The Evolution of Maladaptation

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Maladaptation Heredity 84 (2000) 623±629 Received 6 March 1999, accepted 11 April 2000 Short Review The evolution of maladaptation BERNARD J. CRESPI* Department of Biological Science, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada This review contains a description of a research program for using studies of natural selection and teleonomy; (2) deter- the study of maladaptation, de®ned here in terms of deviation mination of the causes of the deviation, using analyses of from adaptive peaks. Maladaptation has many genetic causes, genetics, development, or other methods. Conditions for including mutation, inbreeding, drift, gene ¯ow, heterozygote unambiguously identifying maladaptation are considerably advantage and pleiotropy. Degrees of maladaptation are more stringent than those for demonstrating adaptation and determined by genetic architecture and the relationship remarkably few studies have clearly identi®ed and character- between the rates of selective, environmental change and the ised maladaptative traits. A thorough understanding of the nature and extent of genetic responses to selection. The nature of phenotypic variation will never be achieved without empirical analysis of maladaptation requires: (1) recognition of an analysis of the scope and usual causes of maladaptation. putative maladaptation, using methods from phylogenetics, teleonomy, development and genetics, followed by an assess- Keywords: adaptation, adaptive peaks, evolution, maladap- ment of the nature and degree of deviation from adaptation, tation. `But by far the most important consideration is that the chief `maladaptation' and discussed the usefulness of these de®ni- part of the organization of every being is simply due to tions for addressing various questions. Secondly, I have inheritance; and consequently, though each being assuredly is discussed the causes of maladaptation at dierent levels in the well ®tted for its place in nature, many structures now have no hierarchy of biological information (Arnold, 1992). Thirdly, I direct relation to the habits of life of each species'. Darwin have focused on methods for identifying and analysing (1859; p. 199). maladaptation, drawing on approaches that have developed independently in dierent ®elds and seeking to reconcile the often-acrimonious opinions of geneticists and ecologists Introduction regarding the usefulness of their research methods. The study of phenotypic adaptation and its genetic basis is central to evolutionary biology. The term `adaptation' has accumulated myriad de®nitions (reviews in Reeve & Sher- De®ning adaptation and maladaptation man, 1993; Rose & Lauder, 1996) but adaptations are forms Our primary criterion for choosing a de®nition should be its of traits that are always construed as the result of natural utility for answering questions of interest. De®nitions of selection, whereas individuals with variant traits that are less adaptation can be categorized into four main types: (1) well ®t to the environment exhibit lower reproductive success. teleonomic; (2) phylogenetic; (3) population genetic; (4) quan- However, the ®t of traits to environments epitomized in the titative genetic. term adaptation (`®t for', from the Greek `ad aptos') can Teleonomic de®nitions of adaptation developed in evolu- never be perfect, partly because organisms are always tionary and behavioural ecology (Thornhill, 1990) and focus adapted to at least one generation in the past. Thus, some on the functional design of phenotypic traits ± how they have degree of deviation from the maximal possible degree of been `designed' by the blind watchmaker of selection to adaptation is always expected. Such deviations have been `function' in some environmental context. These de®nitions analysed under a variety of rubrics, using the tools of emphasize the selective maintenance of traits, and involve population and quantitative genetics, developmental biology, identi®cation and quanti®cation of the ®t between form and behavioural and evolutionary ecology. The purpose of and function (Reeve & Sherman, 1993). The implementation this review is to synthesize perspectives and information from of teleonomic de®nitions into a research program requires these disparate disciplines and to analyse the nature and speci®cation of a strategy set (a range of possible trait forms), causes of maladaptation. Firstly, I have categorized de®ni- an application of some ®tness criterion (what is maximized, tions of `adaptation', translated them into de®nitions of such as performance of some task or a component of ®tness) and deliniation of constraints (®xed parameters that bound *Correspondence. Tel.: +1 604 291 3533, Fax: +1 604 291 3496, the analyses and link the strategy set with the ®tness E-mail: [email protected] criterion). This research program is based on the premise Ó 2000 The Genetical Society of Great Britain. 