The Geology of Chaco Canyon

Total Page:16

File Type:pdf, Size:1020Kb

The Geology of Chaco Canyon National Historical Park National Park Service Chaco Culture U.S. Department of the Interior THE GEOLOGY OF CHACO CANYON THE LANDSCAPE The landscape of Chaco Canyon is lar place to enjoy the natural beauty mentary layers that have eroded hauntingly beautiful. Sunlight and and to marvel at the grandeur of into plateaus, mesas, buttes, and shadows play on towering rock the ancient sandstone buildings canyons. The rocks exposed in walls where petroglyphs keep secret that remain. Chaco Canyon record an interval in the history of an ancient people. the Earth's history during the Late Chaco Canyon lies near the center The canyon floor still conceals the Cretaceous Period, approximately of the San Juan Basin of New buried remains of Pueblo 75 to 80 million years ago. During Mexico, which is near the south­ dwellings. Those which have been this time, Chaco was part of the eastern edge of the much larger excavated are as mysterious as they migrating coastline of an ancient Colorado Plateau. This region has are revealing. Visitors come from inland sea. broad exposures of horizontal sedi- all over the world to this spectacu­ THE CRETACEOUS SETTING The name "Cretaceous" is derived lines of this epicontinental seaway from the Latin word for chalk were oriented generally north-south (creta) which is a characteristic and repeatedly shifted position to rock type of this period for many east and west in response to land masses in the northern hemi­ changes in global sea level. The sphere. Throughout much of the Cretaceous rocks visible today in Cretaceous period, sea level was both Chaco Canyon and Mesa higher than the present, and por­ Verde were deposited in alternating tions of many continents were in­ marine and nonmarine environ­ undated by shallow seas. In the ments as the Western Interior area of the southern Rocky Seaway repeatedly inundated parts Mountains, mountain building ac­ of the Four Corners area and then ash, and birch. The landscape of tivity also produced an adjacent receded. late cretaceous Chaco Canyon re­ broad area of subsidence known as sembled modern day coastal areas, In the Late Cretaceous, much of the Western Interior Basin. This such as those found on the south­ the Southern Rocky Mountain basin was flooded by seas from eastern Atlantic and Gulf coast of Region was characterized by a sub­ both the Arctic and Gulf Coast re­ the United States. These mainland tropical climate which supported gions. By the Late Cretaceous, the beach, coastal plain, and barrier is­ lowland forests of conifer, eucalyp­ Western Interior Seaway was hun­ land environments consist of tus, ebony palm, cypress, and mag­ dreds of miles wide and had divid­ marshes, swamps, river deltas and nolia. Upland areas supported ed North America into two lagoons adjacent to beach and rela­ hardwood forests of oak, walnut, separate land masses. The shore­ tively shallow coastal waters. CHACO GEOLOGY The majority of the exposed fea­ visible in Chaco, while all three are tures in Chaco Canyon belong to a exposed at Mesa Verde. An addi­ suite of rocks known as the Mesa tional two younger units, the Lewis Verde group. The further subdivi­ Shale and the Picture Cliffs sions of the unit are, from oldest to Sandstone, are generally exposed youngest, the Point Lookout only near the northern boundary of Sandstone, the Menefee Formation, the park. and the Cliff House Sandstone. Of these three formations, only two, the Menefee and Cliff House are the canyon, with a number of ex­ ded shales which were deposited in MENEFEE FORMATION cellent exposures visible on Fajada deeper water when the entire area The Menefee Formation is the old­ Butte. was covered by the Western est exposed unit of the Mesa Verde Interior Seaway. This unit is less re­ Formation at Chaco and is com­ sistant to erosion than the lower posed primarily of siltstone and CUFF HOUSE SANDSTONE sandstone and forms gentle slopes mudstone interbedded with sand­ rather than cliffs. Fossils found in The Cliff House Sandstone is a stone as well as carbonaceous shale this unit are similar to those of the