On Adjoint and Brain Functors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Congruences Between Derivatives of Geometric L-Functions
1 Congruences between Derivatives of Geometric L-Functions David Burns with an appendix by David Burns, King Fai Lai and Ki-Seng Tan Abstract. We prove a natural equivariant re¯nement of a theorem of Licht- enbaum describing the leading terms of Zeta functions of curves over ¯nite ¯elds in terms of Weil-¶etalecohomology. We then use this result to prove the validity of Chinburg's (3)-Conjecture for all abelian extensions of global function ¯elds, to prove natural re¯nements and generalisations of the re- ¯ned Stark conjectures formulated by, amongst others, Gross, Tate, Rubin and Popescu, to prove a variety of explicit restrictions on the Galois module structure of unit groups and divisor class groups and to describe explicitly the Fitting ideals of certain Weil-¶etalecohomology groups. In an appendix coau- thored with K. F. Lai and K-S. Tan we also show that the main conjectures of geometric Iwasawa theory can be proved without using either crystalline cohomology or Drinfeld modules. 1991 Mathematics Subject Classi¯cation: Primary 11G40; Secondary 11R65; 19A31; 19B28. Keywords and Phrases: Geometric L-functions, leading terms, congruences, Iwasawa theory 2 David Burns 1. Introduction The main result of the present article is the following Theorem 1.1. The central conjecture of [6] is valid for all global function ¯elds. (For a more explicit statement of this result see Theorem 3.1.) Theorem 1.1 is a natural equivariant re¯nement of the leading term formula proved by Lichtenbaum in [27] and also implies an extensive new family of integral congruence relations between the leading terms of L-functions associated to abelian characters of global functions ¯elds (see Remark 3.2). -
BIPRODUCTS WITHOUT POINTEDNESS 1. Introduction
BIPRODUCTS WITHOUT POINTEDNESS MARTTI KARVONEN Abstract. We show how to define biproducts up to isomorphism in an ar- bitrary category without assuming any enrichment. The resulting notion co- incides with the usual definitions whenever all binary biproducts exist or the category is suitably enriched, resulting in a modest yet strict generalization otherwise. We also characterize when a category has all binary biproducts in terms of an ambidextrous adjunction. Finally, we give some new examples of biproducts that our definition recognizes. 1. Introduction Given two objects A and B living in some category C, their biproduct { according to a standard definition [4] { consists of an object A ⊕ B together with maps p i A A A ⊕ B B B iA pB such that pAiA = idA pBiB = idB pBiA = 0A;B pAiB = 0B;A and idA⊕B = iApA + iBpB. For us to be able to make sense of the equations, we must assume that C is enriched in commutative monoids. One can get a slightly more general definition that only requires zero morphisms but no addition { that is, enrichment in pointed sets { by replacing the last equation with the condition that (A ⊕ B; pA; pB) is a product of A and B and that (A ⊕ B; iA; iB) is their coproduct. We will call biproducts in the first sense additive biproducts and in the second sense pointed biproducts in order to contrast these definitions with our central object of study { a pointless generalization of biproducts that can be applied in any category C, with no assumptions concerning enrichment. This is achieved by replacing the equations referring to zero with the single equation (1.1) iApAiBpB = iBpBiApA, which states that the two canonical idempotents on A ⊕ B commute with one another. -
Types Are Internal Infinity-Groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau
Types are internal infinity-groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau To cite this version: Antoine Allioux, Eric Finster, Matthieu Sozeau. Types are internal infinity-groupoids. 2021. hal- 03133144 HAL Id: hal-03133144 https://hal.inria.fr/hal-03133144 Preprint submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Types are Internal 1-groupoids Antoine Allioux∗, Eric Finstery, Matthieu Sozeauz ∗Inria & University of Paris, France [email protected] yUniversity of Birmingham, United Kingdom ericfi[email protected] zInria, France [email protected] Abstract—By extending type theory with a universe of defini- attempts to import these ideas into plain homotopy type theory tionally associative and unital polynomial monads, we show how have, so far, failed. This appears to be a result of a kind of to arrive at a definition of opetopic type which is able to encode circularity: all of the known classical techniques at some point a number of fully coherent algebraic structures. In particular, our approach leads to a definition of 1-groupoid internal to rely on set-level algebraic structures themselves (presheaves, type theory and we prove that the type of such 1-groupoids is operads, or something similar) as a means of presenting or equivalent to the universe of types. -
