Extrusion and Drawing Processes and Equipment

Total Page:16

File Type:pdf, Size:1020Kb

Extrusion and Drawing Processes and Equipment IE 3130 Material Processing Module 3: Metal Extrusion and Drawing Processes and Equipment Reading 1. Chap 15, Manufacturing Engineering & Technology, 6th Edition, Serope Kalpakjian & Steve Schmid Objective of this module Upon completion of class activity, lecture, and homework, student should be able to do the following: 1. Sketch and describe an open-die forging with simple tools and complex process sequences. 2. Describe Impression and closed-die forging with complex tools and simple process sequences. 3. Sketch and describe extrusion and drawing of wire, tube and shaped sections. 4. Estimate die pressure, force, and power requirement of forging, extrusion, drawing, and rolling processes. 5. List different processes of cutting parts for further working or immediate assembly. 6. Sketch and describe bending on presses or roll-forming lines. Extrusion Extrusion – Latin root (Extrudere: to thrust out) Initially non-steady state, then steady state process Hot extrusion of aluminum is capable of producing a large variety of often very complex shape, including multihole sections, gearing, and tubing, with thin walls and significant wall-thickness variations. 80/20 – T Slotted Aluminum - Erector Set for Adults Hose Reel Assembly System – Graco Pump Minn Deburring – Parker Hannifin Load Carrying Device – Air Force Extrusion • Two types of Extrusion • Direct or forward extrusion: the product emerges in the same direction as the movement of the punch. Container friction plays big role. • Indirect or reverse extrusion: the product travels against the movement of the punch. Container friction plays no role. Billet is at rest in container. Extrusion process: (a) forward or direct without lubrication (and the associated extrusion-pressure/stroke curve; (b) forward with full lubrication; c) reverse or (indirect or backward); (d) reverse can (impact); (e) hydrostatic extrusion. Hyrdostatic extrusion - Cold extrusion of copper tubes and of composite cu-Al billets FIGURE 15.3 Types of extrusion: (a) indirect; (b) hydrostatic; (c) lateral. Hollow products may be extruded with (a) fixed or (b) piercing mandrels or with c) bridge or spider-type dies. Forward Extrusion - Classification ▪Extrusion of semifabricated products ▪Extrusion of finished components ✓Remnant in container cutoff ✓Remnant in container is integral head of part ✓Primary ✓secondary • Unlubricated (primary) • Lubricated (primary and • With a die of flat face (180 die secondary) opening) Conical entrance zone • Pb, Zn, Al, Mg and other alloys Hot: • Materials that form hard oxides • Graphite (solid lubricant) that might result in smearing the surface of the product during • Glass (solid lubricant that melts lubricated extrusion at the extrusion temperature) Cold: • Semisolids (phosphate + soap) Forward Extrusion l d1, A1 do Ao Forward Extrusion with Full Lubrication • No dead metal zone Reverse Extrusion • Lubricated or unlubricated • Primary or secondary • Hot or Cold Extrusion Analysis Extrusion Ratio: Ao RE = A1 a A1 A = ln o A1 Extrusion Force: Ao A F = A k ln 0 0 Af K is the extrusion constant which is determined experimentally. It is a measure of the strength of the material being extruded and frictional conditions FIGURE 15.4 Process variables in direct extrusion. The die angle, reduction in cross section, extrusion speed, billet temperature, and lubrication all affect the extrusion pressure. FIGURE 15.5 Extrusion constant k for various metals at different temperatures. Source: After P. Loewenstein. Extrusion Force A F = A k ln o o Af Flow Stress (Schey) K n+1 • Cold: = [ ] fm n +1 6vd2 tana • Hot: m = o A f = C m d 3 - d 3 = ln o o 1 FrictionlessA1 Extrusion Pressure pe = fmQe = fm (0.8 +1.2) for frictionless extrusion Includes inhomogeneous deformation Extrusion Force Pe = pe Ao Effect of Container Friction • Friction in container: 4 l l is the length of the billet p = p + i l e d do is the initial diameter of the o billet where: m* = 1 for sticking friction i f f = 0.5 fm m* = f i 2 Metal Flow in Extrusion Metal Flow in Extrusion has influence on the quality and mechanical properties of extruded parts, Technique of investigating flow pattern is slice, grid, and braze before extruding. FIGURE 15.6 Types of metal flow in extruding with square dies. (a) Flow pattern obtained at low friction or in indirect extrusion. (b) Pattern obtained with high friction at