623 624 B. J. CRESPI that a history of natural selection leads to forms of traits subject to unfavourable environmental change, or (2) the (adaptations) that are optimal in a given environmental degree to which the ®tness of the current genotype lags be- context, within the range of the strategy set. Quanti®cation of hind the optimal genotype in a changing environment (see current selection is not necessary under this program, because also Kirkpatrick, 1996). Gillespie (1991; p. 63 and p. 305) current selection need not re¯ect the selective pressures concludes that such loads are often heavy as populations are 1during the trait's evolution (Thornhill, 1990). This optimiza- usually far from allelic equilibrium, apparently; this is because tion approach to adaptation has been useful in characterising genotypic adaptive peaks outrun responses to selection. the nature and causes of associations between traits, and Load-based metrics of maladaptation require estimating the between traits and environments, especially for aspects of relation between alleles or genotypes and ®tness, and where behaviour and life history. feasible they provide a strong link from maladaptation to its Under a teleonomic research program, `maladaptation' can causes. be de®ned as prevalence in a population of a `strategy' (a form Quantitative geneticists normally discuss adaptation in the of a phenotype), that does not lead to the highest relative context of phenotypic adaptive topologies, where local and ®tness of the strategies in the allowed set. This viewpoint has global peaks represent optimal population states (Schluter & often been dicult to implement, due to the diculties 2Nychka, 1994). For quantitative traits, approaches to these involved in de®ning a complete and accurate set of strategies peaks are governed by the form and strength of multivariate and constraints, the complex selective pressures on many traits selection and response to selection which can be predicted (at and the challenge of measuring ®tness in an evolutionari- least in the short term) using the genetic variance-covariance ly meaningful way (Lewontin, 1979). Moreover, if a formerly matrix (Shaw et al., 1995). By this perspective, maladaptation neutral trait (e.g. red vs. yellow ¯owers) comes under selection, can be quanti®ed as the distance of a population from the such that plants with red ¯owers have higher reproductive nearest adaptive peak (Loeschcke, 1987; Bjorklund, 1996). success (e.g. their pollen fertilizes more ovules), then red This distance is largely a function of the degree to which the ¯owers will be called an adaptation under some teleonomic population does not exactly track the vector of directional de®nitions (e.g. Reeve & Sherman, 1993), even before there has selection, as a result of aspects of genetic response to selection been any genetic response to selection. that prevent the largest possible selection-driven step up- Phylogenetic de®nitions of adaptation require the use of a wards. Stabilizing selection serves to de®ne the optimal, phylogeny to infer the origin of a trait, inference of the `adapted' state or peak, though a population may spread `selective regime' under which the trait arose, and an analysis more or less widely down its sides. As we can measure of performance of the trait under its ancestral and current selection in the ®eld, construct adaptive surfaces and estimate selective regime (Baum & Larson, 1991 and references G in the ®eld or laboratory, this measure of maladaptation is therein). If the trait arose under its current selective regime feasible to employ. Moreover, it provides a bridge between and exhibits higher performance than its antecedent, then it is