Muscarinic Acetylcholine Receptors: Novel Opportunities for Drug Development Andrew C

Total Page:16

File Type:pdf, Size:1020Kb

Muscarinic Acetylcholine Receptors: Novel Opportunities for Drug Development Andrew C REVIEWS Muscarinic acetylcholine receptors: novel opportunities for drug development Andrew C. Kruse1,2, Brian K. Kobilka1, Dinesh Gautam3, Patrick M. Sexton4, Arthur Christopoulos4 and Jürgen Wess3 Abstract | The muscarinic acetylcholine receptors are a subfamily of G protein-coupled receptors that regulate numerous fundamental functions of the central and peripheral nervous system. The past few years have witnessed unprecedented new insights into muscarinic receptor physiology, pharmacology and structure. These advances include the first structural views of muscarinic receptors in both inactive and active conformations, as well as a better understanding of the molecular underpinnings of muscarinic receptor regulation by allosteric modulators. These recent findings should facilitate the development of new muscarinic receptor subtype-selective ligands that could prove to be useful for the treatment of many severe pathophysiological conditions. The muscarinic acetylcholine receptors (mAChRs) com- Recent studies with novel mAChR mouse models prise a family of five related G protein-coupled receptors have provided additional insights into the physiolog­ (GPCRs) belonging to the α-branch of class A GPCRs1. ical roles of the different mAChR subtypes4. Moreover, The mAChR family consists of five distinct subtypes, during the past few years, several laboratories have suc- denoted M1 to M5 (and encoded by the genes CHRM1 ceeded in developing ligands that show high selectivity 1 5,6 Department of Molecular to CHRM5). Three of these receptor subtypes (M1, M3 for specific mAChR subtypes . In contrast to conven- and Cellular Physiology, and M5) have been shown to couple to G proteins of the tional muscarinic receptor ligands, which bind to the Stanford University School G family, whereas the remaining two subtypes (M orthosteric receptor site, most of these new ligands bind of Medicine, Stanford, q/11 2 California 94305, USA. and M4) preferentially signal through the Gi/o family of to distinct allosteric sites. Such allosteric ligands can 2 2Present address: G proteins . The mAChRs have a central role in human influence the potency and efficacy of orthosteric ligands, Department of Biological physiology, regulating heart rate, smooth muscle con- and they may possess agonistic or inverse agonist activ- Chemistry and Molecular traction, glandular secretion and many fundamental ity in their own right. Interestingly, bitopic muscarinic Pharmacology, Harvard 3 Medical School, Boston, functions of the central nervous system (CNS) . receptor ligands with preference for certain subtypes 7–9 Massachusetts 02115, USA. Currently, drugs targeting muscarinic receptors are have also been developed recently . Such agents, which 3Molecular Signaling Section, used for the treatment of several pathophysiological con- can interact with both allosteric and orthosteric receptor Laboratory of Bioorganic ditions, including chronic obstructive pulmonary disease, sites simultaneously, offer new opportunities to target Chemistry, National Institute overactive bladder and Sjögren’s syndrome3. Despite the specific mAChR subtypes for therapeutic purposes. of Diabetes and Digestive and Kidney Diseases, powerful and diverse pharmacological actions of mus- The recent determination of the first mAChR struc- US National Institutes of carinic receptor agonists and antagonists, the development tures (M2 and M3 subtypes) represents a milestone in the Health, Bethesda, Maryland of these drugs for other clinical applications has prob- mAChR field10–12. These studies have provided the first 20892–0810, USA. ably been held back, at least