the billet–chamber interfaces. (c) Pattern obtained at high friction or with cooling of the outer regions of the billet in the chamber. This type of pattern, observed in metals whose strength increases rapidly with decreasing temperature, leads to a defect known as pipe (or extrusion) defect. Process Parameters • Materials: wrought alloys including aluminum, magnesium, copper, steels, stainless steels. Titanium and refratory materials are extruded with some difficulty. • Extrusion ratios: 10 to 100, up to 400 for special non ferrous alloys, at least 4 to deform the material. • Ram speeds: up to 0.5 m/s. Lower speed for aluminum, magnesium, copper. Higher speed for steels, titanium and refractory alloys. • Dimensional tolerance: E0.25 – 2.5 mm. They increase with increasing cross section. • Geometry: Extruded products less than 7.5 m (25 ft) long because of difficult handling. Can be up to 30 m (100 ft). • Handling: Most extruded products require straightening and twisting especially small cross sections. 15.3 Hot Extrusion • Application on low ductile metals • Excessive die wear. To prolong die life, die is preheated. • Low tolerance because of oxidation layer. Minimized by using dummy block placed ahead of the ram (Fig 15.1). Die Design • Square dies. • Angled dies. • T-shaped dies FIGURE 15.7 Typical extrusion–die configurations: (a) die for nonferrous metals; (b) die for ferrous metals; (c) die for a T-shaped extrusion made of hot-work die steel and used with molten glass as a lubricant. Source: (c) Courtesy of LTV Steel Company. Die Design • Tubular extrusion. • Hollow cross sections. FIGURE 15.8 Extrusion of a seamless tube (a) using an internal mandrel that moves independently of the ram. (An alternative arrangement has the mandrel integral with the ram.) (b) using a spider die (see Fig. 15.9) to produce seamless tubing. FIGURE 15.9 (a) An extruded 6063-T6 aluminum-ladder lock for aluminum extension ladders. This part is 8 mm (5/16 in.) thick and is sawed from the extrusion (see Fig. 15.2). (b) through (d) Components of various dies for extruding intricate hollow shapes. Source: (b) through (d) after K. Laue and H. Stenger. Die Material and Lubrication Hot worked die steels are used for hot extrusion Coatings such as partially stabilized zirconia may be applied to the die to extend their life. • Unlubricated (primary) • Lubricated (primary and • With a die of flat face (180 die secondary) opening) Conical entrance zone • Pb, Zn, Al, Mg and other alloys Hot: • Materials that form hard oxides • Graphite (solid lubricant) that might result in smearing the surface of the product during • Glass (solid lubricant that melts lubricated extrusion at the extrusion temperature) Cold: • Semisolids (phosphate + soap) 15.4 Cold Extrusion ➢Used widely for components in automobiles, motorcycles, bicycles, and appliances in the transportation and farm equipment. ➢Uses slugs cut from cold-finished or hot- rolled bars, wire, or plates. ➢Advantages include: ✓Improved mechanical properties. ✓Good control of dimensional tolerances. ✓Improved surface finish due to absence of an oxide film. ✓Competitive production rates and costs with other methods. FIGURE 15.12 Two examples of cold extrusion. Thin arrows indicate the direction of metal flow during extrusion. FIGURE 15.13 Production steps for a cold-extruded spark plug. Source: Courtesy of National Machinery Company. FIGURE 15.14 A cross section of the metal part in Fig. 15.13, showing the grain- flow pattern. Source: Courtesy of National Machinery Company. 15.4.1 Impact Extrusion • Usually lubricated • Usually secondary • Usually cold Pe = Ao pe or Pi = 3 fm Ap Take larger of two Similar to Piercing or Forging FIGURE 15.15 Schematic illustration of the impact-extrusion process. The extruded parts are stripped by the use of a stripper plate, because they tend to stick to the punch. FIGURE 15.16 (a) Impact extrusion of a collapsible tube by the Hooker process. (b) and (c) Two examples of products made by impact extrusion. These parts also may be made by casting, forging, or machining. The choice of process depends on the materials involved, part dimensions and wall thickness, and the properties desired. Economic considerations also are important in final process selection. 