genetic mechanisms of microevolutionary change, notably considered an adaptation. This de®nition focuses on joint additive genetic variance, pleiotropy, and linkage disequilib- analyses of the origin and maintenance of traits, under the rium, and aspects of ecology, as depicted in adaptive presumption that traits changing in function over the speci®c landscapes. To the extent that adaptive topologies move time period considered should be categorized dierently from across generations, or populations are displaced downhill by traits that do not. Baum & Larson (1991) provide explicit genetic happenstance, populations will be o their peaks and criteria for identifying maladaptation under this phylogenetic thus, to some quanti®able degree, maladapted. perspective; a trait is maladaptive (a.k.a. `disadapted', in their I have purposefully avoided the term `constraint' in the lexicon) if it exhibits lower utility (performance at some task) exposition above as most authors
Recommended publications
  • Maladaptation in Feral and Domesticated Animals
    Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 8-2019 Maladaptation in Feral and Domesticated Animals Eben Gering Michigan State University, [email protected] Darren Incorvaia Michigan State University R. Henriksen Linkoping University- Sweden Dominic Wright Linkoping University- Sweden Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Biology Commons NSUWorks Citation Gering, Eben; Darren Incorvaia; R. Henriksen; and Dominic Wright. 2019. "Maladaptation in Feral and Domesticated Animals." Evolutionary Applications 12, (7): 1274-1286. doi:10.1111/eva.12784. This Article is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Received: 17 October 2018 | Revised: 10 January 2019 | Accepted: 7 February 2019 DOI: 10.1111/eva.12784 SPECIAL ISSUE REVIEW AND SYNTHESES Maladaptation in feral and domesticated animals Eben Gering1 | Darren Incorvaia1 | Rie Henriksen2 | Dominic Wright2 | Thomas Getty1 1Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Abstract Program, Michigan State University, East Selection regimes and population structures can be powerfully changed by domesti‐ Lansing, Michigan cation and feralization, and these changes can modulate animal fitness in both cap‐ 2IIFM Biology and AVIAN Behavioural Genomics and Physiology Group, Linköping tive and natural environments. In this review, we synthesize recent studies of these University, Sweden two processes and consider their impacts on organismal and population fitness. Correspondence Domestication and feralization offer multiple windows into the forms and mecha‐ Eben Gering, Department of Integrative nisms of maladaptation.
    [Show full text]
  • Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives*
    vol. 194, no. 4 the american naturalist october 2019 Special Feature on Maladaptation Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives* Steven P. Brady,1,† Daniel I. Bolnick,2 Rowan D. H. Barrett,3,4,5 Lauren Chapman,3,5 Erika Crispo,6 Alison M. Derry,5,7 Christopher G. Eckert,8 Dylan J. Fraser,5,9 Gregor F. Fussmann,3,5 Andrew Gonzalez,3,5 Frederic Guichard,3,5 Thomas Lamy,10,11 Jeffrey Lane,12 Andrew G. McAdam,13 Amy E. M. Newman,13 Antoine Paccard,14 Bruce Robertson,15 Gregor Rolshausen,16 Patricia M. Schulte,17 Andrew M. Simons,18 Mark Vellend,5,19 and Andrew Hendry3,4,5 1. Biology Department, Southern Connecticut State University, New Haven, Connecticut 06515; 2. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269; 3. Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada; 4. Redpath Museum, McGill University, Montreal, Quebec H3A 0C4, Canada; 5. Quebec Centre for Biodiversity Science, Stewart Biology, McGill University, Montreal, Quebec H3A 1B1, Canada; 6. Biology Department, Pace University, New York, New York 10038; 7. Département des sciences biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada; 8. Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada; 9. Department of Biology, Concordia University, Montreal, Qeubec H4B 1R6, Canada; 10. Département de sciences biologiques, Université de Montréal, Montreal, Quebec H2V 2S9, Canada; 11. Marine Science Institute, University of California, Santa Barbara, California 93106; 12. Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada; 13. Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; 14.