complex sequence of marine sand­ and thin coal beds. The Menefee lower sandstone. stones with locally interbedded Formation was formed from sedi­ shales which overlies the Menefee The uppermost unit exposed in ments deposited by rivers flowing Formation. There are three princi­ Chaco Canyon is the Upper north and east across New Mexico ple Cliff House units visible within Sandstone. It is similar in composi­ toward a retreating Interior Seaway. Chaco Canyon. The massive lower tion to the lower sandstone unit At the edge of the seaway, the unit forms the 80-100 foot promi­ and also forms prominent cliffs streams meandered through a wide, nent cliffs throughout the canyon. and ledges. This unit represents a flat coastal plain with deltas, shal­ An abundance of ripple marks and beach and barrier island environ­ low swamps and lagoons, accumu­ a wide variety of lating plant material which would fossils are visible eventually form thin coal beds. in this unit. Common vertebrate fossils include Fossils include an abundance of turtle, fish and shells and casts crocodile as well as fragmentary ev­ from clams, am­ idence of larger creatures such as monites, snails, hadrosaur dinosaurs and giant ma­ shark's teeth, and rine lizards known as mosasaurs. the knobby casts Plant fossils found in the Menefee of burrows include leaf impressions of palm known as and conifer as well as specimens Ophimorpha Fajada Butte closely resembling modern laurel, ("dwelling place") Nodosa ("nodu­ ment similar to that of the lower witch hazel and camelia, suggesting lar"). These casts are thought to be sandstone unit. It was deposited in a warm, moist, subtropical environ­ the fossilized remains of burrows shallower water than the intermedi­ ment. Today, the Menefee in left by a small shrimp-like crus­ ate shale unit and reflects a lower­ Chaco is visible as a slope forming tacean known as Callianasa major. ing of the local sea level as the unit that underlies the steep mesa Wester Interior Seaway receded for Immediately above the lower layer walls of the more resistant Cliff the last time. House sandstone. It is especially is an intermediate sandstone/shale prominent on the southern side of unit. Although primarily a marine sandstone, it has locally interbed­ EROSION AND CLIFF FORMATION The Menefee Formation is less re­ "Threatening Rock". When the an­ "Threatening Rock" collapsed tak­ sistant to erosion than the Cliff cient builders were constructing ing several rooms of Pueblo Bonito House Formation and often com­ Pueblo Bonito, "Threatening with it. pletely erodes from beneath the Rock" rested in a precarious posi­ It is probably safe to say the only younger sandstone. The unsupport­ tion just behind it. Aware of the constant, geologically and other­ ed sandstone will then break away danger that it posed, the Chacoans wise, is change. Soil and rock are in large slabs and boulders as the built an earth and masonry retain­ always on the move through undercutting reaches joints and ing wall beneath this massive rock weathering, erosion, gravity, and local weaknesses. This step-wise slab. The slab was first described in the lateral movement of the earth's erosion is responsible for produc­ 1901 and was referred to as the continents and ocean floors. The ing both the prominent cliff faces "Elephant", the Navajos called it landscape is reshaped by these and the debris mounds or talus "Braced-up Cliff, and the Park forces over hundreds, perhaps slopes piled against them. When Service named it "Threatening thousands, of years. Rapid occur­ this erosional process continues, it Rock". In an attempt to predict the rences, like rockfalls and earth­ may actually "sever' a landform fall of "Threatening Rock", the quakes, also do their share of into separate free standing rock Park Service took on the job of redistributing soil and rock. masses. monitoring its movement. However, there was very little that One of the most dramatic exam­ could be done to prevent its fall , ples of such erosion is the im­ and on January 22, 1941, mense slab of sandstone known as SPMA-10M-4/97 Printed with funds donated by Southwest Parks and Monuments Association 100% Recycled Paper .