15.4.2 Hydrostatic Extrusion • The pressure required in the chamber is supplied via a piston through an incompressible fluid medium surrounding the billet. • Pressures are typically in the order of 1400 Mpa (200 Ksi). • No need for lubrication, some of the fluid transmitted to the die surface due to high pressure act as lubricant. • Typically conducted at room temperature with vegetable oils as fluid. Castor oil is a good lubricant and its viscosity is not influenced significantly by pressure. • Brittle materials can be extruded successfully by this method. • Extrusion ratios can be as high as 14,000. 1-m billet becomes 14 km-long wire. • It’s application in the industry is not common because: complex nature of tooling, experience needed with high pressures and design of specialized equipment, and long cycle times required. • Process is uneconomical for most materials and application. 15.5 Extrusion Defects 1. Surface Cracking. Too high extrusion temperature, friction, or speed will cause high surface temperature, which may cause surface cracking and tearing. Occurs in Aluminum, magnesium, and zinc alloys. Occurrence at low extrusion temperature is due to sticking of extruded part along the die land. 2. Pipe. Inhomogeneous metal flow will draw surface oxides and impurities toward the center of the billet-much like a funnel. Or too much extrusion into the die.
Recommended publications
  • Influences of Different Die Bearing Geometries on the Wire-Drawing Process
    metals Article Influences of Different Die Bearing Geometries on the Wire-Drawing Process Gustavo Aristides Santana Martinez 1,*, Eduardo Ferro dos Santos 1 , Leonardo Kyo Kabayama 2 , Erick Siqueira Guidi 3 and Fernando de Azevedo Silva 3 1 Engineering School of Lorena, University of São Paulo-USP, Lorena 12602-810, Brazil; [email protected] 2 Institute of Mechanical Engineering, Federal University of Itajubá-UNIFEI, Itajubá 37500-903, Brazil; [email protected] 3 Guaratinguetá School of Engineering, Campus de Guaratinguetá,São Paulo State University-UNESP, 12516-410 Guaratinguetá, Brazil; [email protected] (E.S.G.); [email protected] (F.d.A.S.) * Correspondence: [email protected]; Tel.: +55-12-3159-5337 Received: 2 September 2019; Accepted: 8 October 2019; Published: 10 October 2019 Abstract: Metalworking is an essential process for the manufacture of machinery and equipment components. The design of the die geometry is an essential aspect of metalworking, and directly affects the resultant product’s quality and cost. As a matter of fact, a comprehensive understanding of the die bearing geometry plays a vital role in the die design process. For the specific case of wire drawing, however, few efforts have been dedicated to the study of the geometry of the bearing zone. In this regard, the present paper involves an attempt to investigate the effects of different geometries of the die bearing. For different forms of reduction as well as bearing zones, measurements are carried out for the wire-drawing process. Subsequently, by extracting the friction coefficients from the electrolytic tough pitch copper wire in cold-drawn essays, the numerical simulations are also implemented.
    [Show full text]
  • Ats 34 and 154 Cm Stainless Heat Treat Procedure
    ATS 34 AND 154 CM STAINLESS HEAT TREAT PROCEDURE This is an oil hardening grade of steel which will require oil quenching. The oil should be a warm, thin quenching oil that contains a safe flash point. Olive oil has been used as a sub­ stitute. As a rule of thumb, there should be a gallon of oil for each pound of steel. For , warming the oil before quenching, you may heat a piece of steel and drop it in the oil. 1.) Wrap blades in stainless tool wrap and leave an extra two inches on each end of the package. (This will be for handling purposes going into the quench as described below.) We suggest a double wrap for this grade. The edges of the foil should be double crimped, being careful to avoid hav­ ing even a pin hole in the wrap. 2 . ) Place in the furnace and heat to 1900"F. After reaching this temperature, immediately start timing the soak time of 25-30 minutes. 3.) After the soak time has elapsed, very quickly and carefully pull the package out with tongs~ place over the quench tank and snip the end of the package allowing the blades to drop into the oil. You should have a wire basket in the quench tank for raising and lowering the blades rather than have them lie s till. Gases are released in the quench and would form a "trap" around the steel unless you keep them movi~g for a minute or so. *IMPORTANT--It is very important that the blades enter the oil quench as quickly as possible after leaving the furnace ! Full hardness would not be reached if this step is not followed.
