Variation and the Phylogenetic Utility of the Large Ribosomal Subunit of Mitochondrial DNA from the Insect Order Hymenoptera JAMES N

Total Page:16

File Type:pdf, Size:1020Kb

Variation and the Phylogenetic Utility of the Large Ribosomal Subunit of Mitochondrial DNA from the Insect Order Hymenoptera JAMES N MOLECULAR PHYLOGENETICS AND EVOLUTION Vol. 1, No. 2, June, pp. 136-147, 1992 Variation and the Phylogenetic Utility of the Large Ribosomal Subunit of Mitochondrial DNA from the Insect Order Hymenoptera JAMES N. DERR,* SCOTT K. DAVIS,* JAMES B. WooLLEY,t AND ROBERT A. Wwmord *Department of Animal Sciences and tDepartment of Entomology, Texas A&M University, College Station, Texas 77843 Received February 4, 1992; revised July 6, 1992 provide pivotal information for investigating these Nucleotide sequence variation from a 573-bp region questions. Nevertheless, clearly supported and robust of the mitochondrial 16s rRNA gene was determined models of the phylogenetic relationships for major com- for representative hymenopteran taxa. An overall bias ponents of the Hymenoptera are lacking. in the distribution of A and T bases was observed from The most recent and comprehensive investigations all taxa; however, the terebrants (parasitoids) dis- regarding hymenopteran phylogeny are those of Ks- played significantly lower AT ratios as well as a higher nigsmann (1976, 1977, 1978a,b) and Rasnitsyn (1980, degree of strand asymmetry. Moreover, a strong posi- 1988). A number of other recent investigations have tive correlation was observed between relative AT rich- examined either specific superfamilies within the Hy- ness and sequence divergence, suggesting selection at menoptera (Brothers, 1975; Carpenter, 1986; Gibson, the nucleotide level for A and T bases as well as func- 1986) or various character systems across taxa (e.g., tionality. Overall sequence difference ranged from 2.3 Saini and Dhillon, 1980; Gibson, 1985; Darling, 1988; to 53.4%, with the maximum divergence between mem- Johnson, 1988; Whitfield et al., 1989). While these bers of the two Hymenopteran suborders. These data were used in a phylogenetic analysis to illustrate the studies have generally increased our understanding of utility and degree of resolution provided by this infor- the morphological basis for interpreting relationships, mation at various hierarchical levels within this taxo- there is nonetheless little congruence among research- nomically diverse order. Parsimony analysis revealed ers regarding higher classification. strong evidence for monophyly of the aculeates and the Composition of the Symphyta varies depending on terebrants. Most noteworthy was a strongly supported whether the Cephidae (Kanigsmann, 1977) or the Orus- clade containing the two terebrant superfamilies Icheu- sidae (Rasnitsyn, 1980) are removed and placed as the monoidea and Chalcidoidea. Conversely, high se- sister group to the Apocrita. Even when both are re- quence divergence values resulted in instability at the tained in the Symphyta (the traditional arrangement), base of the tree and limited resolution at the higher there are problems in establishing a symphytan lin- taxonomic levels. Nevertheless, these results do identify eage based on shared, derived features relative to the those taxonomic levels for which 16s rRNA sequences Apocrita (Gibson, 1986; Gauld and Bolton, 1988; John- are phylogenetically informative. 8 1892 Academic PWIS, hc. son, 1988) and the group is now widely regarded as paraphyletic (Gauld and Bolton, 1988). More detailed resolution of the Symphyta is crucial for understand- ing the origins of the Apocrita and in particular for establishing character polarities within Apocrita using INTRODUCTION outgroup arguments. The Apocrita are generally interpreted as monophy- The Hymenoptera is one of the more diverse and letic largely on the basis of the fusion of the first ab thoroughly studied insect orders. Traditionally, this dominal segment to the thorax. It is usually subdivided order is divided into two suborders, Symphyta and into the Aculeata and the Terebrantes (Parasitical. Apocrita, that together contain some 110,000 described The aculeate Hymenoptera (ants, solitary and social species. The Symphyta is composed ofthe sawflies, horn- wasps, and bees) almost certainly form a monophyletic tails, and parasitic wood wasps, whereas the Apocrita group (Brothers, 1975; Carpenter, 1986); however, se- contains the majority of the parasitic Hymenoptera, rious