., 1441 Canal Street, New Orleans, LA 70112, USA * Correspondence: [email protected] (H.K.); [email protected] (G.W.) † These authors contributed equally to this work. Abstract: Fulvestrant-3-boronic acid (ZB716), an oral selective estrogen receptor degrader (SERD) under clinical development, has been investigated in ADME studies to characterize its absorption, metabolism, and pharmacokinetics. ZB716 was found to have high plasma protein binding in human and animal plasma, and low intestinal mucosal permeability. ZB716 had high clearance in hepatocytes of all species tested. ZB716 was metabolized primarily by CYP2D6 and CYP3A. In Citation: Liu, J.; Rajasekaran, N.; human liver microsomes, ZB716 demonstrated relatively low inhibition of CYP1A2, 2C8, 2C9, 2C19, Hossain, A.; Zhang, C.; Guo, S.; Kang, 2D6, and 3A4 (when testosterone was used as the substrate), and no inhibition of CYP2B6 and 3A4 B.; Jung, H.; Kim, H.; Wang, G. (when midazolam was used as the substrate). In assays for enzyme activity, ZB716 induced CYP1A2, Fulvestrant-3-Boronic Acid (ZB716) Demonstrates Oral Bioavailability 2B6, and 3A4 in a concentration-dependent manner. Single-dose and repeated-dose pharmacokinetic and Favorable Pharmacokinetic studies in rats and dogs showed oral bioavailability, dose-proportional drug exposure, and drug Profile in Preclinical ADME Studies. accumulation as measured by maximum concentration and area under the concentration–time curve Pharmaceuticals 2021, 14, 719. (AUC). https://doi.org/10.3390/ph14080719 Keywords: selective estrogen receptor degrader; ZB716; pharmacokinetics; oral bioavailability; breast Academic Editor: Abdelwahab Omri cancer; fulvestrant Received: 28 June 2021 Accepted: 22 July 2021 Published: 26 July 2021 1. Introduction Fulvestrant was approved for second-line endocrine treatment in 2002 [1], and recently Publisher’s Note: MDPI stays neutral as a first-line therapy for advanced or metastatic estrogen receptor-positive (ER+), human with regard to jurisdictional claims in epidermal growth factor receptor 2-negative (HER2-) breast cancer [2,3]. Fulvestrant acts as published maps and institutional affil- a full estrogen receptor (ER) antagonist that degrades the receptor protein, conferring clini- iations. cal efficacy in treating patients with progressive disease while on tamoxifen or aromatase inhibitors. However, fulvestrant is not orally bioavailable, and its poor pharmacokinetic properties and insufficient drug exposure are believed to limit clinical response, which could be further improved. Efforts to increase fulvestrant exposure through multiple clini- Copyright: © 2021 by the authors. cal trials between 2005 and 2009 led to subsequent approval of a higher dosage regimen Licensee MDPI, Basel, Switzerland. in 2010 [4]. Still, clinical studies indicate that at the maximum injectable limit of 500 mg, This article is an open access article the therapeutic effect has not reached its optimal level [5]. This unmet clinical need has distributed under the terms and driven the continued search for an ER-degrading antiestrogen that could achieve greater conditions of the Creative Commons drug exposure through high potency and oral bioavailability. Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ In the past 10 years, over 13 oral SERDs have entered clinical trials to test their safety 4.0/). and efficacy in ER+ breast cancer patients [6]. These oral SERDs are nonsteroidal small Pharmaceuticals 2021, 14, 719. https://doi.org/10.3390/ph14080719 https://www.mdpi.com/journal/pharmaceuticals Pharmaceuticals 2021, 14, x FOR PEER REVIEW 2 of 16 Pharmaceuticals 2021, 14, 719 In the past 10 years, over 13 oral SERDs have entered clinical trials to test their 2safety of 16 and efficacy in ER+ breast cancer patients [6]. These oral SERDs are nonsteroidal small molecules characterized by an ER-binding motif and a side chain featuring either an moleculesacrylic acid characterized or an amino by base an ER-bindinggroup that confer motif andantiestrogenic a side chain and featuring ER-degrading either an activities acrylic acid[7]. In or preclinical an amino base studies group evaluating that confer efficacy antiestrogenic and mode and of action, ER-degrading the oral SERD activities candidates [7]. In preclinicalare compared studies with evaluating the benchmark efficacy fulvestrant—the and mode of action, only theclinically oral SERD approved candidates SERD. are In comparedmost cases, with the theoral benchmark SERDs are fulvestrant—thefound to be comparable, only clinically but not approved superior, to SERD. fulvestrant In most in cases,ER binding, the oral ER SERDs degradation, are found tissue to be