    [Show full text]
  • A Comparison of Thixocasting and Rheocasting
    A Comparison of Thixocasting and Rheocasting Stephen P. Midson The Midson Group, Inc. Denver, Colorado USA Andrew Jackson Arthur Jackson & Co., Ltd. Brighouse UK Abstract The first semi-solid casting process to be commercialized was thixocasting, where a pre-cast billet is re-heated to the semi-solid solid casting temperature. Advantages of thixocasting include the production of high quality components, while the main disadvantage is the higher cost associated with the production of the pre-cast billets. Commercial pressures have driven casters to examine a different approach to semi-solid casting, where the semi-solid slurry is generated directly from the liquid adjacent to a die casting machine. These processes are collectively referred to as rheocasting, and there are currently at least 15 rheocasting processes either in commercial production or under development around the world. This paper will describe technical aspects of both thixocasting and rheocasting, comparing the procedures used to generate the globular, semi-solid slurry. Two rheocasting processes will be examined in detail, one involved in the production of high integrity properties, while the other is focusing on reducing the porosity content of conventional die castings. Key Words Semi-solid casting, thixocasting, rheocasting, aluminum alloys 22 / 1 Introduction Semi-solid casting is a modified die casting process that reduces or eliminates the porosity present in most die castings [1] . Rather than using liquid metal as the feed material, semi-solid processing uses a higher viscosity feed material that is partially solid and partially liquid. The high viscosity of the semi-solid metal, along with the use of controlled die filling conditions, ensures that the semi-solid metal fills the die in a non-turbulent manner so that harmful gas porosity can be essentially eliminated.
    [Show full text]
  • Signature Redacted
    A Novel Method for the Production of Microwires by Alexander Michael Couch B.S., United States Naval Academy (2017) Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2019 Massachusetts Institute of Technology 2019. All rights reserved. redacted A u th o r ...........................................................Signature .. Department of Mechanical Engineering 1, y.- january 14, 2019 Certified by...........Signature redacted ......... Kasey Russell Principal Member of the Technical Staff, The Charles Stark Draper Laboratory Certified by.....SignatureC ertified by ....... redacted Thesis.... .....Supervisor .. Irmgard Bischofberger Assistant Professor of Mechanical Engineering Signature redacted Thesis Supervisor A ccepted by ............. .................. MASSACHUSES INSTITUTE I Nicblas Hadjiconstantinou OF TECHNOWOGY Chairman, Department Committee on Graduate Theses FEB 252019 LIBRARIES ARCHIVES A Novel Method for the Production of Microwires by Alexander Michael Couch Submitted to the Department of Mechanical Engineering on January 14, 2019, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Abstract Radio frequency (RF) systems such as cell phones and GPS can perform better and last longer if we can reduce electrical heat loss in the wires. This is typically done in power systems by twisting or weaving the wires, following one of several patterns. Though, at radio frequencies, wire dimensions must scale down by as much as 1000 times in order to achieve the same effects. This project decomposes the problem into two main categories; the manufacturing of micron scale wires and the manipulation of these wires in order to form a twisted bundle.
    [Show full text]
  • Conventional Deep Drawing Vs Incremental Deep Drawing
    MED, JNTUH August 2018 CONVENTIONAL DEEP DRAWING VS INCREMENTAL DEEP DRAWING A. Chennakesava Reddy Professor, Department of Mechanical Engineering JNTUH College of Engineering, Hyderabad 1. Conventional Deep Drawing Process: Deep drawing is a sheet metal forming process in which a sheet metal blank is radially drawn into a forming die by the mechanical action of a punch. It is thus a shape transformation process with material retention. The process is considered "deep" drawing when the depth of the drawn part exceeds its diameter. This is achieved by redrawing the part through a series of dies. The flange region (sheet metal in the die shoulder area) experiences a radial drawing stress and a tangential compressive stress due to the material retention property. These compressive stresses (hoop stresses) result in flange wrinkles (wrinkles of the first order). Wrinkles can be prevented by using a blank holder, the function of which is to facilitate controlled material flow into the die radius. Figure 1: Example of deep drawn part. Figure 2: Conventional deep drawing process. The total drawing load consists of the ideal forming load and an additional component to compensate for friction in the contacting areas of the flange region and bending forces as well as unbending forces at the die radius. The forming load is transferred from the punch radius through the drawn part wall into the deformation region (sheet metal flange). In the drawn part wall, which is in contact with the punch, the hoop strain is zero whereby the plane strain condition is reached. In reality, mostly the strain condition is only approximately plane.