    [Show full text]
  • Translocation of an Arctic Seashore Plant Reveals Signs of Maladaptation to Altered Climatic
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.109868. this version posted May 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 Translocation of an arctic seashore plant reveals signs of maladaptation to altered climatic 2 conditions 3 4 Hällfors M.H.*a,b, Lehvävirta S. a,c, Aandahl T.R.d, Lehtimäki I.-M.a, Nilsson L.O. d,e, 5 Ruotsalainen A.L.f, Schulman L.E.a, Hyvärinen M.-T.a 6 7 a Botany Unit, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, 8 Finland. 9 b Research Centre for Environmental Change, Organismal and Evolutionary Biology Research 10 Programme, Faculty of Biological and Environmental Sciences, P.O. Box 65, FI-00014 11 University of Helsinki, Finland. 12 c Department of Landscape Architecture, Planning and Management, Swedish University of 13 Agricultural Sciences, Alnarp, Sweden 14 d Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research 15 (NIBIO), P.O. Box 115, NO-1431 Ås, Norway. 16 e Halmstad University, PO Box 823, SE-30118 Halmstad, Sweden. 17 f Department of Ecology and Genetics, P.O. Box 3000, FI-90014 University of Oulu, Finland. 18 19 * corresponding author. Contact information: Maria Hällfors, Research Centre for Environmental 20 Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and 21 Environmental Sciences, P.O. Box 65, FI-00014 University of Helsinki, Finland, e-mail: 22 [email protected]; phone: +358 40 721 34 74 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.109868.
    [Show full text]
  • Assisted Gene Flow to Facilitate Local Adaptation to Climate Change
    ES44CH18-Aitken ARI 21 October 2013 21:12 Assisted Gene Flow to Facilitate Local Adaptation to Climate Change Sally N. Aitken1,2 and Michael C. Whitlock3 1Department of Forest and Conservation Sciences, 2Center for Forest Conservation Genetics, and 3Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; email: [email protected] Annu. Rev. Ecol. Evol. Syst. 2013. 44:367–88 Keywords First published online as a Review In Advance on assisted migration, evolutionary rescue, genetic rescue, outbreeding September 23, 2013 depression, phenotypic plasticity, seed transfer, ecological restoration, The Annual Review of Ecology, Evolution, and reforestation, facilitated adaptation Systematics is online at ecolsys.annualreviews.org This article’s doi: Abstract by University of British Columbia on 12/17/13. For personal use only. 10.1146/annurev-ecolsys-110512-135747 Assisted gene flow (AGF) between populations has the potential to mitigate Copyright c 2013 by Annual Reviews. maladaptation due to climate change. However, AGF may cause outbreed- All rights reserved ing depression (especially if source and recipient populations have been long Annu. Rev. Ecol. Evol. Syst. 2013.44:367-388. Downloaded from www.annualreviews.org isolated) and may disrupt local adaptation to nonclimatic factors. Selection should eliminate extrinsic outbreeding depression due to adaptive differences in large populations, and simulations suggest that, within a few generations, evolution should resolve mild intrinsic outbreeding depression due to epista- sis. To weigh the risks of AGF against those of maladaptation due to climate change, we need to know the species’ extent of local adaptation to climate and other environmental factors, as well as its pattern of gene flow.
    [Show full text]
  • Evolving Theories of Behaviour
    Evolutionary psychology Evolving theories of behaviour VER a relatively short period of time evolutionary psychology O has become a prominent way of understanding the human mind and behaviour. Its origins lie in a number of JOHN ARCHER describes a rich research agenda for theoretical analyses of animal behaviour in the 1960s and early 1970s which evolutionary psychology in testing novel hypotheses. transformed the way this subject was studied and understood. Just as the often provide new ways of viewing existing discipline at the time. Conventional social evolutionary approach led ethologists phenomena, and therefore aid overall psychology assumes that human behaviour away from concentrating on the immediate understanding of psychological can be explained in terms of culture-specific causal mechanisms controlling animal phenomena, but the speculations social learning, with relatively little behaviour, so evolutionary psychology themselves may be difficult to test contribution from evolved dispositions seeks to lead conventional psychologists empirically. to act in particular ways. In contrast, away from explanations that concentrate These considerations apply to one evolutionary psychology involves thinking only on immediate mechanisms and mental strand of evolutionary thinking, that about human beings in ways that generate events. Instead it offers a single unifying concerned with the origins of present-day novel testable hypotheses that would have starting point for understanding why we behaviour, and its original adaptive been beyond the scope of conventional think and behave as we do today: natural significance. Consideration of adaptive social science thinking (provocatively selection has made us this way. significance is (as the pioneering ethologist referred to as the SSSM or standard social This simple statement hides a number Niko Tinbergen (1963) pointed out) science model by Tooby & Cosmides, 1992).