selectivity, comparable, and but inhibiting not superior, xenograft to fulvestrant tumor growth. in ER It binding,is hoped ER that degradation, the oral SERDs, tissue when selectivity, given andto patients, inhibiting would xenograft derive tumor greater growth. efficacy It via is hopedhigher that drug the exposure oral SERDs, than when fulvestrant. given to patients, would derive greater efficacy via higher drug exposureThe main than challenge fulvestrant. that oral SERDs seek to overcome, therefore, is the pharmacoki- neticThe limitations main challenge of fulvestrant, that oral but SERDs not its seekpotency to overcome, as a pure antiestr therefore,ogen is theand pharmacoki- ER degrader. neticIf fulvestrant limitations were of fulvestrant, orally bioavailable but not its and potency the level as aof pure drug antiestrogen exposure could and ER be degrader.increased Ifby fulvestrant oral dosage, were its orallyclinical bioavailable efficacy could and be the conceivably level of drug enhanced exposure significantly. could be increased In reality, byglucuronidation oral dosage, its of clinical fulvestrant efficacy by could UDP-gl be conceivablyucuronosyltransferase enhanced significantly. (UGT) enzymes In reality, ex- glucuronidationpressed in both ofthe fulvestrant intestine byand UDP-glucuronosyltransferase liver may effectively inactivate (UGT) and enzymes eliminate expressed the drug inbefore both theit reaches intestine systemic and liver circulation may effectively [8–10]. inactivateTo circumvent and eliminatethe first pass the drug clearance before that it reacheslimits fulvestrant’s systemic circulation oral absorption, [8–10]. To we circumvent implemented the first a solution pass clearance where the that 3-OH limits group fulves- of trant’sfulvestrant oral absorption, is replaced we by implemented a boronic aacid solution group where to obtain the 3-OH fulvestrant-3-boronic group of fulvestrant acid is replaced(ZB716) by(Figure a boronic 1) [11]. acid The group rationale to obtain for fulvestrant-3-boronicthis chemical modification acid (ZB716) was based (Figure on1 our)[ 11 re-]. Thesearch rationale findings for [12–15], this chemical where modificationboronic bioiso wassteres based can onsignificantly our research reduce findings the first-pass [12–15], wheremetabolism boronic of bioisosteres phenolic compounds. can significantly Our studies reduce confirmed the first-pass that metabolism ZB716 retains of phenolicfull bind- compounds.ing affinity of Our the studies steroidal confirmed moiety thatof fulv ZB716estrant, retains while full minimizing binding affinity glucuronidation of the steroidal and moietysulfation of fulvestrant,[11–13]. We while found minimizing that ZB716glucuronidation acted as a pure andantiestrogen sulfation and [11– ER13]. degrader We found in thatER+ ZB716 breast acted cancer as cells, a pure and antiestrogen potently inhibited and ER degradertumor growth in ER+ in breastclinically cancer relevant cells, xeno- and potentlygraft breast inhibited cancer tumor models growth [12]. in clinically relevant xenograft breast cancer models [12]. FigureFigure 1. 1.Structure Structure of of fulvestrant fulvestrant and and ZB716. ZB716. WeWe report report preclinical preclinical studies studies in in support support of of the the investigational investigational new new drug drug (IND) (IND) applica- appli- tioncation for afor phase a phase 1 clinical 1 clinical trial trial of ZB716. of ZB716. These These studies studies include includein vitro in vitroADME ADME investigations, investiga- andtions, pharmacokinetic and pharmacokinetic (PK) and (PK) toxicokinetic and toxicoki (TK)netic studies (TK) instudies rodents in androdents dogs. and The dogs. species The andspecies strains and used strains in the used present in the studies present reflected studies those reflected employed those employed in the toxicological in the toxicolog- testing ofical ZB716, testing in of order ZB716, to enable in order meaningful to enable assessmentmeaningful of assessment the exposure of the levels exposure in the toxicitylevels
Recommended publications
  • ECO-Ssls for Pahs
    Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final OSWER Directive 9285.7-78 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 June 2007 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR PAHs......................................1 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................4 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................8 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE..................................8 6.1 Mammalian TRV ...................................................8 6.2 Estimation of Dose and Calculation of the Eco-SSL ........................9 7.0 REFERENCES .........................................................16 7.1 General PAH References ............................................16 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......17 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................18 7.4 References Used in Derivation of Wildlife TRVs .........................25 7.5 References Rejected for Use in Derivation of Wildlife TRV ................28 i LIST OF TABLES Table 2.1 PAH Eco-SSLs (mg/kg dry weight in soil) ..............................4 Table 3.1 Plant Toxicity Data - PAHs ..........................................5 Table 4.1
    [Show full text]
  • Biosynthesis and Secretion of the Microbial Sulfated Peptide Raxx and Binding to the Rice XA21 Immune Receptor
    Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor Dee Dee Luua,b,1, Anna Joea,b,c,1, Yan Chend, Katarzyna Paryse, Ofir Bahara,b,2, Rory Pruitta,b,3, Leanne Jade G. Chand, Christopher J. Petzoldd, Kelsey Longa,b, Clifford Adamchaka,b, Valley Stewartf, Youssef Belkhadire, and Pamela C. Ronalda,b,c,4 aDepartment of Plant Pathology, University of California, Davis, CA 95616; bThe Genome Center, University of California, Davis, CA 95616; cFeedstocks Division, Joint Bioenergy Institute, Emeryville, CA 94608; dTechnology Division, Joint Bioenergy Institute, Emeryville, CA 94608; eGregor Mendel Institute, Austrian Academy of Sciences, 1030 Vienna, Austria; and fDepartment of Microbiology & Molecular Genetics, University of California, Davis, CA 95616 Edited by Jonathan D. G. Jones, The Sainsbury Laboratory, Norwich, United Kingdom, and approved March 7, 2019 (received for review October 24, 2018) The rice immune receptor XA21 is activated by the sulfated micro- to Xoo strains lacking RaxX (7–10). Xoo strains lacking RaxX are bial peptide required for activation of XA21-mediated immunity X also compromised in virulence of rice plants lacking XA21 (10). (RaxX) produced by Xanthomonas oryzae pv. oryzae (Xoo). Muta- These results suggest a role for RaxX in bacterial virulence. tional studies and targeted proteomics revealed that the RaxX pre- Tyrosine sulfated RaxX16, a 16-residue synthetic peptide de- cursor peptide (proRaxX) is processed and secreted by the protease/ rived from residues 40–55 of the 60-residue RaxX precursor transporter RaxB, the function of which can be partially fulfilled by peptide (proRaxX), is the shortest characterized immunogenic a noncognate peptidase-containing transporter component B derivative of RaxX (10).
    [Show full text]
  • NDA/BLA Multi-Disciplinary Review and Evaluation
    NDA/BLA Multi-disciplinary Review and Evaluation NDA 214154 Nextstellis (drospirenone and estetrol tablets) NDA/BLA Multi-Disciplinary Review and Evaluation Application Type NDA Application Number(s) NDA 214154 (IND 110682) Priority or Standard Standard Submit Date(s) April 15, 2020 Received Date(s) April 15, 2020 PDUFA Goal Date April 15, 2021 Division/Office Division of Urology, Obstetrics, and Gynecology (DUOG) / Office of Rare Diseases, Pediatrics, Urologic and Reproductive Medicine (ORPURM) Review Completion Date April 15, 2021 Established/Proper Name drospirenone and estetrol tablets (Proposed) Trade Name Nextstellis Pharmacologic Class Combination hormonal contraceptive Applicant Mayne Pharma LLC Dosage form Tablet Applicant proposed Dosing x Take one tablet by mouth at the same time every day. Regimen x Take tablets in the order directed on the blister pack. Applicant Proposed For use by females of reproductive potential to prevent Indication(s)/Population(s) pregnancy Recommendation on Approval Regulatory Action Recommended For use by females of reproductive potential to prevent Indication(s)/Population(s) pregnancy (if applicable) Recommended Dosing x Take one pink tablet (drospirenone 3 mg, estetrol Regimen anhydrous 14.2 mg) by mouth at the same time every day for 24 days x Take one white inert tablet (placebo) by mouth at the same time every day for 4 days following the pink tablets x Take tablets in the order directed on the blister pack 1 Reference ID: 4778993 NDA/BLA Multi-disciplinary Review and Evaluation NDA 214154 Nextstellis (drospirenone and estetrol tablets) Table of Contents Table of Tables .................................................................................................................... 5 Table of Figures ................................................................................................................... 7 Reviewers of Multi-Disciplinary Review and Evaluation ...................................................