Recommended publications
  • The Mark of the Japanese Murrelet (Synthliboramphus Wumizusume): a Study of Song and Stewardship in Japan’S Inland Sea
    Claremont Colleges Scholarship @ Claremont Pomona Senior Theses Pomona Student Scholarship 2019 The aM rk of the Japanese Murrelet (Synthliboramphus wumizusume): A study of song and stewardship in Japan’s Inland Sea Charlotte Hyde The Mark of the Japanese Murrelet (Synthliboramphus wumizusume): A study of song and stewardship in Japan’s Inland Sea Charlotte Hyde In partial fulfillment of the Bachelor of Arts Degree in Environmental Analysis, 2018-2019 academic year, Pomona College, Claremont, California Readers: Nina Karnovsky Wallace Meyer Acknowledgements I would first like to thank Professor Nina Karnovsky for introducing me to her work in Kaminoseki and for allowing me to join this incredible project, thereby linking me to a community of activists and scientists around the world. I am also so appreciative for her role as my mentor throughout my years as an undergraduate and for helping me develop my skills and confidence as a scholar and ecologist. Thank you also to my reader Wallace Meyer for his feedback on my writing and structure. I am so thankful for the assistance of Char Miller, who has worked tirelessly to give valuable advice and support to all seniors in the Environmental Analysis Department throughout their thesis journeys. Thank you to Marc Los Huertos for his assistance with R and data analysis, without which I would be hopelessly lost. I want to thank my peers in the Biology and Environmental Analysis departments for commiserating with me during stressful moments and for providing a laugh, hug, or shoulder to cry on, depending on the occasion. Thank you so much to my parents, who have supported me unconditionally throughout my turbulent journey into adulthood and who have never doubted my worth as a person or my abilities as a student.
    [Show full text]
  • Modeling of the Turkish Strait System Using a High Resolution Unstructured Grid Ocean Circulation Model
    Journal of Marine Science and Engineering Article Modeling of the Turkish Strait System Using a High Resolution Unstructured Grid Ocean Circulation Model Mehmet Ilicak 1,* , Ivan Federico 2 , Ivano Barletta 2,3 , Sabri Mutlu 4 , Haldun Karan 4 , Stefania Angela Ciliberti 2 , Emanuela Clementi 5 , Giovanni Coppini 2 and Nadia Pinardi 3 1 Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul 34469, Turkey 2 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Ocean Predictions and Applications Division, 73100 Lecce, Italy; [email protected] (I.F.); [email protected] (I.B.); [email protected] (S.A.C.); [email protected] (G.C.) 3 Department of Physics and Astronomy, Universita di Bologna Alma Mater Studiorum, 40126 Bologna, Italy; [email protected] 4 TUBITAK MRC Environment and Cleaner Production Institute, Kocaeli 41470, Turkey; [email protected] (S.M.); [email protected] (H.K.) 5 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Ocean Modeling and Data Assimilation Division, 40126 Bologna, Italy; [email protected] * Correspondence: [email protected] Abstract: The Turkish Strait System, which is the only connection between the Black Sea and the Mediterranean Sea, is a challenging region for ocean circulation models due to topographic constraints and water mass structure. We present a newly developed high resolution unstructured finite element grid model to simulate the Turkish Strait System using realistic atmospheric forcing and lateral open boundary conditions. We find that the jet flowing from the Bosphorus Strait into the Marmara creates Citation: Ilicak, M.; Federico, I.; an anticyclonic circulation. The eddy kinetic energy field is high around the jets exiting from the Barletta, I.; Mutlu, S.; Karan, H.; Ciliberti, S.A.; Clementi, E.; Coppini, Bosphorus Strait, Dardanelles Strait, and also the leeward side of the islands in the Marmara Sea.
    [Show full text]
  • Tylosaurus and Pteranodon
    Tylosaurus and Pteranodon Estimate size and measure to check estimate. OBJECTIVES Students will: 1. identify the Tylosaurus and Pteranodon as the two state fossils of Kansas, and 2. estimate and check the wingspan of the Pteranodon or the length of the Tylosaurus. MATERIALS FROM THE TRUNK Tylosaurus model Pteranodon model Fossil sample OTHER MATERIALS Ruler or tape measure Masking tape, post-its or something similar to mark measurements on floor TEACHER PREPARATION Decide which of the two fossils you will measure: Pteranodon had a 25-foot wingspan or the Tylosaurus was 49 feet long. Identify a location with 50 linear feet of space that can be used to measure the wingspan of the Pteranodon or the length of the Tylosaurus. Consider using a hallway, playground, or gym. Once a location is identified, use a tape measure to mark the beginning and end of a 25-foot linear space and a 49-foot linear space. This is where the students will measure the two state fossils. HISTORICAL BACKGROUND In 2014 the Kansas Legislature passed a bill making the Tylosaurus and the Pteranodon the state fossils of Kansas. Both of these reptiles lived at the time of dinosaurs, but neither are dinosaurs. Mike Everhart, adjunct curator of paleontology at the Sternberg Museum, geologist Alan Deitrich, and Steven Fisher, a 4-H geology project member, testified in support of the bill. Fossil hunters and natural history museums initiated the adoption of these state fossils. Kansas 4-H geology project members supported the bill. Pteranodon (teh-RAN-oh-don) – “Pteranodon, a great, winged pterosaur with a wingspread of more than 24 feet, which flew the skies of Kansas during the cretaceous period of the mesozoic era, is hereby designated as the official flying fossil of the state Kansas Symbols Traveling Resource Trunk KANSAS HISTORICAL SOCIETY www.kshs.org ©2014 61 of Kansas.” (House Bill 2595) The first Pteranodon specimens discovered in North America were found in western Kansas in 1870 by Othniel Charles Marsh.