    [Show full text]
  • Friction and Stress Evaluation of Copper Wire Drawing Under Different Lubrication Conditions1
    ISSN 1516-392X FRICTION AND STRESS EVALUATION OF COPPER WIRE DRAWING UNDER DIFFERENT LUBRICATION CONDITIONS1 Antonio de Pádua Lima Filho2 Igor Ribeiro Ferreira3 Felipe Biava Cataneo4 Tiago Filipe Soares da Cunha5 André Mantovani6 Abstract ASTM C10100 W annealed copper wires with an initial diameter of 4.3 mm were drawn to a final diameter of 1.3 mm using a mineral oil lubricant of 0.06 Pa.s viscosity under hydrostatic pressures of approximately 35 MPa. Ten wire drawing dies (of 3.6 mm, 3.2 mm, 2.9 mm, 2.6 mm, 2.3 mm, 2.1 mm, 1.9 mm, 1.7 mm, 1.5 mm and 1.3 mm in diameter) were used to produce a total cross-sectional reduction of approximately 225%. Wire drawing forces under oil hydrostatic pressure with a graphite lubricant were compared to wire drawing forces without any lubricant. A measuring system was used to record the wire drawing forces over time and to study the frictional behaviour of the drawn wires. A wire drawing machine with a speed of 8 mm/s was used to verify the coefficient of friction fore wires drawn at low strain rates. Lubrication regimes were analysed for oil under hydrostatic pressure. The quasi-hydrodynamic regime ranged from 2.3 mm to 3.6 mm for the wire drawing die. An analytical model for calculating the wire drawing force/stress was developed to obtain the distribution of friction coefficients at each reduction of wire diameter. By controlling friction forces, it is possible to save energy and materials, as well as to determine the die replacement frequency.
    [Show full text]
  • Cold Drawing Process –A Review
    Praveen Kumar, Dr. Geeta Agnihotri / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 3, May-Jun 2013, pp.988-994 Cold Drawing Process –A Review * ** Praveen Kumar , Dr. Geeta Agnihotri *(M.Tech Scholar, Department of Mechanical Engineering, M.A.N.I.T.,Bhopal) ** (Professor, Department of Mechanical Engineering, M.A.N.I.T.,Bhopal) ABSTRACT II. COLD DRAWING PROCESS-AN Cold drawing is widely used metal OVERVIEW forming process with inherent advantages like The Cold drawing is one of the oldest closer dimensional tolerances, better surface metal forming operations and has major industrial finish and improved mechanical properties as significance. It is the process of reducing the cross- compared to hot forming processes. Due to the sectional area and/or the shape of a bar, rod, tube or ever increasing competition with the advent of wire by pulling through a die. This process allows globalization it has become highly important to excellent surface finishes and closely controlled keep on improving the process efficiency in terms dimensions to be obtained in long products that have of product quality and optimized use of constant cross sections. It is classified as under: resources. In view of this different models have Wire and Bar Drawing: Cross-section of a been proposed and validated using experimental bar, rod, or wire is reduced by pulling it results over a long period of time. The demands through a die opening (Fig. 1 a) .It is in the automobile sector, energy sector and similar to extrusion except work is pulled mining sector have led to several modifications in through the die in drawing.