The Factorization Problem and the Smash Biproduct of Algebras and Coalgebras
Algebras and Representation Theory 3: 19–42, 2000. 19 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. The Factorization Problem and the Smash Biproduct of Algebras and Coalgebras S. CAENEPEEL1, BOGDAN ION2, G. MILITARU3;? and SHENGLIN ZHU4;?? 1University of Brussels, VUB, Faculty of Applied Sciences, Pleinlaan 2, B-1050 Brussels, Belgium 2Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, U.S.A. 3University of Bucharest, Faculty of Mathematics, Str. Academiei 14, RO-70109 Bucharest 1, Romania 4Institute of Mathematics, Fudan University, Shanghai 200433, China (Received: July 1998) Presented by A. Verschoren Abstract. We consider the factorization problem for bialgebras. Let L and H be algebras and coalgebras (but not necessarily bialgebras) and consider two maps R: H ⊗ L ! L ⊗ H and W: L ⊗ H ! H ⊗ L. We introduce a product K D L W FG R H and we give necessary and sufficient conditions for K to be a bialgebra. Our construction generalizes products introduced by Majid and Radford. Also, some of the pointed Hopf algebras that were recently constructed by Beattie, Dascˇ alescuˇ and Grünenfelder appear as special cases. Mathematics Subject Classification (2000): 16W30. Key words: Hopf algebra, smash product, factorization structure. Introduction The factorization problem for a ‘structure’ (group, algebra, coalgebra, bialgebra) can be roughly stated as follows: under which conditions can an object X be written as a product of two subobjects A and B which have minimal intersection (for example A \ B Df1Xg in the group case). A related problem is that of the construction of a new object (let us denote it by AB) out of the objects A and B.In the constructions of this type existing in the literature ([13, 20, 27]), the object AB factorizes into A and B. -
Op → Sset in Simplicial Sets, Or Equivalently a Functor X : ∆Op × ∆Op → Set
Contents 21 Bisimplicial sets 1 22 Homotopy colimits and limits (revisited) 10 23 Applications, Quillen’s Theorem B 23 21 Bisimplicial sets A bisimplicial set X is a simplicial object X : Dop ! sSet in simplicial sets, or equivalently a functor X : Dop × Dop ! Set: I write Xm;n = X(m;n) for the set of bisimplices in bidgree (m;n) and Xm = Xm;∗ for the vertical simplicial set in horiz. degree m. Morphisms X ! Y of bisimplicial sets are natural transformations. s2Set is the category of bisimplicial sets. Examples: 1) Dp;q is the contravariant representable functor Dp;q = hom( ;(p;q)) 1 on D × D. p;q G q Dm = D : m!p p;q The maps D ! X classify bisimplices in Xp;q. The bisimplex category (D × D)=X has the bisim- plices of X as objects, with morphisms the inci- dence relations Dp;q ' 7 X Dr;s 2) Suppose K and L are simplicial sets. The bisimplicial set Kט L has bisimplices (Kט L)p;q = Kp × Lq: The object Kט L is the external product of K and L. There is a natural isomorphism Dp;q =∼ Dpט Dq: 3) Suppose I is a small category and that X : I ! sSet is an I-diagram in simplicial sets. Recall (Lecture 04) that there is a bisimplicial set −−−!holim IX (“the” homotopy colimit) with vertical sim- 2 plicial sets G X(i0) i0→···→in in horizontal degrees n. The transformation X ! ∗ induces a bisimplicial set map G G p : X(i0) ! ∗ = BIn; i0→···→in i0→···→in where the set BIn has been identified with the dis- crete simplicial set K(BIn;0) in each horizontal de- gree. -
Category Theory for Autonomous and Networked Dynamical Systems