in part, by the lack of small- molecular views of mAChRs in both their inactive10,11 and 4 Monash Institute of 12 Pharmaceutical Sciences molecule ligands that can inhibit or activate specific active conformations , revealing the molecular nature and Department of mAChRs with high selectivity. As a result, the precise of the binding sites for orthosteric muscarinic receptor Pharmacology, Monash physiological and pathophysiological roles of the individ- ligands. Moreover, structural and computational stud- University, Parkville, ual mAChR subtypes have, until recently, remained poorly ies have identified the mechanisms by which drug-like Victoria 3052, Australia. defined. However, during the past 15 years the generation allosteric modulators bind to the M subtype12,13. Correspondence to J.W. 2 e‑mail: [email protected] and phenotypic analysis of Chrm1- to Chrm5‑knockout In this Review, we summarize and discuss a series doi:10.1038/nrd4295 mice has been instrumental in improving our under­ of recent studies that have advanced our knowledge of Published online 6 June 2014 standing of the biology of the individual mAChRs3. mAChR biology, structure and pharmacology. In particular, NATURE REVIEWS | DRUG DISCOVERY VOLUME 13 | JULY 2014 | 549 © 2014 Macmillan Publishers Limited. All rights reserved REVIEWS we emphasize the potential therapeutic implications of Chrm1‑knockout mice exhibited an age-dependent these novel findings. As mAChRs are prototypic class A cognitive decline in tasks that they performed normally GPCRs, the topics covered herein have implications for at a younger age17. Most importantly, several recent stud- other members of this receptor superfamily. ies have shown that compounds that act as PAMs at M1 receptors have cognition-enhancing activity in rodents Novel mAChR mouse models and are able to improve impaired cognition in mouse Since the late 1990s, studies with Chrm1- to Chrm5- models of Alzheimer’s disease18,19. Taken together, these knockout mice have elucidated many important physio­ new findings provide a rational basis for the develop- 3 logical functions of the individual mAChR subtypes . ment of M1-selective drugs (PAMs or agents that can The outcome of this work suggested that modulating activate M1 receptors directly) for the treatment of the activity of specific mAChR subtypes by selective Alzheimer’s disease and related disorders. ligands might prove to be beneficial for the treatment of many CNS disorders and other clinical conditions3. Schizophrenia. Schizophrenia, which is a chronic dis­ Until recently, essentially all phenotyping studies were abling brain disorder that affects ~1% of the general carried out with conventional, constitutive mAChR- population20, is characterized by enhanced central dopa- knockout mice, which lack one or more of the genes minergic signalling. Studies with conventional mAChR- encoding mAChRs throughout development in all cells knockout mice have indicated that the lack of central of the body. The proper interpretation of the phenotypes M1 and/or M4 receptors leads to a ‘dopamine hypersen- observed with conventional mAChR-knockout mice is sitivity phenotype’, which suggests that agents that can often complicated because individual mAChR subtypes enhance signalling through these receptor subtypes may are expressed in many different tissues and cell types, be endowed with antipsychotic activity3. In agreement and compensatory molecular or physiological changes with this concept, two clinical trials demonstrated that can occur during development. xanomeline, an M1- and M4-preferring muscarinic recep- To circumvent these difficulties, novel conditional tor agonist21, was effective in ameliorating psychosis-like knockout mice have been created that lack specific symptoms22,23. A recent study with cell type-specific mAChR subtypes only in certain