Surveying Outside the Solar System

Total Page:16

File Type:pdf, Size:1020Kb

Surveying Outside the Solar System Surveying outside the solar system Measuring distances is key to know any property of astronomical objects • Physical size is angular size x (distance) • The Luminosity is the flux x (distance squared) • Masses are measured with velocities and physical lengths, again need distance to convert an angle to a physical size and determine mass 1 Geometric Distances: the gold standard Solar system Stars • orbit geometry • parallax • radar ranging 2 Parallax Limits Ground-based parallaxes accurate to ~0.01-arcsec • good distances out to 100 pc • < 1000 stars this close Hipparcos satellite measures parallaxes to ~0.001- arcsec • good distances out to 1000 pc • ~100,000 stars 3 Luminosity Distances Indirect distance estimate: • Measure the object's Apparent Brightness, B • Assume the object's Luminosity, L • Solve for the object's Luminosity Distance, dL, by applying the Inverse Square Law of Bright We to know the true luminosity of the source! 4 Standard Candles When we have the Luminosity "a priori”, it’s a Standard Candle. • We “build” standard candles by “Bootstraping": • Calibrate nearby objects with Parallax distances • Identify distant similar objects • Assume that the distant objects have the same intrinsic Luminosity as the nearby objects With “calibrated candles”, you can measuring distances that are too far away for geometric methods like parallaxes. “Standardized” or “Calibrated” candles would be a better term, but “Standard” is ubiquitous 5 Moving cluster distances Fundamental distance method applicable to Hyades (the nearest cluster) and slowly moving outward Stars in cluster have common space motion. But because of the perspective effect, the proper motions appear to converge on a given point in sky – the convergent point. 6 Data Proper motions of stars in the Hyades cluster, showing the convergent point located in the sky but several degrees away from the cluster itself. 7 For the Hyades the moving cluster method gives mV – MV (distance modulus) = 3.25 Hence d = 44.3 pc. This is a fundamental distance determination in astronomy, relative to which distances to other more distant objects are measured. 8 Nearby clusters Distances of some well-known clusters Cluster distance Hyades 44 pc Pleiades 127 pc Praesepe 159 pc Sco-Cen 170 pc M67 830 pc h Persei 2250 pc χ Persei 2400 pc 9 Spectroscopic "Parallaxes" Distance-Independent Property: the star’s spectrum • Build up a calibrated H-R Diagram for nearby stars with good parallax distances • Get Spectral Type & Luminosity Class of the distant star from its spectrum. • Locate the star in the calibrated H-R Diagram • Read off the Luminosity • Compute the Luminosity Distance (dL) from is measured Apparent Brightness 10 The name is nonsense, picked to make it sound reliable 11 Problems: Luminosity Classes are only roughly defined. • H-R diagram location depends on composition • Faint spectra give poor classifications. • Highly inaccurate for single stars, better when fitting an entire cluster of stars 12 Some stars are very regular variables “pulsing” • A period is Distance- Independent • Period-Luminosity Relations exist for certain classes of periodic variable stars. • Hence, measuring the Period gives the Luminosity IF you calibrate the relationship with parallax 13 Cepheid mechanism • “Eddington valve” (1917) with HeII<>HeIII (1953) • The more He is heated, the more ionized it is • Doubly ionized He is more opaque than singly • So, the more ionized, the less transparent • It tries to settle in and be “small and hot”, but that makes it opaque and increases radiation pressure on outer layer • It expands and cools which makes it transparent and now the radiation pressure is too low to keep it there, so it collapses…. 14 “Famous” Cepheids • Delta Cephei, the namesake • Polaris—the closest (Hipparcos parallax) • it’s distance estimate has changed from 133pc to 105 pc in the last 10 years!, • Eta Aquilae • Zeta Geminorum • Beta Doradus • RT Aurigae 15 Polaris • Four day period • Increasing 4.5s/yr • evolving through instability strip? • primary or overtone pulsation? • Ptolemy observed it, if his observations are correct, it would be “a magnitude”, e.g. 2.5x brighter now then then. That’s 100x greater change than expected from stellar evolution 16 Cepheids: Brighter is Better! Rhythmically pulsating Supergiant stars, found in young star clusters • Luminosity of ~ 103-4 Lsun • Brightness changes: few percent to a factor of 2-3 • Period Range: 1 to ~50 days. • Period-Luminosity Relation: • Longer Period = Higher Luminosity • P = 3 days, L ~ 103 Lsun • P = 30 days, L ~ 104 Lsun Can see these stars out to 100Mlyr, hundreds of galaxies, a few clusters of galaxies, opportunity to calibrate something else to go further! 17 Cepheids Problems: • No Cepheids have precise parallaxes • some low quality with Hipparcos • the Pleiades is the right age, there just isn’t one • Two types of Cepheids with different P-L relations (delta Cephei and W Virginis stars). Despite problems, Cepheids (specifically delta Cephei stars) are one of the most important Standard Candles for (extragalactic) cosmic distances. 18 RR Lyrae Variables Rhythmically pulsating Horizontal-Branch stars: • Found in old clusters, Galactic bulge & halo • Luminosity of ~50 Lsun • Brightness Range: factor of ~ 2-3 • Period Range: few hours to ~ 1 day. • Relatives of Cepheid Variables (mechanism) • PL Relation not as strong as that of Cepheids Fainter, but we get the distances to old stars, tie them together with Globular Clusters (GCs) Use them in the closest galaxies None close enough for parallaxes, but GC calibrators 19 Cosmic Distance Scale We will have to define and revisit this when we talk about the expansion of the Universe 20.