Discussion Category Theory for Autonomous and Networked Dynamical Systems Jean-Charles Delvenne Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) and Center for Operations Research and Econometrics (CORE), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; [email protected] Received: 7 February 2019; Accepted: 18 March 2019; Published: 20 March 2019 Abstract: In this discussion paper we argue that category theory may play a useful role in formulating, and perhaps proving, results in ergodic theory, topogical dynamics and open systems theory (control theory). As examples, we show how to characterize Kolmogorov–Sinai, Shannon entropy and topological entropy as the unique functors to the nonnegative reals satisfying some natural conditions. We also provide a purely categorical proof of the existence of the maximal equicontinuous factor in topological dynamics. We then show how to define open systems (that can interact with their environment), interconnect them, and define control problems for them in a unified way. Keywords: ergodic theory; topological dynamics; control theory 1. Introduction The theory of autonomous dynamical systems has developed in different flavours according to which structure is assumed on the state space—with topological dynamics (studying continuous maps on topological spaces) and ergodic theory (studying probability measures invariant under the map) as two prominent examples. These theories have followed parallel tracks and built multiple bridges. For example, both have grown successful tools from the interaction with information theory soon after its emergence, around the key invariants, namely the topological entropy and metric entropy, which are themselves linked by a variational theorem. The situation is more complex and heterogeneous in the field of what we here call open dynamical systems, or controlled dynamical systems. -
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience. -
Category Theory
Michael Paluch Category Theory April 29, 2014 Preface These note are based in part on the the book [2] by Saunders Mac Lane and on the book [3] by Saunders Mac Lane and Ieke Moerdijk. v Contents 1 Foundations ....................................................... 1 1.1 Extensionality and comprehension . .1 1.2 Zermelo Frankel set theory . .3 1.3 Universes.....................................................5 1.4 Classes and Gödel-Bernays . .5 1.5 Categories....................................................6 1.6 Functors .....................................................7 1.7 Natural Transformations. .8 1.8 Basic terminology . 10 2 Constructions on Categories ....................................... 11 2.1 Contravariance and Opposites . 11 2.2 Products of Categories . 13 2.3 Functor Categories . 15 2.4 The category of all categories . 16 2.5 Comma categories . 17 3 Universals and Limits .............................................. 19 3.1 Universal Morphisms. 19 3.2 Products, Coproducts, Limits and Colimits . 20 3.3 YonedaLemma ............................................... 24 3.4 Free cocompletion . 28 4 Adjoints ........................................................... 31 4.1 Adjoint functors and universal morphisms . 31 4.2 Freyd’s adjoint functor theorem . 38 5 Topos Theory ...................................................... 43 5.1 Subobject classifier . 43 5.2 Sieves........................................................ 45 5.3 Exponentials . 47 vii viii Contents Index .................................................................. 53 Acronyms List of categories. Ab The category of small abelian groups and group homomorphisms. AlgA The category of commutative A-algebras. Cb The category Func(Cop,Sets). Cat The category of small categories and functors. CRings The category of commutative ring with an identity and ring homomor- phisms which preserve identities. Grp The category of small groups and group homomorphisms. Sets Category of small set and functions. Sets Category of small pointed set and pointed functions. -
Derived Functors and Homological Dimension (Pdf)
DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic. -
Coreflective Subcategories
transactions of the american mathematical society Volume 157, June 1971 COREFLECTIVE SUBCATEGORIES BY HORST HERRLICH AND GEORGE E. STRECKER Abstract. General morphism factorization criteria are used to investigate categorical reflections and coreflections, and in particular epi-reflections and mono- coreflections. It is shown that for most categories with "reasonable" smallness and completeness conditions, each coreflection can be "split" into the composition of two mono-coreflections and that under these conditions mono-coreflective subcategories can be characterized as those which are closed under the formation of coproducts and extremal quotient objects. The relationship of reflectivity to closure under limits is investigated as well as coreflections in categories which have "enough" constant morphisms. 