Daniel M. Kan (1927–2013)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fundamental Algebraic Geometry
http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. -
Curriculum Vitae - Rogier Bos
Curriculum Vitae - Rogier Bos Personal Full name: Rogier David Bos. Date and place of birth: August 7, 1978, Ter Aar, The Netherlands. Email: rogier bos [at] hotmail.com. Education 2010 M. Sc. Mathematics Education at University of Utrecht, 2007 Ph. D. degree in Mathematics at the Radboud University Nijmegen, thesis: Groupoids in geometric quantization, advisor: Prof. dr. N. P. Landsman. Manuscript committee: Prof. dr. Gert Heckman, Prof. dr. Ieke Moerdijk (Universiteit Utrecht), Prof. dr. Jean Renault (Universit´ed'Orl´eans), Prof. dr. Alan Weinstein (University of California), Prof. dr. Ping Xu (Penn State University). 2001 M. Sc. (Doctoraal) in Mathematics at the University of Utrecht, thesis: Operads in deformation quantization, advisor: Prof. dr. I. Moerdijk; minors in philosophy and physics. 1997 Propedeuse in Mathematics at the University of Utrecht. 1997 Propedeuse in Physics at the University of Utrecht. 1996 Gymnasium at Erasmus College Zoetermeer. General Working experience 2010-now Co-author dutch mathematics teaching series \Wagen- ingse Methode". 2010-now Lecturer at Master Mathematics Education at Hogeschool Utrecht. 2009-now Mathematics and general science teacher at the Chris- telijk Gymnasium Utrecht. 2007-2008 Post-doctoral researcher at the Center for Mathematical Analysis, Geometry, and Dynamical Systems, Instituto Superior T´ecnicoin Lisbon (Portugal). 2002-2007 Ph.D.-student mathematical physics at the University of Amsterdam (Radboud University Nijmegen from 2004); funded by FOM; promotor: Prof. dr. N. P. Landsman. 2002 march-august Mathematics teacher at the highschool Minkema College in Woerden. 1 1999-2001 Teacher of mathematics exercise classes at the Univer- sity of Utrecht. University Teaching Experience 2007 Mathematics deficiency repair course for highschool students (in preparation of studying mathematics or physics), Radboud Univer- sity Nijmegen. -
An Outline of Algebraic Set Theory
An Outline of Algebraic Set Theory Steve Awodey Dedicated to Saunders Mac Lane, 1909–2005 Abstract This survey article is intended to introduce the reader to the field of Algebraic Set Theory, in which models of set theory of a new and fascinating kind are determined algebraically. The method is quite robust, admitting adjustment in several respects to model different theories including classical, intuitionistic, bounded, and predicative ones. Under this scheme some familiar set theoretic properties are related to algebraic ones, like freeness, while others result from logical constraints, like definability. The overall theory is complete in two important respects: conventional elementary set theory axiomatizes the class of algebraic models, and the axioms provided for the abstract algebraic framework itself are also complete with respect to a range of natural models consisting of “ideals” of sets, suitably defined. Some previous results involving realizability, forcing, and sheaf models are subsumed, and the prospects for further such unification seem bright. 1 Contents 1 Introduction 3 2 The category of classes 10 2.1 Smallmaps ............................ 12 2.2 Powerclasses............................ 14 2.3 UniversesandInfinity . 15 2.4 Classcategories .......................... 16 2.5 Thetoposofsets ......................... 17 3 Algebraic models of set theory 18 3.1 ThesettheoryBIST ....................... 18 3.2 Algebraic soundness of BIST . 20 3.3 Algebraic completeness of BIST . 21 4 Classes as ideals of sets 23 4.1 Smallmapsandideals . .. .. 24 4.2 Powerclasses and universes . 26 4.3 Conservativity........................... 29 5 Ideal models 29 5.1 Freealgebras ........................... 29 5.2 Collection ............................. 30 5.3 Idealcompleteness . .. .. 32 6 Variations 33 References 36 2 1 Introduction Algebraic set theory (AST) is a new approach to the construction of models of set theory, invented by Andr´eJoyal and Ieke Moerdijk and first presented in [16]. -
The Formalism of Segal Sections
THE FORMALISM OF SEGAL SECTIONS BY Edouard Balzin ABSTRACT Given a family of model categories E ! C, we associate to it a homo- topical category of derived, or Segal, sections DSect(C; E) that models the higher-categorical sections of the localisation LE ! C. The derived sections provide an alternative, strict model for various higher algebra ob- jects appearing in the work of Lurie. We prove a few results concerning the properties of the homotopical category DSect(C; E), and as an exam- ple, study its behaviour with respect to the base-change along a select class of functors. Contents Introduction . 2 1. Simplicial Replacements . 10 1.1. Preliminaries . 10 1.2. The replacements . 12 1.3. Families over the simplicial replacement . 15 2. Derived, or Segal, sections . 20 2.1. Presections . 20 2.2. Homotopical category of Segal sections . 23 3. Higher-categorical aspects . 27 3.1. Behaviour with respect to the infinity-localisation . 27 3.2. Higher-categorical Segal sections . 32 4. Resolutions . 40 4.1. Relative comma objects . 44 4.2. Sections over relative comma objects . 49 4.3. Comparing the Segal sections . 52 References . 58 2 EDOUARD BALZIN Introduction Segal objects. The formalism presented in this paper was developed in the study of homotopy algebraic structures as described by Segal and generalised by Lurie. We begin the introduction by describing this context. Denote by Γ the category whose objects are finite sets and morphisms are given by partially defined set maps. Each such morphism between S and T can be depicted as S ⊃ S0 ! T .A Γ-space is simply a functor X :Γ ! Top taking values in the category of topological spaces. -