Recommended publications
  • The AAVSO DSLR Observing Manual
    The AAVSO DSLR Observing Manual AAVSO 49 Bay State Road Cambridge, MA 02138 email: [email protected] Version 1.2 Copyright 2014 AAVSO Foreword This manual is a basic introduction and guide to using a DSLR camera to make variable star observations. The target audience is first-time beginner to intermediate level DSLR observers, although many advanced observers may find the content contained herein useful. The AAVSO DSLR Observing Manual was inspired by the great interest in DSLR photometry witnessed during the AAVSO’s Citizen Sky program. Consumer-grade imaging devices are rapidly evolving, so we have elected to write this manual to be as general as possible and move the software and camera-specific topics to the AAVSO DSLR forums. If you find an area where this document could use improvement, please let us know. Please send any feedback or suggestions to [email protected]. Most of the content for these chapters was written during the third Citizen Sky workshop during March 22-24, 2013 at the AAVSO. The persons responsible for creation of most of the content in the chapters are: Chapter 1 (Introduction): Colin Littlefield, Paul Norris, Richard (Doc) Kinne, Matthew Templeton Chapter 2 (Equipment overview): Roger Pieri, Rebecca Jackson, Michael Brewster, Matthew Templeton Chapter 3 (Software overview): Mark Blackford, Heinz-Bernd Eggenstein, Martin Connors, Ian Doktor Chapters 4 & 5 (Image acquisition and processing): Robert Buchheim, Donald Collins, Tim Hager, Bob Manske, Matthew Templeton Chapter 6 (Transformation): Brian Kloppenborg, Arne Henden Chapter 7 (Observing program): Des Loughney, Mike Simonsen, Todd Brown Various figures: Paul Valleli Clear skies, and Good Observing! Arne Henden, Director Rebecca Turner, Operations Director Brian Kloppenborg, Editor Matthew Templeton, Science Director Elizabeth Waagen, Senior Technical Assistant American Association of Variable Star Observers Cambridge, Massachusetts June 2014 i Index 1.
    [Show full text]
  • Fundamental Parameters of Wolf-Rayet Stars VI
    Astron. Astrophys. 320, 500–524 (1997) ASTRONOMY AND ASTROPHYSICS Fundamental parameters of Wolf-Rayet stars VI. Large Magellanic Cloud WNL stars? P.A.Crowther and L.J. Smith Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK Received 5 February 1996 / Accepted 26 June 1996 Abstract. We present a detailed, quantitative study of late WN Key words: stars: Wolf-Rayet;mass-loss; evolution; fundamen- (WNL) stars in the LMC, based on new optical spectroscopy tal parameters – galaxies: Magellanic Clouds (AAT, MSO) and the Hillier (1990) atmospheric model. In a pre- vious paper (Crowther et al. 1995a), we showed that 4 out of the 10 known LMC Ofpe/WN9 stars should be re-classified WN9– 10. We now present observations of the remaining stars (except the LBV R127), and show that they are also WNL (WN9–11) 1. Introduction stars, with the exception of R99. Our total sample consists of 17 stars, and represents all but one of the single LMC WN6– Quantitative studies of hot luminous stars in galaxies are im- 11 population and allows a direct comparison with the stellar portant for a number of reasons. First, and probably foremost, parameters and chemical abundances of Galactic WNL stars is the information they provide on the effect of the environment (Crowther et al. 1995b; Hamann et al. 1995a). Previously un- on such fundamental properties as the mass-loss rate and stellar published ultraviolet (HST-FOS, IUE-HIRES) spectroscopy are evolution. In the standard picture (e.g. Maeder & Meynet 1987) presented for a subset of our programme stars.