    [Show full text]
  • Us Anti-Doping Agency
    2019U.S. ANTI-DOPING AGENCY WALLET CARDEXAMPLES OF PROHIBITED AND PERMITTED SUBSTANCES AND METHODS Effective Jan. 1 – Dec. 31, 2019 CATEGORIES OF SUBSTANCES PROHIBITED AT ALL TIMES (IN AND OUT-OF-COMPETITION) • Non-Approved Substances: investigational drugs and pharmaceuticals with no approval by a governmental regulatory health authority for human therapeutic use. • Anabolic Agents: androstenediol, androstenedione, bolasterone, boldenone, clenbuterol, danazol, desoxymethyltestosterone (madol), dehydrochlormethyltestosterone (DHCMT), Prasterone (dehydroepiandrosterone, DHEA , Intrarosa) and its prohormones, drostanolone, epitestosterone, methasterone, methyl-1-testosterone, methyltestosterone (Covaryx, EEMT, Est Estrogens-methyltest DS, Methitest), nandrolone, oxandrolone, prostanozol, Selective Androgen Receptor Modulators (enobosarm, (ostarine, MK-2866), andarine, LGD-4033, RAD-140). stanozolol, testosterone and its metabolites or isomers (Androgel), THG, tibolone, trenbolone, zeranol, zilpaterol, and similar substances. • Beta-2 Agonists: All selective and non-selective beta-2 agonists, including all optical isomers, are prohibited. Most inhaled beta-2 agonists are prohibited, including arformoterol (Brovana), fenoterol, higenamine (norcoclaurine, Tinospora crispa), indacaterol (Arcapta), levalbuterol (Xopenex), metaproternol (Alupent), orciprenaline, olodaterol (Striverdi), pirbuterol (Maxair), terbutaline (Brethaire), vilanterol (Breo). The only exceptions are albuterol, formoterol, and salmeterol by a metered-dose inhaler when used
    [Show full text]
  • Biotransformation: Basic Concepts (1)
    Chapter 5 Absorption, Distribution, Metabolism, and Elimination of Toxics Biotransformation: Basic Concepts (1) • Renal excretion of chemicals Biotransformation: Basic Concepts (2) • Biological basis for xenobiotic metabolism: – To convert lipid-soluble, non-polar, non-excretable forms of chemicals to water-soluble, polar forms that are excretable in bile and urine. – The transformation process may take place as a result of the interaction of the toxic substance with enzymes found primarily in the cell endoplasmic reticulum, cytoplasm, and mitochondria. – The liver is the primary organ where biotransformation occurs. Biotransformation: Basic Concepts (3) Biotransformation: Basic Concepts (4) • Interaction with these enzymes may change the toxicant to either a less or a more toxic form. • Generally, biotransformation occurs in two phases. – Phase I involves catabolic reactions that break down the toxicant into various components. • Catabolic reactions include oxidation, reduction, and hydrolysis. – Oxidation occurs when a molecule combines with oxygen, loses hydrogen, or loses one or more electrons. – Reduction occurs when a molecule combines with hydrogen, loses oxygen, or gains one or more electrons. – Hydrolysis is the process in which a chemical compound is split into smaller molecules by reacting with water. • In most cases these reactions make the chemical less toxic, more water soluble, and easier to excrete. Biotransformation: Basic Concepts (5) – Phase II reactions involves the binding of molecules to either the original toxic molecule or the toxic molecule metabolite derived from the Phase I reactions. The final product is usually water soluble and, therefore, easier to excrete from the body. • Phase II reactions include glucuronidation, sulfation, acetylation, methylation, conjugation with glutathione, and conjugation with amino acids (such as glycine, taurine, and glutamic acid).