    [Show full text]
  • Central San Juan Basin
    Acta - ---- - - ---Palaeontologic- -- ---' ~ Polonica Vol. 28, No. 1-2 pp. 195-204 Warszawa, 1983 Second Symposium on Mesozoic Terrestiol. Ecosystems, Jadwisin 1981 SPENCER G. LUCAS and NIALL J. MATEER VERTEBRATE PALEOECOLOGY OF THE LATE CAMPANIAN (CRETACEOUS):FRUITLAND FORMATION, SAN JUAN BASIN, ~EW MEXICO (USA) LUCAS, s. G. and MATEER, N. J .: Vertebrate paleoecology of the late Campanian (Cretaceous) Fruitland Formation, San Juan Basin, New Mexico (USA). Acta Palaeontologica Polonica, 28, 1-2, 195-204, 1983. Sediments of the Fruitland Formation in northwestern New Mexico represent a delta plain that prograded northeastward over the retrating strandline of the. North American epeiric seaway during the late Campanian. Fruitland fossil · vertebrates are fishes, amphibians, lizards, a snake, turtles, crocodilians, dinosaurs (mostly h adrosaurs and ceratopsians) and mammals. Autochthonous fossils in the Fruitland ' Form ation represent organisms of the trophically-complex Para­ saurolophus community. Differences in diversity, physical stress and life-history strategies within the ParasaurolopllUS community . fit well the stablllty-time hypothesis. Thus, dinosaurs experienced relatively low physical stress whereas fishes, amphibians, small reptiles and mammals experienced greater physical stress. Because of this, dinosaurs were less likely to recover from an environment­ al catastrophe than were smaller contemporaneous vertebrates. The terminal Cretaceous extinctions selectively eliminated animals that lived in less physlcally­ -stressed situations, indicating that the extinctions resulted from an environmental catastrophe. Key w 0 r d s: Fruitland Formation, New Mexico, delta plain, stablllty-time hypothesis, Cretaceous extinctions. Spencer G. Lucas, Department ot Geology and Geophysics and Peabody Museum ot Natural History, Yale University, P.O. Box 6666, New Haven, Connecticut 06511 USA ; NlaU J .
    [Show full text]
  • Mesozoic Stratigraphy at Durango, Colorado
    160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs.
    [Show full text]
  • Fossil Pollen Records Indicate That Patagonian Desertification Was Not Solely a Consequence of Andean Uplift
    ARTICLE Received 25 Oct 2013 | Accepted 4 Mar 2014 | Published 28 Mar 2014 DOI: 10.1038/ncomms4558 Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift L. Palazzesi1,2, V.D. Barreda1, J.I. Cuitin˜o3, M.V. Guler4, M.C. Tellerı´a5 & R. Ventura Santos6 The Patagonian steppe—a massive rain-shadow on the lee side of the southern Andes—is assumed to have evolved B15–12 Myr as a consequence of the southern Andean uplift. However, fossil evidence supporting this assumption is limited. Here we quantitatively estimate climatic conditions and plant richness for the interval B10–6 Myr based on the study and bioclimatic analysis of terrestrially derived spore–pollen assemblages preserved in well-constrained Patagonian marine deposits. Our analyses indicate a mesothermal climate, with mean temperatures of the coldest quarter between 11.4 °C and 16.9 °C (presently B3.5 °C) and annual precipitation rarely below 661 mm (presently B200 mm). Rarefied richness reveals a significantly more diverse flora during the late Miocene than today at the same latitude but comparable with that approximately 2,000 km further northeast at mid-latitudes on the Brazilian coast. We infer that the Patagonian desertification was not solely a consequence of the Andean uplift as previously insinuated. 1 Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Angel Gallardo 470 (C1405DJR), Buenos Aires, Argentina. 2 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK. 3 Universidad de Buenos Aires, Departamento de Ciencias Geolo´gicas, Facultad de Ciencias Exactas y Naturales. Intendente Gu¨iraldes 2160 (C1428EHA), Buenos Aires, Argentina.