The Nucleus of an Adjunction and the Street Monad on Monads
The nucleus of an adjunction and the Street monad on monads Dusko Pavlovic* Dominic J. D. Hughes University of Hawaii, Honolulu HI Apple Inc., Cupertino CA [email protected] [email protected] Abstract An adjunction is a pair of functors related by a pair of natural transformations, and relating a pair of categories. It displays how a structure, or a concept, projects from each category to the other, and back. Adjunctions are the common denominator of Galois connections, repre- sentation theories, spectra, and generalized quantifiers. We call an adjunction nuclear when its categories determine each other. We show that every adjunction can be resolved into a nuclear adjunction. The resolution is idempotent in a strict sense. The resulting nucleus displays the concept that was implicit in the original adjunction, just as the singular value decomposition of an adjoint pair of linear operators displays their canonical bases. The two composites of an adjoint pair of functors induce a monad and a comonad. Monads and comonads generalize the closure and the interior operators from topology, or modalities from logic, while providing a saturated view of algebraic structures and compositions on one side, and of coalgebraic dynamics and decompositions on the other. They are resolved back into adjunctions over the induced categories of algebras and of coalgebras. The nucleus of an adjunction is an adjunction between the induced categories of algebras and coalgebras. It provides new presentations for both, revealing algebras on the side where the coalgebras are normally presented, and vice versa. The new presentations elucidate the central role of idem- potents, and of the absolute limits and colimits in monadicity and comonadicity. -
Generic Programming with Adjunctions
Generic Programming with Adjunctions Ralf Hinze Department of Computer Science, University of Oxford Wolfson Building, Parks Road, Oxford, OX1 3QD, England [email protected] http://www.cs.ox.ac.uk/ralf.hinze/ Abstract. Adjunctions are among the most important constructions in mathematics. These lecture notes show they are also highly relevant to datatype-generic programming. First, every fundamental datatype| sums, products, function types, recursive types|arises out of an adjunc- tion. The defining properties of an adjunction give rise to well-known laws of the algebra of programming. Second, adjunctions are instrumental in unifying and generalising recursion schemes. We discuss a multitude of basic adjunctions and show that they are directly relevant to program- ming and to reasoning about programs. 1 Introduction Haskell programmers have embraced functors [1], natural transformations [2], monads [3], monoidal functors [4] and, perhaps to a lesser extent, initial alge- bras [5] and final coalgebras [6]. It is time for them to turn their attention to adjunctions. The notion of an adjunction was introduced by Daniel Kan in 1958 [7]. Very briefly, the functors L and R are adjoint if arrows of type L A → B are in one-to- one correspondence to arrows of type A → R B and if the bijection is furthermore natural in A and B. Adjunctions have proved to be one of the most important ideas in category theory, predominantly due to their ubiquity. Many mathemat- ical constructions turn out to be adjoint functors that form adjunctions, with Mac Lane [8, p.vii] famously saying, \Adjoint functors arise everywhere." The purpose of these lecture notes is to show that the notion of an adjunc- tion is also highly relevant to programming, in particular, to datatype-generic programming. -
On The´Etale Fundamental Group of Schemes Over the Natural Numbers