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • Gas and Dust in the Magellanic Clouds
    Gas and dust in the Magellanic clouds A Thesis Submitted for the Award of the Degree of Doctor of Philosophy in Physics To Mangalore University by Ananta Charan Pradhan Under the Supervision of Prof. Jayant Murthy Indian Institute of Astrophysics Bangalore - 560 034 India April 2011 Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the inves- tigations carried out by me at Indian Institute of Astrophysics, Bangalore, under the supervision of Professor Jayant Murthy. This work has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: ii Certificate This is to certify that the thesis entitled ‘Gas and Dust in the Magellanic clouds’ submitted to the Mangalore University by Mr. Ananta Charan Pradhan for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervi- sion and guidance, at Indian Institute of Astrophysics. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: iii Dedicated to my parents ========================================= Sri. Pandab Pradhan and Smt. Kanak Pradhan ========================================= Acknowledgements It has been a pleasure to work under Prof. Jayant Murthy. I am grateful to him for giving me full freedom in research and for his guidance and attention throughout my doctoral work inspite of his hectic schedules. I am indebted to him for his patience in countless reviews and for his contribution of time and energy as my guide in this project.
    [Show full text]
  • 2013 Version
    Citizen Science with Variable Stars Brought to you by the AAVSO, Astronomers without Borders, the National Science Foundation and Your Universe Astronomers need your help! Many bright stars change in brightness all the time and for many different reasons. Some stars are too bright for professionals to CitizenSky is a collaboration of the look at with most large telescopes. So, we American Association of need your help to watch these stars as they Variable Star Observers (AAVSO), the University of dim and brighten over the next several years. Denver, the Adler Planetarium, the Johns Hopkins University and the California Academies of This guide will help you find these bright Science with support from the National Science Foundation. stars, measure their brightness and then submit the measurements to assist professional astronomers. Participate in one of the largest and longest running citizen science projects in history! Thousands of people just like you are helping o ut. Astronomers need large numbers of people to get the amount of precision they need to do their research. You are the key. Header artwork is reproduced with permission from Sky & Telescope magazine (www.skyandtelescope.com) Betelgeuse – Alpha Orionis From the city or country sky, from almost any part of the world, the majestic figure of Orion dominates the night sky with his belt, sword, and club. Low and to the right is the great red pulsating supergiant, Betelgeuse (alpha Orionis). Recently acquiring fame for being the first star to have its atmosphere directly imaged (shown below), alpha Orionis has captivated observers' attention for centuries. At minimum brightness, as in 1927 and 1941, its magnitude may drop below 1.2.
    [Show full text]
  • Index to JRASC Volumes 61-90 (PDF)
    THE ROYAL ASTRONOMICAL SOCIETY OF CANADA GENERAL INDEX to the JOURNAL 1967–1996 Volumes 61 to 90 inclusive (including the NATIONAL NEWSLETTER, NATIONAL NEWSLETTER/BULLETIN, and BULLETIN) Compiled by Beverly Miskolczi and David Turner* * Editor of the Journal 1994–2000 Layout and Production by David Lane Published by and Copyright 2002 by The Royal Astronomical Society of Canada 136 Dupont Street Toronto, Ontario, M5R 1V2 Canada www.rasc.ca — [email protected] Table of Contents Preface ....................................................................................2 Volume Number Reference ...................................................3 Subject Index Reference ........................................................4 Subject Index ..........................................................................7 Author Index ..................................................................... 121 Abstracts of Papers Presented at Annual Meetings of the National Committee for Canada of the I.A.U. (1967–1970) and Canadian Astronomical Society (1971–1996) .......................................................................168 Abstracts of Papers Presented at the Annual General Assembly of the Royal Astronomical Society of Canada (1969–1996) ...........................................................207 JRASC Index (1967-1996) Page 1 PREFACE The last cumulative Index to the Journal, published in 1971, was compiled by Ruth J. Northcott and assembled for publication by Helen Sawyer Hogg. It included all articles published in the Journal during the interval 1932–1966, Volumes 26–60. In the intervening years the Journal has undergone a variety of changes. In 1970 the National Newsletter was published along with the Journal, being bound with the regular pages of the Journal. In 1978 the National Newsletter was physically separated but still included with the Journal, and in 1989 it became simply the Newsletter/Bulletin and in 1991 the Bulletin. That continued until the eventual merger of the two publications into the new Journal in 1997.