    [Show full text]
  • Molluscan Fauna of The“ Miocene” Namigata Formation in the Namigata Area, Okayama Prefecture, Southwest Japan
    Jour. Geol. Soc. Japan, Vol. 119, No. 4, p. 249–266, April 2013 JOI: DN/JST.JSTAGE/geosoc/2012.0048 doi: 10.5575/geosoc.2012.0048 Molluscan fauna of the“ Miocene” Namigata Formation in the Namigata area, Okayama Prefecture, southwest Japan Abstract Takashi Matsubara The molluscan fauna of the Namigata Formation, traditionally ac- cepted to be of Miocene age, are reexamined taxonomically, and the Received 27 February, 2012 geologic age of the formation and its paleogeographic implications Accepted 12 June, 2012 are discussed. The formation is subdivided into the main part and two new members (the Senjuin Shell-Sandstone and Ônishi Con- Division of Natural History, Museum of Na- glomerate members). The Namigata Formation yielded 13 species of ture and Human Activities Hyogo, 6 Yayoiga- Gastropoda, 16 species of Bivalvia and 1 species of Scaphopoda. The oka, Sanda 669-1546, Japan occurrences of Molopophorus watanabei Otuka, Acila (Truncacila) nagaoi Oyama and Mizuno, Chlamys (Nomurachlamys?) namiga- Corresponding author: T. Matsubara, [email protected] taensis (Ozaki), and Isognomon (Hippochaeta) hataii Noda and Fu- ruichi indicate that the molluscan age should be revised to the late Late Eocene–Early Oligocene. Taking account of the latest elasmo- branch data and preliminary strontium isotope ratio, the age of the formation is confined to the late Late Eocene. The present and recent results show that the First Seto Inland Sea was actually composed of two sea areas that existed at different times: the Paleogene sea area is estimated to have been an open sea facing south to the Pacific Ocean, whereas that in the Miocene is thought to have been an em- bayment connected to the northwest to the Sea of Japan.
    [Show full text]
  • Baltic Sea Management: Successes and Failures
    AMBIO 2015, 44(Suppl. 3):S335–S344 DOI 10.1007/s13280-015-0653-9 Baltic Sea management: Successes and failures Ragnar Elmgren, Thorsten Blenckner, Agneta Andersson Abstract Severe environmental problems documented in Kattegat (bottom salinity 32–34) and weakening inwards to the Baltic Sea in the 1960s led to the 1974 creation of the the Gulf of Bothnia. This causes stagnation of the bottom Helsinki Convention for the Protection of the Marine water, and in recent decades has led to widespread deep- Environment of the Baltic Sea Area. We introduce this water oxygen deficiency, seasonal in Kattegat and the special issue by briefly summarizing successes and failures of Danish Sounds, near-permanent in the Baltic proper, inter- Baltic environmental management in the following 40 years. mittent in the Gulf of Finland, but not affecting the Gulf of The loads of many polluting substances have been greatly Bothnia. Water renewal is slow, on the order of 50 years for reduced, but legacy pollution slows recovery. Top predator the whole Baltic (description above based on Leppa¨ranta populations have recovered, and human exposure to potential and Myrberg 2009), making it vulnerable to pollution from toxins has been reduced. The cod stock has partially the surrounding catchment (Fig. 1), with an area four times recovered. Nutrient loads are decreasing, but deep-water larger than the Baltic Sea, and a human population of some anoxia and cyanobacterial blooms remain extensive, and 85 million (Sweitzer et al. 1996). The waters of the Baltic climate change threatens the advances made. Ecosystem- Sea are generally cold, with the northern areas freezing over based management is the agreed principle, but in practice the every winter, but the surface waters heat up in summer, in various environmental problems are still handled separately, warm years to over 20 °C.