On the Etale´ Fundamental Group of Schemes over the Natural Numbers Robert Hendrik Scott Culling February 2019 A thesis submitted for the degree of Doctor of Philosophy of the Australian National University It is necessary that we should demonstrate geometrically, the truth of the same problems which we have explained in numbers. | Muhammad ibn Musa al-Khwarizmi For my parents. Declaration The work in this thesis is my own except where otherwise stated. Robert Hendrik Scott Culling Acknowledgements I am grateful beyond words to my thesis advisor James Borger. I will be forever thankful for the time he gave, patience he showed, and the wealth of ideas he shared with me. Thank you for introducing me to arithmetic geometry and suggesting such an interesting thesis topic | this has been a wonderful journey which I would not have been able to go on without your support. While studying at the ANU I benefited from many conversations about al- gebraic geometry and algebraic number theory (together with many other inter- esting conversations) with Arnab Saha. These were some of the most enjoyable times in my four years as a PhD student, thank you Arnab. Anand Deopurkar helped me clarify my own ideas on more than one occasion, thank you for your time and help to give me new perspective on this work. Finally, being a stu- dent at ANU would not have been nearly as fun without the chance to discuss mathematics with Eloise Hamilton. Thank you Eloise for helping me on so many occasions. To my partner, Beth Vanderhaven, and parents, Cherry and Graeme Culling, thank you for your unwavering support for my indulgence of my mathematical curiosity. -
On Adjoint and Brain Functors
On Adjoint and Brain Functors David Ellerman Philosophy Department University of California at Riverside Abstract There is some consensus among orthodox category theorists that the concept of adjoint functors is the most important concept contributed to mathematics by category theory. We give a heterodox treatment of adjoints using heteromorphisms (object-to-object morphisms between objects of different categories) that parses an adjunction into two separate parts (left and right representations of heteromorphisms). Then these separate parts can be recombined in a new way to define a cognate concept, the brain functor, to abstractly model the functions of perception and action of a brain. The treatment uses relatively simple category theory and is focused on the interpretation and application of the mathematical concepts. The Mathematical Appendix is of general interest to category theorists as it is a defense of the use of heteromorphisms as a natural and necessary part of category theory. Contents 1 Category theory in the life and cognitive sciences 1 2 The ubiquity and importance of adjoints 2 3 Adjoints and universals 3 4 The Hom-set definition of an adjunction 4 5 Heteromorphisms and adjunctions 6 6 Brain functors 8 7 A mathematical example of a brain functor 12 8 Conclusion 13 9 Mathematical Appendix: Are hets really necessary in category theory? 13 9.1 Chimeras in the wilds of mathematical practice . 14 9.2 Hets as "homs" in a collage category . 15 9.3 What about the homs-only UMPs in adjunctions? . 16 9.4 Are all UMPs part of adjunctions? . 16 1 Category theory in the life and cognitive sciences There is already a considerable but widely varying literature on the application of category theory to the life and cognitive sciences—such as the work of Robert Rosen ([31], [32]) and his followers1 as 1 See [38], [20], and [21] and their references. -
Model Structures on Toposes Niels Van Der Weide Supervisor: Ieke
Model Structures on Toposes Niels van der Weide Supervisor: Ieke Moerdijk ABSTRACT. We discuss two results: one by Dugger and one by Beke. Dugger’s result states that all combinatorial model categories can be written as a Bousfield localization of a simplicial presheaf category. The site of that category gives the generators and the localized maps are the relations, so more intuitively this says that all combinatorial model categories can be built from generators and relations. The second result by Beke gives a general way on how to find model structures on structured sheaves. If all required definitions can be given in a certain logical syntax, then to verify the axioms for all structured sheaves, we only need to check it for sets. This gives an easy way to find the Joyal model structure for simplicial objects in a topos. Acknowledgements During the progress of making this thesis, a lot of people have been a great help to me. First of all, I would like to thank Ieke Moerdijk for being my supervisor. He pro- vided me with many suggestions to improve the text, and helped me to find relevant material. Also, he explained some material which also increased my understanding. Secondly, I would like to thank all participants of the Algebraic Topology Student sem- inar, and especially Joost Nuiten and Giovanni Caviglia for organizing it. It gave good opportunities for me to discuss relevant material with other people, and to understand it better. Lastly, I would like to thank Fenno for taking the effort to proof read several parts of my thesis. -
Lecture Notes: Simplicial Sets