    [Show full text]
  • A Novel Method for Site-Determination of Tyrosine O- Sulfation in Peptides and Proteins
    A novel method for site-determination of tyrosine O- sulfation in peptides and proteins Yonghao Yu Genome Center, Depts of Chemistry and Molecular Cell Biology, University of California, Davis, CA, 95616 and Dept of Chemistry, University of California, Berkeley, CA, 94720, current address: Dept of Cell Biology, Harvard Medical School, Boston, MA 02115 Adam J. Hoffhines Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 Kevin L. Moore Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 Julie A. Leary Genome Center, Departments of Chemistry and Molecular Cell Biology, University of California, Davis, CA, 95616 Method Article Keywords: tyrosine sulfation, mass spectrometry, post-translational modication, protein-protein interaction, extracelluar matrix, proteomics Posted Date: September 20th, 2007 DOI: https://doi.org/10.1038/nprot.2007.388 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/12 Abstract Introduction Tyrosine O-sulfation is one of many posttranslational modications described in nature that can impart critical functional properties to proteins that are independent of the genes encoding them1, 2. It plays a key role in regulating protein-protein interactions in the extracellular space3 and is catalyzed by two closely related Golgi enzymes called tyrosylprotein sulfotransferases \(TPST-1 and TPST–2)4, 5. In this protocol, we describe a novel subtractive strategy to determine the sites of tyrosine sulfation in peptides and proteins6. Hydroxyl groups on unsulfated tyrosines are stoichiometrically acetylated by a one-step reaction using sulfosuccinimidyl acetate in the presence of imidazole at pH 7.0.
    [Show full text]
  • Tyrosine Sulfation: a Modulator of Extracellular Protein–Protein Interactions Provided by Elsevier - Publisher Connector John W Kehoe1 and Carolyn R Bertozzi1,2
    cm7309.qxd 03/10/2000 11:46 Page R57 CORE Minireview R57 brought to you by Elsevier - Publisher Connector Tyrosine sulfation: a modulator of extracellular protein–protein interactions provided by John W Kehoe1 and Carolyn R Bertozzi1,2 Tyrosine sulfation is a post-translational modification of P-selectin on activated endothelial cells with the many secreted and membrane-bound proteins. Its P-selectin glycoprotein ligand (PSGL)-1 on cognate biological roles have been unclear. Recent work has leukocytes [3]. PSGL-1 was identified at the molecular implicated tyrosine sulfate as a determinant of level in 1993, using expression cloning [4]. Glycosylation protein–protein interactions involved in leukocyte of PSGL-1 was known to be a major determinant of adhesion, hemostasis and chemokine signaling. P-selectin binding, but was not sufficient to explain the binding avidities observed in vivo. Addresses: Departments of 1Molecular and Cell Biology and 2 Chemistry, University of California, Berkeley, CA 94720, USA. Further investigations revealed that tyrosine sulfation near Correspondence: Carolyn R Bertozzi the amino terminus of PSGL-1 plays an essential role in E-mail: [email protected] P-selectin binding (shown schematically in Figure 1b). Three papers published within one month of each other in Chemistry & Biology 2000, 7:R57–R61 1995 provided the first evidence of this phenomenon 1074-5521/00/$ – see front matter [5–7]. Progressive deletions of the PSGL-1 amino termi- © 2000 Elsevier Science Ltd. All rights reserved. nus by Pouyani and Seed [5] revealed that a 20-residue peptide was required for high-affinity binding. Further- The study of living systems has been transformed by an more, mutagenesis within this sequence showed that the explosion of genetic information.
    [Show full text]
  • REVIEW Steroid Sulfatase Inhibitors for Estrogen
    99 REVIEW Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers Atul Purohit and Paul A Foster1 Oncology Drug Discovery Group, Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK 1School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham B15 2TT, UK (Correspondence should be addressed to P A Foster; Email: [email protected]) Abstract Estrogens and androgens are instrumental in the maturation of in vivo and where we currently stand in regards to clinical trials many hormone-dependent cancers. Consequently,the enzymes for these drugs. STS inhibitors are likely to play an important involved in their synthesis are cancer therapy targets. One such future role in the treatment of hormone-dependent cancers. enzyme, steroid sulfatase (STS), hydrolyses estrone sulfate, Novel in vivo models have been developed that allow pre-clinical and dehydroepiandrosterone sulfate to estrone and dehydroe- testing of inhibitors and the identification of lead clinical piandrosterone respectively. These are the precursors to the candidates. Phase I/II clinical trials in postmenopausal women formation of biologically active estradiol and androstenediol. with breast cancer have been completed and other trials in This review focuses on three aspects of STS inhibitors: patients with hormone-dependent prostate and endometrial 1) chemical development, 2) biological activity, and 3) clinical cancer are currently active. Potent STS inhibitors should trials. The aim is to discuss the importance of estrogens and become therapeutically valuable in hormone-dependent androgens in many cancers, the developmental history of STS cancers and other non-oncological conditions.