    [Show full text]
  • Impact of the 1960 Major Subduction Earthquake in Northern Patagonia (Chile, Argentina)
    ARTICLE IN PRESS Quaternary International 158 (2006) 58–71 Impact of the 1960 major subduction earthquake in Northern Patagonia (Chile, Argentina) Emmanuel Chaprona,b,Ã, Daniel Arizteguic, Sandor Mulsowd, Gustavo Villarosae, Mario Pinod, Valeria Outese, Etienne Juvignie´f, Ernesto Crivellie aRenard Centre of Marine Geology, Ghent University, Ghent, Belgium bGeological Institute, ETH Zentrum, Zu¨rich, Switzerland cInstitute F.A. Forel and Department of Geology and Paleontology, University of Geneva, Geneva, Switzerland dInstituto de Geociencias, Universidad Austral de Chile, Valdivia, Chile eCentro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina fPhysical Geography,Universite´ de Lie`ge, Lie`ge, Belgium Available online 7 July 2006 Abstract The recent sedimentation processes in four contrasting lacustrine and marine basins of Northern Patagonia are documented by high- resolution seismic reflection profiling and short cores at selected sites in deep lacustrine basins. The regional correlation of the cores is provided by the combination of 137Cs dating in lakes Puyehue (Chile) and Frı´as (Argentina), and by the identification of Cordon Caulle 1921–22 and 1960 tephras in lakes Puyehue and Nahuel Huapi (Argentina) and in their catchment areas. This event stratigraphy allows correlation of the formation of striking sedimentary events in these basins with the consequences of the May–June 1960 earthquakes and the induced Cordon Caulle eruption along the Liquin˜e-Ofqui Fault Zone (LOFZ) in the Andes. While this catastrophe induced a major hyperpycnal flood deposit of ca. 3 Â 106 m3 in the proximal basin of Lago Puyehue, it only triggered an unusual organic rich layer in the proximal basin of Lago Frı´as, as well as destructive waves and a large sub-aqueous slide in the distal basin of Lago Nahuel Huapi.
    [Show full text]
  • Oil and Gas Plays Ute Moutnain Ute Reservation, Colorado and New Mexico
    Ute Mountain Ute Indian Reservation Cortez R18W Karle Key Xu R17W T General Setting Mine Xu Xcu 36 Can y on N Xcu McElmo WIND RIVER 32 INDIAN MABEL The Ute Mountain Ute Reservation is located in the northwest RESERVATION MOUNTAIN FT HALL IND RES Little Moude Mine Xcu T N ern portion of New Mexico and the southwestern corner of Colorado UTE PEAK 35 N R16W (Fig. UM-1). The reservation consists of 553,008 acres in Montezu BLACK 666 T W Y O M I N G MOUNTAIN 35 R20W SLEEPING UTE MOUNTAIN N ma and La Plata Counties, Colorado, and San Juan County, New R19W Coche T Mexico. All of these lands belong to the tribe but are held in trust by NORTHWESTERN 34 SHOSHONI HERMANO the U.S. Government. Individually owned lands, or allotments, are IND RES Desert Canyon PEAK N MESA VERDE R14W NATIONAL GREAT SALT LAKE W Marble SENTINEL located at Allen Canyon and White Mesa, San Juan County, Utah, Wash Towaoc PARK PEAK T and cover 8,499 acres. Tribal lands held in trust within this area cov Towaoc River M E S A 33 1/2 N er 3,597 acres. An additional forty acres are defined as U.S. Govern THE MOUND R15W SKULL VALLEY ment lands in San Juan County, Utah, and are utilized for school pur TEXAS PACIFIC 6-INCH OIL PIPELINE IND RES UNITAH AND OURAY INDIAN RESERVATION Navajo poses. W Ramona GOSHUTE 789 The Allen Canyon allotments are located twelve miles west of IND RES T UTAH 33 Blanding, Utah, and adjacent to the Manti-La Sal National Forest.