tissues or cell types. Chrm4‑knockout mice strongly suggests that a distinct For these studies, mice containing ‘floxed’ versions of subpopulation of neuronal M4 receptors expressed by specific genes encoding mAChRs were crossed with D1 dopamine receptor-expressing neurons may be of transgenic mice expressing Cre recombinase in a cell particular importance in mediating the antipsychotic (TABLE 1) 24 type- or tissue-selective fashion . mAChR actions triggered by M4 receptor activation . In addition, knock-in mice have also been reported, in which the Dencker et al.25 reported that the antipsychotic-like effects native genes encoding M3 or M4 receptors — CHRM3 of xanomeline were almost completely abolished in two or CHRM4, respectively— were replaced with mutant mouse models of psychosis in which mice lacked M4 (TABLE 1) versions . Here, we summarize several recent receptors selectively in D1 receptor-expressing neurons. studies that have used novel mAChR-mutant mice as well In agreement with these findings, several recent preclini- as conventional mAChR-knockout mice. These studies cal studies suggest that PAMs of M1 and/or M4 receptors are discussed in the context of selected human diseases in may prove to be clinically useful for the treatment of which the development of novel classes of drugs targeting schizophrenia (reviewed in REFS 18,26–28). muscarinic receptors might be beneficial. Drug addiction. Acetylcholine has a key role in modulat- Targeting mAChRs in disease ing the neurochemical and behavioural CNS responses Alzheimer’s disease. Alzheimer’s disease, which is the to drugs of abuse29. Phenotypic analysis of Chrm5‑ most common form of dementia, is recognized as a major knockout mice suggested that centrally active M5 public health crisis14. At present, there are no drugs avail- receptor blockers might prove to be useful for the treat- able that are highly effective in preventing Alzheimer’s ment of drug abuse, including cocaine or opioid addic- disease or slowing its progress. Based on behavioural, tion3. More recent studies with
Recommended publications
  • A Guide to Glutamate Receptors
    A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway
    [Show full text]
  • WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No
    WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 307 ,409 B2 Chase et al. (45 ) Date of Patent: Jun . 4 , 2019 ( 54 ) MUSCARINIC COMBINATIONS AND THEIR (52 ) U . S . CI. USE FOR COMBATING CPC . .. .. A61K 31/ 4439 (2013 . 01 ) ; A61K 9 /0056 HYPOCHOLINERGIC DISORDERS OF THE (2013 . 01 ) ; A61K 9 / 7023 ( 2013 . 01 ) ; A61K CENTRAL NERVOUS SYSTEM 31 / 166 ( 2013 . 01 ) ; A61K 31 / 216 ( 2013 . 01 ) ; A61K 31 /4178 ( 2013 .01 ) ; A61K 31/ 439 (71 ) Applicant: Chase Pharmaceuticals Corporation , ( 2013 .01 ) ; A61K 31 /44 (2013 . 01 ) ; A61K Washington , DC (US ) 31/ 454 (2013 .01 ) ; A61K 31/ 4725 ( 2013 .01 ) ; A61K 31 /517 (2013 .01 ) ; A61K 45 / 06 ( 72 ) Inventors : Thomas N . Chase , Washington , DC (2013 . 01 ) (US ) ; Kathleen E . Clarence -Smith , ( 58 ) Field of Classification Search Washington , DC (US ) CPC .. A61K 31/ 167 ; A61K 31/ 216 ; A61K 31/ 439 ; A61K 31 /454 ; A61K 31 /4439 ; A61K (73 ) Assignee : Chase Pharmaceuticals Corporation , 31 /4175 ; A61K 31 /4725 Washington , DC (US ) See application file for complete search history. ( * ) Notice : Subject to any disclaimer, the term of this (56 ) References Cited patent is extended or adjusted under 35 U . S . C . 154 (b ) by 0 days . U . S . PATENT DOCUMENTS 5 ,534 ,520 A 7 / 1996 Fisher et al. ( 21) Appl . No. : 15 /260 , 996 2008 /0306103 Al 12 /2008 Fisher et al. 2011/ 0021503 A1* 1/ 2011 Chase . .. A61K 31/ 27 ( 22 ) Filed : Sep . 9 , 2016 514 / 215 2011/ 0071135 A1 * 3 / 2011 Chase . .. .. .. A61K 31/ 166 (65 ) Prior Publication Data 514 / 215 2011 /0245294 Al 10 / 2011 Paborji et al.