1. Introduction. The concept of reflections in categories (and likewise the dual notion—coreflections) serves the purpose of unifying various fundamental con- structions in mathematics, via "universal" properties that each possesses. His- torically, the concept seems to have its roots in the fundamental construction of E. Cech [4] whereby (using the fact that the class of compact spaces is productive and closed-hereditary) each completely regular F2 space is densely embedded in a compact F2 space with a universal extension property. In [3, Appendice III; Sur les applications universelles] Bourbaki has shown the essential underlying similarity that the Cech-Stone compactification has with other mathematical extensions, such as the completion of uniform spaces and the embedding of integral domains in their fields of fractions. In doing so, he essentially defined the notion of reflections in categories. It was not until 1964, when Freyd [5] published the first book dealing exclusively with the theory of categories, that sufficient categorical machinery and insight were developed to allow for a very simple formulation of the concept of reflections and for a basic investigation of reflections as entities themselvesi1). -
Comparison of Waldhausen Constructions
COMPARISON OF WALDHAUSEN CONSTRUCTIONS JULIA E. BERGNER, ANGELICA´ M. OSORNO, VIKTORIYA OZORNOVA, MARTINA ROVELLI, AND CLAUDIA I. SCHEIMBAUER Dedicated to the memory of Thomas Poguntke Abstract. In previous work, we develop a generalized Waldhausen S•- construction whose input is an augmented stable double Segal space and whose output is a 2-Segal space. Here, we prove that this construc- tion recovers the previously known S•-constructions for exact categories and for stable and exact (∞, 1)-categories, as well as the relative S•- construction for exact functors. Contents Introduction 2 1. Augmented stable double Segal objects 3 2. The S•-construction for exact categories 7 3. The S•-construction for stable (∞, 1)-categories 17 4. The S•-construction for proto-exact (∞, 1)-categories 23 5. The relative S•-construction 26 Appendix: Some results on quasi-categories 33 References 38 Date: May 29, 2020. 2010 Mathematics Subject Classification. 55U10, 55U35, 55U40, 18D05, 18G55, 18G30, arXiv:1901.03606v2 [math.AT] 28 May 2020 19D10. Key words and phrases. 2-Segal spaces, Waldhausen S•-construction, double Segal spaces, model categories. The first-named author was partially supported by NSF CAREER award DMS- 1659931. The second-named author was partially supported by a grant from the Simons Foundation (#359449, Ang´elica Osorno), the Woodrow Wilson Career Enhancement Fel- lowship and NSF grant DMS-1709302. The fourth-named and fifth-named authors were partially funded by the Swiss National Science Foundation, grants P2ELP2 172086 and P300P2 164652. The fifth-named author was partially funded by the Bergen Research Foundation and would like to thank the University of Oxford for its hospitality. -
Homotopical Categories: from Model Categories to ( ,)-Categories ∞
HOMOTOPICAL CATEGORIES: FROM MODEL CATEGORIES TO ( ;1)-CATEGORIES 1 EMILY RIEHL Abstract. This chapter, written for Stable categories and structured ring spectra, edited by Andrew J. Blumberg, Teena Gerhardt, and Michael A. Hill, surveys the history of homotopical categories, from Gabriel and Zisman’s categories of frac- tions to Quillen’s model categories, through Dwyer and Kan’s simplicial localiza- tions and culminating in ( ;1)-categories, first introduced through concrete mod- 1 els and later re-conceptualized in a model-independent framework. This reader is not presumed to have prior acquaintance with any of these concepts. Suggested exercises are included to fertilize intuitions and copious references point to exter- nal sources with more details. A running theme of homotopy limits and colimits is included to explain the kinds of problems homotopical categories are designed to solve as well as technical approaches to these problems. Contents 1. The history of homotopical categories 2 2. Categories of fractions and localization 5 2.1. The Gabriel–Zisman category of fractions 5 3. Model category presentations of homotopical categories 7 3.1. Model category structures via weak factorization systems 8 3.2. On functoriality of factorizations 12 3.3. The homotopy relation on arrows 13 3.4. The homotopy category of a model category 17 3.5. Quillen’s model structure on simplicial sets 19 4. Derived functors between model categories 20 4.1. Derived functors and equivalence of homotopy theories 21 4.2. Quillen functors 24 4.3. Derived composites and derived adjunctions 25 4.4. Monoidal and enriched model categories 27 4.5.