    [Show full text]
  • NST110: Advanced Toxicology Lecture 4: Phase I Metabolism
    Absorption, Distribution, Metabolism and Excretion (ADME): NST110: Advanced Toxicology Lecture 4: Phase I Metabolism NST110, Toxicology Department of Nutritional Sciences and Toxicology University of California, Berkeley Biotransformation The elimination of xenobiotics often depends on their conversion to water-soluble chemicals through biotransformation, catalyzed by multiple enzymes primarily in the liver with contributions from other tissues. Biotransformation changes the properties of a xenobiotic usually from a lipophilic form (that favors absorption) to a hydrophilic form (favoring excretion in the urine or bile). The main evolutionary goal of biotransformation is to increase the rate of excretion of xenobiotics or drugs. Biotransformation can detoxify or bioactivate xenobiotics to more toxic forms that can cause tumorigenicity or other toxicity. Phase I and Phase II Biotransformation Reactions catalyzed by xenobiotic biotransforming enzymes are generally divided into two groups: Phase I and phase II. 1. Phase I reactions involve hydrolysis, reduction and oxidation, exposing or introducing a functional group (-OH, -NH2, -SH or –COOH) to increase reactivity and slightly increase hydrophilicity. O R1 - O S O sulfation O R2 OH Phase II Phase I R1 R2 R1 R2 - hydroxylation COO R1 O O glucuronidation OH R2 HO excretion OH O COO- HN H -NH2 R R1 R1 S N 1 Phase I Phase II COO O O oxidation glutathione R2 OH R2 R2 conjugation 2. Phase II reactions include glucuronidation, sulfation, acetylation, methylation, conjugation with glutathione, and conjugation with amino acids (glycine, taurine and glutamic acid) that strongly increase hydrophilicity. Phase I and II Biotransformation • With the exception of lipid storage sites and the MDR transporter system, organisms have little anatomical defense against lipid soluble toxins.
    [Show full text]
  • 6. References
    332 IARC MONOGRAPHS VOLUME 91 6. References Abramov, Y., Borik, S., Yahalom, C., Fatum, M., Avgil, G., Brzezinski, A. & Banin, E. (2004) The effect of hormone therapy on the risk for age-related maculopathy in postmenopausal women. Menopause, 11, 62–68 Adams, M.R., Register, T.C., Golden, D.L., Wagner, JD. & Williams, J.K. (1997) Medroxyproges- terone acetate antagonizes inhibitory effects of conjugated equine estrogens on coronary artery atherosclerosis. Arterioscler. Thromb. vasc. Biol., 17, 217–221 Adjei, A.A. & Weinshilboum, R.M. (2002) Catecholestrogen sulfation: Possible role in carcino- genesis. Biochem. biophys. Res. Commun., 292, 402–408 Adjei, A.A., Thomae, B.A., Prondzinski, J.L., Eckloff, B.W., Wieben, E.D. & Weinshilboum, R.M. (2003) Human estrogen sulfotransferase (SULT1E1) pharmacogenomics: Gene resequencing and functional genomics. Br. J. Pharmacol., 139, 1373–1382 Ahmad, M.E., Shadab, G.G.H.A., Hoda, A. & Afzal, M. (2000) Genotoxic effects of estradiol-17β on human lymphocyte chromosomes. Mutat. Res., 466, 109–115 COMBINED ESTROGEN−PROTESTOGEN MENOPAUSAL THERAPY 333 Ahmad, M.E., Shadab, G.G.H.A., Azfer, M.A. & Afzal, M. (2001) Evaluation of genotoxic poten- tial of synthetic progestins-norethindrone and norgestrel in human lymphocytes in vitro. Mutat. Res., 494, 13–20 Aitken, J.M., Hart, D.M. & Lindsay, R. (1973) Oestrogen replacement therapy for prevention of osteoporosis after oophorectomy. Br. med. J., 3, 515–518 Al-Azzawi, F., Wahab, M., Thompson, J., Whitehead, M. & Thompson, W. (1999) Acceptability and patterns of uterine bleeding in sequential trimegestone-based hormone replacement therapy: A dose-ranging study. Hum. Reprod., 14, 636–641 Albert, C., Vallée, M., Beaudry, G., Belanger, A.