    [Show full text]
  • The R136 Star Cluster Dissected with Hubble Space Telescope/STIS. II
    This is a repository copy of The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/166782/ Version: Accepted Version Article: Bestenlehner, J.M. orcid.org/0000-0002-0859-5139, Crowther, P.A., Caballero-Nieves, S.M. et al. (11 more authors) (2020) The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. Monthly Notices of the Royal Astronomical Society. ISSN 0035-8711 https://doi.org/10.1093/mnras/staa2801 This is a pre-copyedited, author-produced version of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [Joachim M Bestenlehner, Paul A Crowther, Saida M Caballero-Nieves, Fabian R N Schneider, Sergio Simón-Díaz, Sarah A Brands, Alex de Koter, Götz Gräfener, Artemio Herrero, Norbert Langer, Daniel J Lennon, Jesus Maíz Apellániz, Joachim Puls, Jorick S Vink, The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136, Monthly Notices of the Royal Astronomical Society, , staa2801] is available online at: https://doi.org/10.1093/mnras/staa2801 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version.
    [Show full text]
  • The R136 Star Cluster Dissected with Hubble Space Telescope/STIS
    MNRAS 000, 1–39 (2015) Preprint 29 January 2016 Compiled using MNRAS LATEXstylefilev3.0 The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He ii λ1640 in young star clusters Paul A. Crowther1⋆, S.M. Caballero-Nieves1, K.A. Bostroem2,3,J.Ma´ız Apell´aniz4, F.R.N. Schneider5,6,N.R.Walborn2,C.R.Angus1,7,I.Brott8,A.Bonanos9, A. de Koter10,11,S.E.deMink10,C.J.Evans12,G.Gr¨afener13,A.Herrero14,15, I.D. Howarth16, N. Langer6,D.J.Lennon17,J.Puls18,H.Sana2,11,J.S.Vink13 1Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK 2Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218, USA 3Department of Physics, University of California, Davis, 1 Shields Ave, Davis CA 95616, USA 4Centro de Astrobiologi´a, CSIC/INTA, Campus ESAC, Apartado Postal 78, E-28 691 Villanueva de la Ca˜nada, Madrid, Spain 5 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK 6 Argelanger-Institut fur¨ Astronomie der Universit¨at Bonn, Auf dem Hugel¨ 71, D-53121 Bonn, Germany 7 Department of Physics, University of Warwick, Gibbet Hill Rd, Coventry CV4 7AL, UK 8 Institute for Astrophysics, Tuerkenschanzstr. 17, AT-1180 Vienna, Austria 9 Institute of Astronomy & Astrophysics, National Observatory of Athens, I. Metaxa & Vas. Pavlou St, P. Penteli 15236, Greece 10 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, Netherlands 11 Institute of Astronomy, KU Leuven, Celestijnenlaan
    [Show full text]
  • The VLT-FLAMES Tarantula Survey ⋆⋆⋆⋆⋆⋆
    UvA-DARE (Digital Academic Repository) The VLT-FLAMES Tarantula Survey. XI. A census of the hot luminous stars and their feedback in 30 Doradus Doran, E.I.; Crowther, P.A.; de Koter, A.; Evans, C.J.; McEvoy, C.; Walborn, N.R.; Bastian, N.; Bestenlehner, J.M.; Gräfener, G.; Herrero, A.; Köhler, K.; Maíz Apellániz, J.; Najarro, F.; Puls, J.; Sana, H.; Schneider, F.R.N.; Taylor, W.D.; van Loon, J.Th.; Vink, J.S. DOI 10.1051/0004-6361/201321824 Publication date 2013 Document Version Final published version Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Doran, E. I., Crowther, P. A., de Koter, A., Evans, C. J., McEvoy, C., Walborn, N. R., Bastian, N., Bestenlehner, J. M., Gräfener, G., Herrero, A., Köhler, K., Maíz Apellániz, J., Najarro, F., Puls, J., Sana, H., Schneider, F. R. N., Taylor, W. D., van Loon, J. T., & Vink, J. S. (2013). The VLT-FLAMES Tarantula Survey. XI. A census of the hot luminous stars and their feedback in 30 Doradus. Astronomy & Astrophysics, 558, A134. https://doi.org/10.1051/0004- 6361/201321824 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons.