    [Show full text]
  • Electroless Nickel Plating
    PRC-5007 Rev. E Process Specification for Electroless Nickel Plating Engineering Directorate Structural Engineering Division May 2020 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas Verify that this is the correct version before use. Page 1 of 10 PRC-5007 Rev. E Process Specification for Electroless Nickel Plating Prepared by: Signature on File 05/26/2020 John Figert Date Materials and Processes Branch/ES4 Reviewed by: Signature on File 05/26/2020 Daniel Peterson Date Materials and Processes Branch/ES4 Reviewed by: Signature on File 05/26/2020 Sarah Luna Date Materials and Processes Branch/ES4 Approved by: Signature on File 05/27/2020 Brian Mayeaux Date Materials and Processes Branch/ES4 Verify that this is the correct version before use. Page 2 of 10 PRC-5007 Rev. E REVISIONS VERSION CHANGES DATE -- Original version 5/14/1996 A Reviewed and update for accuracy; Author changed 7/21/1999 B General changes due to reorganization (changed EM to 12/14/2005 ES). Updated references in 6.0 and updated section 3.0. Removed reference standard SAE AMS 2405B. Updated SAE AMS 2404 to revision E. C Minor format changes 3/26/2010 D Updated SAE AMS 2404E to Revision F 7/12/2012 E Re-formatted. Author changed, reviewer added, 5/15/2020 approver changed. Major Rewrite of the entire document. Updated and added the drawing references. Added information on thickness callouts and classes. Added information on hydrogen embrittlement. Added information on phosphorus content. Added references. Added material requirements. Added process qualification and process information. Added verification requirements for hydrogen bakeouts.
    [Show full text]
  • Metal Extrusion and Drawing Processes and Equipment
    Hail University College of Engineering Department of Mechanical Engineering Metal Extrusion and Drawing Processes and Equipment Ch 15 Metal Extrusion and Drawing Extrusion and drawing involve, respectively, pushing or pulling a material through a die basically for the purpose of reducing or changing its cross-sectional area. Extrusion and drawing have numerous applications in the manufacture of continuous as well as discrete products from a wide variety of metals and alloys. In extrusion, a cylindrical billet is forced through a die in a manner similar to squeezing toothpaste from a tube or extruding Play-Doh ,in various cross sections in a toy press. Metal Extrusion Typical products made by extrusion are railings for sliding doors, window frames, tubing having various cross sections, aluminum ladder frames, and numerous structural and architectural shapes. Extrusions can be cut into desired lengths, which then become discrete parts, such as brackets, gears, and coat hangers Commonly extruded materials are aluminum, copper, steel, magnesium, and lead; other metals Depending on the ductility of the material, extrusion is carried out at room or elevated temperatures. Extrusion at room temperature often is combined with forging operations, in which case it generally is known as cold Extrusions and examples of products made by extrusion sectioning off extrusions Drawing In drawing, the cross section of solid rod, wire, or tubing is reduced or changed in shape by pulling it through a die. Drawn rods are used for shafts, spindles, and small pistons and as the raw material for fasteners (such as rivets, bolts, and screws). In addition to round rods, various profiles can be drawn.
    [Show full text]
  • Development Structural of a Wire Drawing and Extrusion Bench
    Modern Environmental Science and Engineering (ISSN 2333-2581) June 2018, Volume 4, No. 6, pp. 508-515 Doi: 10.15341/mese(2333-2581)/06.04.2018/003 Academic Star Publishing Company, 2018 www.academicstar.us Development Structural of A Wire Drawing and Extrusion Bench Gilmar Cordeiro da Silva, Ana Caroline de Souza Couto, Daniel de Castro Maciel, Alysson Lucas Vieira, Ernane Vinicius Silva, and Norberto Martins Pontifical University Catholic of Minas Gerais (PUC-MG), Brazil Abstract: The present work aim consist to design and construction of a drawing wire and extrusion bench able to perform the metal forming process by drawing and extrusion. The design of the structure as well as detailing of mechanical components were designed with the use of SOLIDWORS software and the simulation of structural strain (FEA - Finite Element Analysis) with the aid of ABAQUS/Standard software. Key words: wire drawing, extrusion, SOLIDWORKS, ABAQUS/Standard, finite element analysis any complex engineering problem can be reached by 1. Introduction subdividing the structure/component into smaller more Extrusion is the process by which a block of metal is manageable (finite) elements. The Finite Element reduced in cross-section by forcing it to flow through a Model (FEM) is analyzed with an inherently greater die orifice under high pressure. It is accepted practice precision than would otherwise be possible using to classify extrusion operation according to the conventional analyses, since the actual shape, load and direction relationships between the material flow and constraints, as well as material property combinations the punch movement. The basic extrusion operations can be specified with much greater accuracy.