    [Show full text]
  • Wo 2007/128674 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 15 November 2007 (15.11.2007) PCT WO 2007/128674 A2 (51) International Patent Classification: Houtenlaan 36, NL-1381 CP Weesp (NL). KRUSE, Cor- A61K 31/00 (2006.01) A61K 31/551 (2006.01) nelis G. [NL/NL]; c/o SOLVAY PHARMACEUTICALS A61K 31/439 (2006.01) A61P 25/18 (2006.01) B.V., IPSI Department, CJ. Van Houtenlaan 36, NL-1381 A61K 31/4439 (2006.01) CP Weesp (NL). (21) International Application Number: (74) Agent: VERHAGE, Marinus; Octrooibureau Zoan B.V., PCT/EP2007/053934 NL-1380 AC Weesp (NL). (22) International Filing Date: 23 April 2007 (23.04.2007) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, (25) Filing Language: English CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, (26) Publication Language: English IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, MG, MK, MN, MW, MX, MY, (30) Priority Data: MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, 061 13476.3 4 May 2006 (04.05.2006) EP RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, 60/797,355 4 May 2006 (04.05.2006) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (71) Applicant (for all designated States except US): SOLVAY (84) Designated States (unless otherwise indicated, for every PHARMACEUTICALS B.V.
    [Show full text]
  • Mechanisms of Acetylcholine Receptor Loss in Myasthenia Gravis
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.43.7.601 on 1 July 1980. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1980, 43, 601-610 Mechanisms of acetylcholine receptor loss in myasthenia gravis DANIEL B DRACHMAN, ROBERT N ADAMS, ELIS F STANLEY, AND ALAN PESTRONK From the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA SUMMARY The fundamental abnormality affecting the neuromuscular junctions of myasthenic patients is a reduction of available AChRs, due to an autoimmune attack directed against the receptors. Antibodies to AChR are present in most patients, and there is evidence that they have a predominant pathogenic role in the disease, aided by complement. The mechanism of antibody action involves acceleration of the rate of degradation of AChRs, attributable to cross-linking of the receptors. In addition, antibodies may block AChRs, and may participate in producing destructive changes, perhaps in conjunction with complement. The possibility that cell-mediated mechanisms may play a role in the autoimmune responses of some myasthenic patients remains to be explored. Although the target of the autoimmune attack in myasthenic patients is probably always the acetyl- Protected by copyright. choline receptors, it is not yet clear which of these immune mechanisms are most important. It is likely that the relative role of each mechanism varies from patient to patient. One of the goals of future research will be to identify the relative importance of each
    [Show full text]
  • Muscarinic Acetylcholine Receptor
    mAChR Muscarinic acetylcholine receptor mAChRs (muscarinic acetylcholine receptors) are acetylcholine receptors that form G protein-receptor complexes in the cell membranes of certainneurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibersin the parasympathetic nervous system. mAChRs are named as such because they are more sensitive to muscarine than to nicotine. Their counterparts are nicotinic acetylcholine receptors (nAChRs), receptor ion channels that are also important in the autonomic nervous system. Many drugs and other substances (for example pilocarpineand scopolamine) manipulate these two distinct receptors by acting as selective agonists or antagonists. Acetylcholine (ACh) is a neurotransmitter found extensively in the brain and the autonomic ganglia. www.MedChemExpress.com 1 mAChR Inhibitors & Modulators (+)-Cevimeline hydrochloride hemihydrate (-)-Cevimeline hydrochloride hemihydrate Cat. No.: HY-76772A Cat. No.: HY-76772B Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic receptor agonist, is a candidate therapeutic drug for receptor agonist, is a candidate therapeutic drug for xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR The general pharmacol. properties of this drug on the The general pharmacol. properties of this drug on the gastrointestinal, urinary, and reproductive systems and other… gastrointestinal, urinary, and reproductive systems and other… Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 1 mg, 5 mg 1 mg, 5 mg AC260584 Aclidinium Bromide Cat. No.: HY-100336 (LAS 34273; LAS-W 330) Cat.