    [Show full text]
  • Florida State University Libraries
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School Constraining the Evolution of Massive StarsMojgan Aghakhanloo Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES CONSTRAINING THE EVOLUTION OF MASSIVE STARS By MOJGAN AGHAKHANLOO A Dissertation submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2020 Copyright © 2020 Mojgan Aghakhanloo. All Rights Reserved. Mojgan Aghakhanloo defended this dissertation on April 6, 2020. The members of the supervisory committee were: Jeremiah Murphy Professor Directing Dissertation Munir Humayun University Representative Kevin Huffenberger Committee Member Eric Hsiao Committee Member Harrison Prosper Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii I dedicate this thesis to my parents for their love and encouragement. I would not have made it this far without you. iii ACKNOWLEDGMENTS I would like to thank my advisor, Professor Jeremiah Murphy. I could not go through this journey without your endless support and guidance. I am very grateful for your scientific advice and knowledge and many insightful discussions that we had during these past six years. Thank you for making such a positive impact on my life. I would like to thank my PhD committee members, Professors Eric Hsiao, Kevin Huf- fenberger, Munir Humayun and Harrison Prosper. I will always cherish your guidance, encouragement and support. I would also like to thank all of my collaborators.
    [Show full text]
  • The Wolf-Rayet Stars in the Large Magellanic Cloud? a Comprehensive Analysis of the WN Class
    Astronomy & Astrophysics manuscript no. paper c ESO 2014 May 13, 2014 The Wolf-Rayet stars in the Large Magellanic Cloud? A comprehensive analysis of the WN class R. Hainich1, U. Rühling1, H. Todt1, L. M. Oskinova1, A. Liermann2, G. Gräfener3, C. Foellmi4, O. Schnurr2, and W.-R. Hamann1 1 Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany e-mail: [email protected] 2 Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany 3 Armagh Observatory, College Hill, Armagh BT6 9D, UK 4 12 rue Servan, 38000 Grenoble, France Received <date> / Accepted <date> ABSTRACT Context. Massive stars, although being important building blocks of galaxies, are still not fully understood. This especially holds true for Wolf-Rayet (WR) stars with their strong mass loss, whose spectral analysis requires adequate model atmospheres. Aims. Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods. For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results. We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12 % of our sample are more luminous than 106 L and contain a significant amount of hydrogen, 88 % of the WN stars, with little or no hydrogen, populate the luminosity range between log (L=L ) = 5:3 ::: 5:8.
    [Show full text]
  • Early-Type Variables in the Magellanic Clouds. I. Beta Cephei Stars in The
    Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Early-type variables in the Magellanic Clouds I. β Cephei stars in the LMC bar A. Pigulski, Z. Ko laczkowski Wroc law University Observatory, Kopernika 11, 51-622 Wroc law, Poland Received 13 February 2002 / Accepted 21 March 2002 Abstract. A thorough analysis of the OGLE-II time-series photometry of the Large Magellanic Cloud bar sup- plemented by similar data from the MACHO database led us to the discovery of three β Cephei-type stars. These are the first known extragalactic β Cephei-type stars. Two of the three stars are multiperiodic. Two stars have inferred masses of about 10 M⊙ while the third is about 2 mag brighter and at least twice as massive. All three variables are located in or very close to the massive and young LMC associations (LH 41, 59 and 81). It is therefore very probable that the variables have higher than average metallicities. This would reconcile our finding with theoretical predictions of the shape and location of the β Cephei instability strip in the H-R diagram. The low number of β Cephei stars found in the LMC is another observational confirmation of strong dependence of the mechanism driving pulsations in these variables on metallicity. Follow-up spectroscopic determination of the metallicities in the discovered variables will provide a good test for the theory of pulsational stability in massive main-sequence stars. Key words. Stars: early-type – Stars: oscillations – Stars: variable: other – Stars: abundances – Magellanic Clouds 1. Introduction the much narrower BCIS with an upper boundary for M ≈ 20 M⊙.
    [Show full text]