Lecture notes: Simplicial sets Christian R¨uschoff Summer 2017 Contents 1 (Abstract) Simplicial complexes 3 1.1 Geometric realization . 4 1.2 Simplicial approximation . 6 1.3 Products. 12 1.4 Collapsing subspaces . 15 2 Simplicial sets 17 2.1 Semi-simplicial sets . 17 2.2 Categories . 20 2.3 Simplicial sets . 24 2.4 Geometric realization . 25 2.5 Adjunctions . 26 2.6 The singular nerve . 28 2.7 Isomorphisms, monomorphisms and epimorphisms . 30 2.8 Simplicial standard simplices . 31 2.9 Limits and colimits . 32 2.10 Preservation of (co-)limits . 35 2.11 Comma categories. 39 2.12 Internal homomorphisms . 41 2.13 Ordered simplicial complexes as simplicial sets . 42 2.14 Homotopies . 45 2.15 Connected components . 47 2.16 Skeleton and coskeleton . 49 2.17 Small categories as simplicial sets . 54 3 Abstract homotopy theory 59 3.1 Localizations of categories . 59 3.2 Weak factorization systems . 60 3.3 Model categories . 62 3.4 Stability of the lifting property . 62 3.5 Construction of weak factorization systems . 66 3.6 Lifting properties and adjunctions . 72 3.7 Towards the standard model structure on simplicial sets . 74 3.8 Absolute weak equivalences. 82 3.9 Maps with fibrant codomain . 94 i Contents 3.10 Verifying the model structure on simplicial sets using Kan's functor Ex1 . 99 3.11 Homotopies in model categories . 112 3.12 The homotopy category of a model category. 118 3.13 Characterization of weak equivalences . 121 3.14 Derived functors and the comparison of model categories . 127 ii Introduction, motivation Algebraic topology is the study of topological spaces by using algebraic invariants, such as (co-)homology, the fundamental group or more generally homotopy groups. -
Two Lectures on Constructive Type Theory
Two Lectures on Constructive Type Theory Robert L. Constable July 20, 2015 Abstract Main Goal: One goal of these two lectures is to explain how important ideas and problems from computer science and mathematics can be expressed well in constructive type theory and how proof assistants for type theory help us solve them. Another goal is to note examples of abstract mathematical ideas currently not expressed well enough in type theory. The two lec- tures will address the following three specific questions related to this goal. Three Questions: One, what are the most important foundational ideas in computer science and mathematics that are expressed well in constructive type theory, and what concepts are more difficult to express? Two, how can proof assistants for type theory have a large impact on research and education, specifically in computer science, mathematics, and beyond? Three, what key ideas from type theory are students missing if they know only one of the modern type theories? The lectures are intended to complement the hands-on Nuprl tutorials by Dr. Mark Bickford that will introduce new topics as well as address these questions. The lectures refer to recent educational material posted on the PRL project web page, www.nuprl.org, especially the on-line article Logical Investigations, July 2014 on the front page of the web cite. Background: Decades of experience using proof assistants for constructive type theories, such as Agda, Coq, and Nuprl, have brought type theory ever deeper into computer science research and education. New type theories implemented by proof assistants are being developed. More- over, mathematicians are showing interest in enriching these theories to make them a more suitable foundation for mathematics. -
An Alpine Bouquet of Algebraic Topology
708 An Alpine Bouquet of Algebraic Topology Alpine Algebraic and Applied Topology Conference August 15–21, 2016 Saas-Almagell, Switzerland Christian Ausoni Kathryn Hess Brenda Johnson Ieke Moerdijk Jérôme Scherer Editors 708 An Alpine Bouquet of Algebraic Topology Alpine Algebraic and Applied Topology Conference August 15–21, 2016 Saas-Almagell, Switzerland Christian Ausoni Kathryn Hess Brenda Johnson Ieke Moerdijk Jérôme Scherer Editors EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor Michael Loss Kailash Misra Catherine Yan 2010 Mathematics Subject Classification. Primary 11S40, 18Axx, 18Gxx, 19Dxx, 55Nxx, 55Pxx, 55Sxx, 55Uxx, 57Nxx. Library of Congress Cataloging-in-Publication Data Names: Conference on Alpine Algebraic and Applied Topology (2016: Saas-Almagell, Switzerland) | Ausoni, Christian, 1968– editor. Title: An alpine bouquet of algebraic topology: Conference on Alpine Algebraic and Applied Topology, August 15–21, 2016, Saas-Almagell, Switzerland / Christian Ausoni [and four oth- ers], editors. Description: Providence, Rhode Island: American Mathematical Society, [2018] | Series: Contem- porary mathematics; volume 708 | Includes bibliographical references. Identifiers: LCCN 2017055549 | ISBN 9781470429119 (alk. paper) Subjects: LCSH: Algebraic topology–Congresses. | AMS: Number theory – Algebraic number theory: local and p-adic fields – Zeta functions and L-functions. msc | Category theory; homological algebra – General theory of categories and functors – General theory of categories and functors. msc | Category theory; homological algebra – Homological algebra – Homological algebra. msc | K-theory – Higher algebraic K-theory – Higher algebraic K-theory. msc | Algebraic topology – Homology and cohomology theories – Homology and cohomology theories. msc | Algebraic topology – Homotopy theory – Homotopy theory. msc | Algebraic topology – Operations and obstructions – Operations and obstructions. msc | Algebraic topology – Applied homological algebra and category theory – Applied homological algebra and category theory.