    [Show full text]
  • Protocol for a Randomised Controlled Trial: Efficacy of Donepezil Against
    BMJ Open: first published as 10.1136/bmjopen-2013-003533 on 25 September 2013. Downloaded from Open Access Protocol Protocol for a randomised controlled trial: efficacy of donepezil against psychosis in Parkinson’s disease (EDAP) Hideyuki Sawada, Tomoko Oeda To cite: Sawada H, Oeda T. ABSTRACT ARTICLE SUMMARY Protocol for a randomised Introduction: Psychosis, including hallucinations and controlled trial: efficacy of delusions, is one of the important non-motor problems donepezil against psychosis Strengths and limitations of this study in patients with Parkinson’s disease (PD) and is in Parkinson’s disease ▪ In previous randomised controlled trials for (EDAP). BMJ Open 2013;3: possibly associated with cholinergic neuronal psychosis the efficacy was investigated in patients e003533. doi:10.1136/ degeneration. The EDAP (Efficacy of Donepezil against who presented with psychosis and the primary bmjopen-2013-003533 Psychosis in PD) study will evaluate the efficacy of endpoint was improvement of psychotic symp- donepezil, a brain acetylcholine esterase inhibitor, for toms. By comparison, this study is designed to prevention of psychosis in PD. ▸ Prepublication history for evaluate the prophylactic effect in patients this paper is available online. Methods and analysis: Psychosis is assessed every without current psychosis. Because psychosis To view these files please 4 weeks using the Parkinson Psychosis Questionnaire may be overlooked and underestimated it is visit the journal online (PPQ) and patients with PD whose PPQ-B score assessed using a questionnaire, Parkinson (http://dx.doi.org/10.1136/ (hallucinations) and PPQ-C score (delusions) have Psychosis Questionnaire (PPQ) every 4 weeks. bmjopen-2013-003533). been zero for 8 weeks before enrolment are ▪ The strength of this study is its prospective randomised to two arms: patients receiving donepezil design using the preset definition of psychosis Received 3 July 2013 hydrochloride or patients receiving placebo.
    [Show full text]
  • Lysophosphatidic Acid Signaling in the Nervous System
    Neuron Review Lysophosphatidic Acid Signaling in the Nervous System Yun C. Yung,1,3 Nicole C. Stoddard,1,2,3 Hope Mirendil,1 and Jerold Chun1,* 1Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA 2Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA 3Co-first author *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2015.01.009 The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural pro- cesses and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states. Introduction LPA synthesis/degradative enzymes (reviewed in Sigal et al., The human brain is composed of approximately 60%–70% lipids 2005; Brindley and Pilquil, 2009; Perrakis and Moolenaar, by dry weight (Svennerholm et al., 1994). These lipids can be 2014). In view of the broad neurobiological influences of LPA divided into two major pools, structural and signaling, which signaling, its dysregulation may lead to diverse neuropathologies include well-known families such as cholesterol, fatty acids, ei- (Bandoh et al., 2000; Houben and Moolenaar, 2011; Yung et al., cosanoids, endocannabinoids, and prostaglandins (Figure 1).
    [Show full text]
  • Journal of Pharmacy and Pharmacology 1969 Volume.21 No.8
    The Pharmaceutical Society of Great Britain P a l m e r lop nome for physiology and pharmacology apparatus Known and used in physiology and pharmacology laboratories all over the world, C. F. Palmer equipment has a long-standing reputation for quality, reliability and precision. New products are continually under development, and as a member of the Baird &Tatlock Group, C. F. Palmer have extensive research and development facilities at their disposal. Palmer equipment is now available on improved deliveries. For a revised delivery schedule, or to order your new catalogue, write to the address below. Palmer kymographs such as this are in service in labora- Continuous injector. This unit, which can be used with all sizes of record-type tories all over the world, providing smoked paper records syringes, automatically controls injection rates. A range of motor speeds is of muscle and tissue movement, or through a manometer, available giving emptying rates of 10 mins, to 480 rrins. per inch, of blood pressure. A 6-gear motor gives paper speeds from Square-Wave Stim ulator. Pro vines a square-wave output of independently •1mm to 10mm per second. A.C. time-clock and s gnal variable pulse r?te (1/20-100 p.p.s.), ou1*«. width (10 microsec. to 103 millisec.) markers, and the Starling ventilation pump are fitted. end :nt«nsKy. Fuise rate is controKaM* ether in steps or continuously. C. F. Palmer (London) Lt«5. <2/1$ C-neKsie Hu., Tne Hyde, Colindale, London, IM.W.9 Telephone: 01 -205 5432 Member cf '.he Baird & Tatlock Division of Tarmac Derby Limited C P .1 /C Journal of Pharmacy and Pharmacology Published by T h e P harmaceutical S o c ie t y o f G r e a t B r i t a i n 17 Bloomsbury Square, London, W.C.l.