    [Show full text]
  • Sequence Stratigraphy and Geochemistry of The
    Report of Investigations 2007-1 SEQUENCE STRATIGRAPHY AND GEOCHEMISTRY OF THE UPPER LOWER THROUGH UPPER TRIASSIC OF NORTHERN ALASKA: IMPLICATIONS FOR PALEOREDOX HISTORY, SOURCE ROCK ACCUMULATION, AND PALEOCEANOGRAPHY by Landon N. Kelly, Michael T. Whalen, Christopher A. McRoberts, Emily Hopkin, and Carla Susanne Tomsich ASK AL A G N S E Y O E L O V G R U IC S A L L A A N SIC D GEOPHY Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 2007 Report of Investigations 2007-1 SEQUENCE STRATIGRAPHY AND GEOCHEMISTRY OF THE UPPER LOWER THROUGH UPPER TRIASSIC OF NORTHERN ALASKA: IMPLICATIONS FOR PALEOREDOX HISTORY, SOURCE ROCK ACCUMULATION, AND PALEOCEANOGRAPHY by Landon N. Kelly, Michael T. Whalen, Christopher A. McRoberts, Emily Hopkin, and Carla Susanne Tomsich 2007 This DGGS Report of Investigations is a final report of scientific research. It has received technical review and may be cited as an agency publication. STATE OF ALASKA Sarah Palin, Governor DEPARTMENT OF NATURAL RESOURCES Tom Irwin, Commissioner DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Robert F. Swenson, State Geologist and Acting Director Division of Geological & Geophysical Surveys publications can be inspected at the following locations. Address mail orders to the Fairbanks office. Alaska Division of Geological University of Alaska Anchorage Library & Geophysical Surveys 3211 Providence Drive 3354 College Road Anchorage, Alaska 99508 Fairbanks, Alaska 99709-3707 Elmer E. Rasmuson Library Alaska Resource Library University of Alaska Fairbanks 3150 C Street, Suite 100 Fairbanks, Alaska 99775-1005 Anchorage, Alaska 99503 Alaska State Library State Office Building, 8th Floor 333 Willoughby Avenue Juneau, Alaska 99811-0571 This publication released by the Division of Geological & Geophysical Surveys was produced and printed in Fairbanks, Alaska at a cost of $5.00 per copy.
    [Show full text]
  • Stratigraphy and Tectonic Implications of Paleogene Strata in the Laramide Galisteo Basin, North-Central New Mexico
    Stratigraphy and tectonic implications of Paleogene strata in the Laramide Galisteo Basin, north-central New Mexico by Spencer G. Lucas, New Mexico Museum of Natural History and Science, 1801 Mountain Road NW, Albuquerque, New Mexico 87104; Steven M. Cath er, New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico 87801; John C. Abbott, Department of Geosciences, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801; and Thomas E. Williamson, New Mexico Museum of Natural History and Science, 1801 Mountain Road NW, Albuquerque, New Mexico 87104 Abstract Mexico has long been identified as the Formation, however, are green andred. base of the Galisteo Formation. This Although the Mesaverde-Galisteo con- We exclude the lower 0-442 m from boundary is a profound regional uncon- tact locally appears to be the Galisteo Formation and identify it as a formity between rocks of Late Cretaceous conformable, regionally the contact is new, unconformity-bounded and putative early Eocene age that has a major unconformity representing stratigraphic unit, the Diamond Tail been interpreted to reflect a major pulse in much of the Late Cretaceous and Formation. The Diamond Tail Formation Laramide tectonism. This pulse estab- probably some of the early Tertiary (Stearns, 1943; Gorham, 1979; is dominantly coarse-grained subarkosic lished the Laramide Galisteo Basin as a Beaumont, 1979). to arkosic sandstone and con- depocenter during Paleogene time. Here, we glomeratic sandstone with lesser reinterpret the stratigraphic relationships These criteria of Stearns (1943) for se- amounts of drab, green, gray, and lecting the Mesaverde-Galisteo contact maroon mudstone. It crops out in of the lower part of the Galisteo Formation are well accepted and have provided the north-central New Mexico in the Hagan and modify previous concepts of the late basis for most subsequent mapping (e.g., Basin and the Madrid-Cerrillos- Laramide evolution of the Galisteo Basin.
    [Show full text]