    [Show full text]
  • What's Wrong with Evolutionary Biology?
    Biol Philos (2017) 32:263–279 DOI 10.1007/s10539-016-9557-8 What’s wrong with evolutionary biology? John J. Welch1 Received: 10 June 2016 / Accepted: 2 December 2016 / Published online: 20 December 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract There have been periodic claims that evolutionary biology needs urgent reform, and this article tries to account for the volume and persistence of this discontent. It is argued that a few inescapable properties of the field make it prone to criticisms of predictable kinds, whether or not the criticisms have any merit. For example, the variety of living things and the complexity of evolution make it easy to generate data that seem revolutionary (e.g. exceptions to well-established general- izations, or neglected factors in evolution), and lead to disappointment with existing explanatory frameworks (with their high levels of abstraction, and limited predictive power). It is then argued that special discontent stems from misunderstandings and dislike of one well-known but atypical research programme: the study of adaptive function, in the tradition of behavioural ecology. To achieve its goals, this research needs distinct tools, often including imaginary agency, and a partial description of the evolutionary process. This invites mistaken charges of narrowness and over- simplification (which come, not least, from researchers in other subfields), and these chime with anxieties about human agency and overall purpose. The article ends by discussing several ways in which calls to reform evolutionary biology actively hinder progress in the field. Keywords Adaptation Á Extended evolutionary synthesis Á Neo-Darwinism Á Inclusive fitness I’ve been wondering why so many evolutionary biologists are unimpressed by my idea… and I think the problem goes back to Newton (advocate of the Extended Evolutionary Synthesis) & John J.
    [Show full text]
  • Social Selection and the Evolution of Maladaptation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435141; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Social Selection and the Evolution of Maladaptation Joel W. McGlothlin and David N. Fisher Department of Biological Sciences, Virginia Tech, Derring Hall Room 2125, 926 West Campus Drive (MC 0406), Blacksburg, VA 24061 (McGlothlin, e-mail: [email protected]) School of Biological Sciences, University of Aberdeen, King’s College, Aberdeen, United Kingdom AB24 3FX (Fisher, e-mail: [email protected]) Address correspondence to J. McGlothlin at the address above, or e-mail: [email protected] Running title: Social Selection and Maladaptation 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435141; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 Evolution by natural selection is often viewed as a process that inevitably leads to 3 adaptation, or an increase in population fitness over time. However, maladaptation, 4 an evolved decrease in fitness, may also occur in response to natural selection 5 under some conditions. Social effects on fitness (or social selection) have been 6 identified as a potential cause of maladaptation, but we lack a general rule identifying 7 when social selection should lead to a decrease in population mean fitness.
    [Show full text]
  • Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives*
    vol. 194, no. 4 the american naturalist october 2019 Special Feature on Maladaptation Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives* Steven P. Brady,1,† Daniel I. Bolnick,2 Rowan D. H. Barrett,3,4,5 Lauren Chapman,3,5 Erika Crispo,6 Alison M. Derry,5,7 Christopher G. Eckert,8 Dylan J. Fraser,5,9 Gregor F. Fussmann,3,5 Andrew Gonzalez,3,5 Frederic Guichard,3,5 Thomas Lamy,10,11 Jeffrey Lane,12 Andrew G. McAdam,13 Amy E. M. Newman,13 Antoine Paccard,14 Bruce Robertson,15 Gregor Rolshausen,16 Patricia M. Schulte,17 Andrew M. Simons,18 Mark Vellend,5,19 and Andrew Hendry3,4,5 1. Biology Department, Southern Connecticut State University, New Haven, Connecticut 06515; 2. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269; 3. Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada; 4. Redpath Museum, McGill University, Montreal, Quebec H3A 0C4, Canada; 5. Quebec Centre for Biodiversity Science, Stewart Biology, McGill University, Montreal, Quebec H3A 1B1, Canada; 6. Biology Department, Pace University, New York, New York 10038; 7. Département des sciences biologiques, Université du Québec à Montréal, Montreal, Quebec H2X 1Y4, Canada; 8. Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada; 9. Department of Biology, Concordia University, Montreal, Qeubec H4B 1R6, Canada; 10. Département de sciences biologiques, Université de Montréal, Montreal, Quebec H2V 2S9, Canada; 11. Marine Science Institute, University of California, Santa Barbara, California 93106; 12. Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada; 13. Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; 14.