    [Show full text]
  • Protease Effects on the Structure of Acetylcholine Receptor Membranes from Torpedo Californica
    PROTEASE EFFECTS ON THE STRUCTURE OF ACETYLCHOLINE RECEPTOR MEMBRANES FROM TORPEDO CALIFORNICA MICHAEL W. KLYMKOWSKY, JOHN E . HEUSER, and ROBERT M. STROUD From the Department of Biochemistry & Biophysics, University of California at San Francisco, San Francisco, California 94143 . Dr . Klymkowsky's present address is MRC Neuroimmunology Project, Department of Zoology, University College London, London WC IE, 6BT, England ABSTRACT Protease digestion of acetylcholine receptor-rich membranes derived from Torpedo californica electroplaques by homogenization and isopycnic centrifugation results in degradation of all receptor subunits without any significant effect on the appearance in electron micrographs, the toxin binding ability, or the sedimentation value of the receptor molecule . Such treatment does produce dramatic changes in the morphology of the normally 0.5- to 2-lm-diameter spherical vesicles when observed by either negative-stain or freeze-fracture electron microscopy . Removal of peripheral, apparently nonreceptor polypeptides by alkali stripping (Neubig et al ., 1979, Proc. Natl. Acad. Sci. U. S. A. 76:690-694) results in increased sensitivity of the acetylcholine receptor membranes to the protease trypsin as indicated by SDS gel electrophoretic patterns and by the extent of morphologic change observed in vesicle structure . Trypsin digestion of alkali-stripped receptor membranes results in a limit degradation pattern of all four receptor subunits, whereupon all the vesicles undergo the morphological transformation to minivesicles
    [Show full text]
  • Interplay Between Gating and Block of Ligand-Gated Ion Channels
    brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes.
    [Show full text]
  • Viewed the Existence of Multiple Muscarinic CNS Penetration May Occur When the Blood-Brain Barrier Receptors in the Mammalian Myocardium and Have Is Compromised
    BMC Pharmacology BioMed Central Research article Open Access In vivo antimuscarinic actions of the third generation antihistaminergic agent, desloratadine G Howell III†1, L West†1, C Jenkins2, B Lineberry1, D Yokum1 and R Rockhold*1 Address: 1Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA and 2Tougaloo College, Tougaloo, MS, USA Email: G Howell - [email protected]; L West - [email protected]; C Jenkins - [email protected]; B Lineberry - [email protected]; D Yokum - [email protected]; R Rockhold* - [email protected] * Corresponding author †Equal contributors Published: 18 August 2005 Received: 06 October 2004 Accepted: 18 August 2005 BMC Pharmacology 2005, 5:13 doi:10.1186/1471-2210-5-13 This article is available from: http://www.biomedcentral.com/1471-2210/5/13 © 2005 Howell et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Muscarinic receptor mediated adverse effects, such as sedation and xerostomia, significantly hinder the therapeutic usefulness of first generation antihistamines. Therefore, second and third generation antihistamines which effectively antagonize the H1 receptor without significant affinity for muscarinic receptors have been developed. However, both in vitro and in vivo experimentation indicates that the third generation antihistamine, desloratadine, antagonizes muscarinic receptors. To fully examine the in vivo antimuscarinic efficacy of desloratadine, two murine and two rat models were utilized. The murine models sought to determine the efficacy of desloratadine to antagonize muscarinic agonist induced salivation, lacrimation, and tremor.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]