    [Show full text]
  • Advanced Materials Manufacturing & Characterization Redrawing of EDD
    Advanced Materials Manufacturing & Characterization Vol 4 Issue 1 (2014) Advanced Materials Manufacturing & Characterization journal home page: www.ijammc-griet.com Redrawing of EDD steel at elevated temperature 1 2 1 Raman Goud.R , Eswar Prasad.K , Swadesh Kumar Singh 1 Dept. Of Mechanical Engineering, GRIET, Hyderabad-9 2 Dept. Of Mechanical Engineering, JNTU Hyderabad A R T I C L E I N F O A B S T R A C T Article history: Received: 09-10-2013 In the present paper the drawability of extra deep drawing steel was estimated in two stage forward Accepted: 18-01-2014 redrawing process. The EDD steel sheets of one millimeter thickness were cut into circular blanks of diameter 80mm, 82mm and 84mm.Deep drawing and redrawing experiments were carried out Keywords: successfully on hydraulic press by using specially designed super alloy dies at room temperature and at EDD steel, elevated temperatures. The effects of process parameters on the final product quality were discussed. LDR, The experimental results were analyzed and the process defects of local thinning were predicted and Redrawing. thickness variations were discussed. process [1-3]. Maslennikov’s technique is another method which 1.Introduction produces very deep cups at a draw ratio of 6 or more from flat blanks [4-8]. Ironing is another technique used to lengthen the There has been a continuing trend towards wall of the cup with reduced thickness while keeping the bottom development of materials with improved formability, which led of the cup with the same thickness as the original cup [9-10]. to development of deep drawing quality and extra-deep drawing Redrawing is one of the processes used for manufacture of deep quality steel sheets and several nonferrous alloys.
    [Show full text]
  • Electroplater
    Electroplater GOVERNMENT OF INDIA MINISTRY OF SKILL DEVELOPMENT & ENTREPRENEURSHIP DIRECTORATE GENERAL OF TRAINING COMPETENCY BASED CURRICULUM ELECTROPLATER (Duration: Two Years) CRAFTSMEN TRAINING SCHEME (CTS) NSQF LEVEL- 5 SECTOR – CHEMICALS AND PETROCHEMICALS Electroplater ELECTROPLATER (Engineering Trade) (Revised in 2018) Version: 1.1 CRAFTSMEN TRAINING SCHEME (CTS) NSQF LEVEL- 5 Developed By Ministry of Skill Development and Entrepreneurship Directorate General of Training CENTRAL STAFF TRAINING AND RESEARCH INSTITUTE EN-81, Sector-V, Salt Lake City, Kolkata – 700 091 Electroplater ACKNOWLEDGEMENT The DGT sincerely acknowledges contributions of the Industries, State Directorates, Trade Experts, Domain Experts and all others who contributed in revising the curriculum. Special acknowledgement is extended by DGT to the following expert members who had contributed immensely in this curriculum. List of Expert Members participated/ contributed for finalizing the course curriculum of Electroplater trade held on 20.02.2018 at Vadodara. Name & Designation S No. Organization Remarks Sh/Mr./Ms. 1. Rajendra P. Mehendale, CEO Maheshwari Industries, Vadodara Member Pradeep Sharma, Sr. Polyplastic, Yamuna Nagar, 2. Member Manager (Production) Haryana Yagnesh Joshi, Allied Electronic Corporation, 3. Member Metal Finishing Consultant Vadodara Ajit G. Shah, Gujarat Electroplating Work, 4. Member Proprietor Vadodara Praveen Gautam, Area 5. Atotech India Pvt. Ltd., Gurgaon Member Manager 6. S. A. Pandav, RDD (Trg.) RDD Vadodara Member 7. S. S. Patel, Principal Govt. ITI, Naswadi Member 8. B. S. Patel, Asst. Instructor Govt. Kutir Udyog, Vadodara Member N. Harikrishnan, Sr. 9. Govt. ITI, Attingal, Kerala Expert Instructor 10. Bijender Pal, Instructor Govt. ITI, Yamuna Nagar, Haryana Expert 11. L.K. Mukherjee, DDT CSTARI, Kolkata Member 12. K.V.S.
    [Show full text]