    [Show full text]
  • Maladaptation and the Paradox of Robustness in Evolution Steven A
    Maladaptation and the Paradox of Robustness in Evolution Steven A. Frank* Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, California, United States of America Background. Organisms use a variety of mechanisms to protect themselves against perturbations. For example, repair mechanisms fix damage, feedback loops keep homeostatic systems at their setpoints, and biochemical filters distinguish signal from noise. Such buffering mechanisms are often discussed in terms of robustness, which may be measured by reduced sensitivity of performance to perturbations. Methodology/Principal Findings. I use a mathematical model to analyze the evolutionary dynamics of robustness in order to understand aspects of organismal design by natural selection. I focus on two characters: one character performs an adaptive task; the other character buffers the performance of the first character against perturbations. Increased perturbations favor enhanced buffering and robustness, which in turn decreases sensitivity and reduces the intensity of natural selection on the adaptive character. Reduced selective pressure on the adaptive character often leads to a less costly, lower performance trait. Conclusions/Significance. The paradox of robustness arises from evolutionary dynamics: enhanced robustness causes an evolutionary reduction in the adaptive performance of the target character, leading to a degree of maladaptation compared to what could be achieved by natural selection in the absence of robustness mechanisms. Over evolutionary time, buffering traits may become layered on top of each other, while the underlying adaptive traits become replaced by cheaper, lower performance components. The paradox of robustness has widespread implications for understanding organismal design. Citation: Frank SA (2007) Maladaptation and the Paradox of Robustness in Evolution.
    [Show full text]
  • Risk of Genetic Maladaptation Due to Climate Change in Three Major European Tree Species
    Received: 27 February 2017 | Accepted: 13 June 2017 DOI: 10.1111/gcb.13802 PRIMARY RESEARCH ARTICLE Risk of genetic maladaptation due to climate change in three major European tree species Aline Frank1 | Glenn T. Howe2 | Christoph Sperisen1 | Peter Brang1 | J. Bradley St. Clair3 | Dirk R. Schmatz1 | Caroline Heiri1 1Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Abstract Switzerland Tree populations usually show adaptations to their local environments as a result of 2Department of Forest Ecosystems and natural selection. As climates change, populations can become locally maladapted Society, Oregon State University, Corvallis, OR, USA and decline in fitness. Evaluating the expected degree of genetic maladaptation due 3Pacific Northwest Research Station, USDA to climate change will allow forest managers to assess forest vulnerability, and Forest Service, Corvallis, OR, USA develop strategies to preserve forest health and productivity. We studied potential Correspondence genetic maladaptation to future climates in three major European tree species, Nor- Aline Frank, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, way spruce (Picea abies), silver fir (Abies alba), and European beech (Fagus sylvatica). Birmensdorf, Switzerland. A common garden experiment was conducted to evaluate the quantitative genetic Email: [email protected] variation in growth and phenology of seedlings from 77 to 92 native populations of each species from across Switzerland. We used multivariate genecological models to associate population variation with past seed source climates, and to estimate rela- tive risk of maladaptation to current and future climates based on key phenotypic traits and three regional climate projections within the A1B scenario. Current risks from climate change were similar to average risks from current seed transfer prac- tices.