    [Show full text]
  • Active Estrogen Synthesis and Its Function in Prostate Cancer-Derived Stromal Cells
    ANTICANCER RESEARCH 35: 221-228 (2015) Active Estrogen Synthesis and its Function in Prostate Cancer-derived Stromal Cells KAZUAKI MACHIOKA1, ATSUSHI MIZOKAMI1, YURI YAMAGUCHI2, KOUJI IZUMI1, SHINICHI HAYASHI3 and MIKIO NAMIKI1 1Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan; 2Division of Breast Surgery, Saitama Cancer Center, Saitama, Japan; 3Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan Abstract. Background: It remains unclear whether estrogen Castration-naïve prostate cancer (PCa) develops into is produced in prostate cancer (PCa) and how it functions in castration-resistant prostate cancer (CRPC) during androgen PCa. Materials and Methods: To examine the production of deprivation therapy (ADT) by various mechanisms. estrogen in PCa cells, the concentration of estrogen in the Especially, the androgen receptor (AR) signaling axis plays a medium in which LNCaP cells and PCa-derived stromal cells key role in this specific development. PCa cells mainly adapt (PCaSC) were co-cultured, was measured by liquid themselves to the environment of lower androgen chromatography-mass spectrometry/mass spectrometry (LC- concentrations and change into androgen-hypersensitive cells MS/MS), while aromatase (CYP19) mRNA expression was or androgen-independent cells. Androgens of adrenal origin confirmed by real-time polymerase chain reaction (RT-PCR) and their metabolites synthesized in the microenvironment in methods. To verify whether estrogen is synthesized from an intracrine/paracrine fashion act on surviving PCa cells and testosterone in PCaSC functions, PCaSC were co-cultured secrete prostate specific antigen (PSA). Therefore, new with breast cancer MCF-7-E10 cells, which were stably- recently developed medicines, abiraterone acetate that transfected with ERE-GFP, in the presence of testosterone.
    [Show full text]
  • An Oral Estrogen Receptor Inhibitor That Blocks the Growth of ER-Positive and ESR1 Mutant Breast Tumours in Preclinical Models
    Author Manuscript Published OnlineFirst on March 28, 2016; DOI: 10.1158/0008-5472.CAN-15-2357 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Title: AZD9496: An oral estrogen receptor inhibitor that blocks the growth of ER- 2 positive and ESR1 mutant breast tumours in preclinical models. 3 4 Running title: Pharmacology of SERD inhibitor in breast cancer models 5 6 Hazel M. Weir,a Robert H. Bradbury,a Mandy Lawson,a Alfred A. Rabow,a David Buttar,a 7 Rowena J. Callis,b Jon O. Curwen,a Camila de Almeida,a Peter Ballard, a Michael Hulse,a 8 Craig S. Donald,a Lyman J. L. Feron,a Galith Karoutchi,a Philip MacFaul,a Thomas Moss,a 9 Richard A. Norman,b Stuart E. Pearson,a Michael Tonge,b Gareth Davies,a Graeme E. 10 Walker,b Zena Wilson,a Rachel Rowlinson,a Steve Powell,a Claire Sadler,a Graham 11 Richmond,a Brendon Ladd, d Ermira Pazolli,c Anne Marie Mazzola,d Celina D’Cruz,d Chris 12 De Savi.d 13 14 Authors’ Affiliations: 15 aOncology iMed, AstraZeneca, Mereside, Alderley Park, Macclesfield SK10 4TG, UK; 16 bDiscovery Sciences, AstraZeneca, Mereside, Alderley Park, Macclesfield SK10 4TG UK; c 17 H3 Biomedicine, Technology Sq, Cambridge, MA 02139,dOncology iMed, AstraZeneca R&D 18 Boston, Gatehouse Drive, Waltham, MA 02451, U.S. 19 20 Key words: SERD, estrogen receptor, metastatic breast cancer, ER mutation, ESR1 mutation. 21 combination therapy 22 23 Corresponding author: [email protected] 24 25 Disclosure of Potential Conflicts of Interest: All authors are present or past employees of 26 AstraZeneca Pharmaceuticals 27 28 Tables: 1 29 Figures: 6 30 Supplementary Tables:4 31 Supplementary Figures: 7 32 33 Precis: This article discloses the structure and pharmacology of an oral non-steroidal small 34 molecule which is potent against wild-type and mutant forms of the estrogen receptor, 35 producing anti-tumour efficacy either as a monotherapy or in combination with PI3K or cell 36 cycle inhibitors in vivo.
    [Show full text]