    [Show full text]
  • Causes of Maladaptation
    DOI: 10.1111/eva.12844 SPECIAL ISSUE REVIEW AND SYNTHESES Causes of maladaptation Steven P. Brady1 | Daniel I. Bolnick2 | Amy L. Angert3 | Andrew Gonzalez4,5 | Rowan D.H. Barrett4,5,6 | Erika Crispo7 | Alison M. Derry5,8 | Christopher G. Eckert9 | Dylan J. Fraser10 | Gregor F. Fussmann4,5 | Frederic Guichard4,5 | Thomas Lamy11,12 | Andrew G. McAdam13 | Amy E.M. Newman13 | Antoine Paccard14 | Gregor Rolshausen15 | Andrew M. Simons16 | Andrew P. Hendry4,5,6 1Biology Department, Southern Connecticut State University, New Haven, CT, USA 2Department of Ecology and Evolutionary Biology, University of Connecticut, Mansfield, CT, USA 3Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada 4Department of Biology, McGill University, Montréal, QC, Canada 5Quebec Centre for Biodiversity Science, Stewart Biology, McGill University, Montréal, QC, Canada 6Redpath Museum, McGill University, Montréal, QC, Canada 7Department of Biology, Pace University, New York, NY, USA 8Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada 9Department of Biology, Queen's University, Kingston, ON, Canada 10Department of Biology, Concordia University, Montréal, QC, Canada 11Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada 12Marine Science Institute, University of California, Santa Barbara, CA, USA 13Department of Integrative Biology, University of Guelph, Guelph, ON, Canada 14McGill University Genome Center, Montréal, QC, Canada 15Senckenberg Biodiversity and Climate Research Centre (SBiK‐F), Frankfurt am Main, Germany 16Department of Biology, Carleton University, Ottawa, ON, Canada Correspondence Steven P. Brady, Biology Department, Abstract Southern Connecticut State University, 501 Evolutionary biologists tend to approach the study of the natural world within a Crescent Street, New Haven, CT 06515 USA.
    [Show full text]
  • Strong Reciprocity and the Roots of Human Morality
    Soc Just Res DOI 10.1007/s11211-008-0067-y Strong Reciprocity and the Roots of Human Morality Herbert Gintis Æ Joseph Henrich Æ Samuel Bowles Æ Robert Boyd Æ Ernst Fehr Ó Springer Science+Business Media, LLC 2008 Abstract Human morality is a key evolutionary adaptation on which human social behavior has been based since the Pleistocene era. Ethical behavior is constitutive of human nature, we argue, and human morality is as important an adaptation as human cognition and speech. Ethical behavior, we assert, need not be a means toward personal gain. Because of our nature as moral beings, humans take pleasure in acting ethically and are pained when acting unethically. From an evolutionary viewpoint, we argue that ethical behavior was fitness-enhancing in the years marking the emergence of Homo sapiens because human groups with many altruists fared better than groups of selfish individuals, and the fitness losses sustained by altruists were more than compensated by the superior performance of the groups in which they congregated. Keywords Morality Á Human nature Á Evolution Á Reciprocity Á Sociobiology Á Altruism H. Gintis (&) Santa Fe Institute, Santa Fe, New Mexico and, The Central European University, Budapest, Hungary e-mail: [email protected] J. Henrich University of British Columbia, Vancouver, Canada S. Bowles Santa Fe Institute, Santa Fe, NM, USA R. Boyd University of California, Los Angeles, CA, USA E. Fehr University of Zurich, Zurich, Switzerland 123 Soc Just Res The Nature of Human Morality The two volumes under review summarize a body of research suggesting that human morality is a key evolutionary adaptation on which human social behavior has been based since the Pleistocene era.
    [Show full text]