questions remain regarding the monophyly of the the ants, solitary and social wasps, and bees. The evo- terebrants (“parasitoids”) due to the lack of demon- lution of parasitism and social behavior in this order strated synapomorphies. has generated considerable interest, and recently Car- The parasitoids belong to at least nine currently rec- penter (1989) proposed that phylogenetic methods may ognized superfamilies whose relationships and compo- 136 1055-7903/92 $5.00 Copyright 0 1992 by Academic Press, Inc. All rights of reproduction in any form reserved. mtDNA 16s I-RNA SEQUENCE VARIATION FROM HYMENOPTERA 137 sition are the subject of some debate (Konigsmann, DNA Amplification 1978a; Rasnitsyn, 1980, 1988; Naumann and Masner, 1985; Gibson, 1986; Gauld and Bolton, 1988). Of partic- At the time we initiated this study, few oligonucleo- ular interest here is the recent suggestion that the tide primers were available for amplified specific DNA Aculeata and the terebrant superfamily Ichneumo- sequences from insect taxa. We used an edited version noidea (Ichneumonidae -t- Braconidae) are sister of the primers first designed by T. Kocher (personal groups (Rasnitsyn, 1988; Mason, unpublished obser- communication) to amplify a region of the 16s rRNA vation). gene. These primers were chosen because they pro- Two attributes of the order Hymenoptera make it duced consistent PCR products from a number of differ- particularly appealing for investigations using molec- ent hymenopteran taxa. Primer sequences are repre- ular techniques. First, although a number of morpho- sented by the light (L) or heavy (H) strand of mtDNA logical-based studies are available for various groups and their position relative to the complete Drosophila within this order, few provide well-supported phyloge- mtDNA sequence (Clary and Wolstenholme, 1985). netic hypotheses. For example, many of these studies Both primers were constructed with 5’ terminal EcoRI are not based on sound phylogenetic methods and even restriction enzyme sites plus one additional base to fa- when they are, reductional features (such as loss of cilitate plasmid cloning of the amplified products. The wing veins), which are commonplace throughout the sequences of these two primers are as follows: primer order, often confuse attempts to assess character ho- 16saEcoRI (L-12,883), 5’-GGAATTCCCTCCGG’ITTG- mology. In addition, lack of agreement on even funda- AACTCAGATC-3’; and primer 16sbEcoRI (H-13,398), mental relationships hinders the interpretation of 5’-GGAA’Il’CCCGCCTG’ITI’ATCAAAAACAT-3’. Sub- character polarity. Second, the very small size of many sequently, “nested” primers were developed based on of the parasitic wasps (many Cl mm) prevents a molec- our initial sequence in comparison with the published ular genetic evaluation due to the lack of sufficient 16s rRNA sequences from Drosophila (Clary and Wol- material. However, techniques such as polymerase stenholme, 1985), Aeoks (Hsu-Chen et al., 19841, and chain reaction (PCR) offer new and powerful tools that Apis (Vlasak et al., 1987). The sequences of these prim- promise to provide new information that will greatly ers are 16saW (L-12,943),5’-TAATAATCAAACATA- facilitate future systematic research on this group of GAGGTCG-3’; and 16sbW (H-13,332), 5’-GACTGTT- insects. CAAAGGTAGCATAAT-3’. In this study we use PCR to illuminate DNA se- Template DNAs were amplified in 50 or 100~p,l total quence variation from the large ribosomal subunit reaction volumes with 30-35 PCR cycles (Saiki et al., (16s rRNA) of the mitochondrial genome from mem- 1988). Most primer/template combinations were am- bers of six superfamilies representing both suborders plified using the thermal stable DNA polymerase Taq (Symphyta and Apocrita) of Hymenoptera. These data (International Biotechnologies, Inc.) although Vent are used in a phylogenetic analysis to illustrate the DNA polymerase (New England BioLabs) was also utility and degree of resolution provided by this infor- used. All amplifications were performed with a Perkin mation at various hierarchical levels within this taxo- Elmer-Cetus thermal cycler with the following proto- nomically diverse order. For comprehensive reviews of col: 35 cycles of DNA denaturing at 93°C for 30 s, the utility of mitochondrial DNA (mtDNA) for evolu- primer annealing at 42-50°C for 60 s, and primer ex- tionary studies see the work of Moritz et al. (1987) and tension at 72°C for 2 min. With some template/primer Harrison (1989). combinations the insertion of a 4-min step cycle be- tween annealing and extension increased the yield of the final amplification product. One explanation may METHODS AND MATERIALS be the rapid stabilization of partially mismatched primer/template complexes by the DNA polymerase as DNA Extraction and Purification the reaction slowly warms from the annealing temper- DNA was extracted from frozen ( - SO’C) or ethanol- ature to (42-50°C) to the extension temperature preserved specimens using the proteinase K digestion (72°C). protocol of Maniatis et al. (1982). Final DNA pellets Following PCR, the amplified products were sepa- were washed in ice-cold 70% ethanol, redissolved in rated by electrophoresis in 1.5% agarose minigels (Ma- sterile water, and stored at 4°C. From the small-bodied niatis et al., 1982). Gels were stained with ethidium parasitic species, DNA was isolated following whole-
Recommended publications
  • The Ecology, Behavior, and Biological Control Potential of Hymenopteran Parasitoids of Woodwasps (Hymenoptera: Siricidae) in North America
    REVIEW:BIOLOGICAL CONTROL-PARASITOIDS &PREDATORS The Ecology, Behavior, and Biological Control Potential of Hymenopteran Parasitoids of Woodwasps (Hymenoptera: Siricidae) in North America 1 DAVID R. COYLE AND KAMAL J. K. GANDHI Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602 Environ. Entomol. 41(4): 731Ð749 (2012); DOI: http://dx.doi.org/10.1603/EN11280 ABSTRACT Native and exotic siricid wasps (Hymenoptera: Siricidae) can be ecologically and/or economically important woodboring insects in forests worldwide. In particular, Sirex noctilio (F.), a Eurasian species that recently has been introduced to North America, has caused pine tree (Pinus spp.) mortality in its non-native range in the southern hemisphere. Native siricid wasps are known to have a rich complex of hymenopteran parasitoids that may provide some biological control pressure on S. noctilio as it continues to expand its range in North America. We reviewed ecological information about the hymenopteran parasitoids of siricids in North America north of Mexico, including their distribution, life cycle, seasonal phenology, and impacts on native siricid hosts with some potential efÞcacy as biological control agents for S. noctilio. Literature review indicated that in the hymenop- teran families Stephanidae, Ibaliidae, and Ichneumonidae, there are Þve genera and 26 species and subspecies of native parasitoids documented from 16 native siricids reported from 110 tree host species. Among parasitoids that attack the siricid subfamily Siricinae, Ibalia leucospoides ensiger (Norton), Rhyssa persuasoria (L.), and Megarhyssa nortoni (Cresson) were associated with the greatest number of siricid and tree species. These three species, along with R. lineolata (Kirby), are the most widely distributed Siricinae parasitoid species in the eastern and western forests of North America.
    [Show full text]
  • Functional Morphology and Evolution of the Sting Sheaths in Aculeata (Hymenoptera) 325-338 77 (2): 325– 338 2019
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2019 Band/Volume: 77 Autor(en)/Author(s): Kumpanenko Alexander, Gladun Dmytro, Vilhelmsen Lars Artikel/Article: Functional morphology and evolution of the sting sheaths in Aculeata (Hymenoptera) 325-338 77 (2): 325– 338 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. Functional morphology and evolution of the sting sheaths in Aculeata (Hymenoptera) , 1 1 2 Alexander Kumpanenko* , Dmytro Gladun & Lars Vilhelmsen 1 Institute for Evolutionary Ecology NAS Ukraine, 03143, Kyiv, 37 Lebedeva str., Ukraine; Alexander Kumpanenko* [[email protected]]; Dmytro Gladun [[email protected]] — 2 Natural History Museum of Denmark, SCIENCE, University of Copenhagen, Universitet- sparken 15, DK-2100, Denmark; Lars Vilhelmsen [[email protected]] — * Corresponding author Accepted on June 28, 2019. Published online at www.senckenberg.de/arthropod-systematics on September 17, 2019. Published in print on September 27, 2019. Editors in charge: Christian Schmidt & Klaus-Dieter Klass. Abstract. The sting of the Aculeata or stinging wasps is a modifed ovipositor; its function (killing or paralyzing prey, defense against predators) and the associated anatomical changes are apomorphic for Aculeata. The change in the purpose of the ovipositor/sting from being primarily an egg laying device to being primarily a weapon has resulted in modifcation of its handling that is supported by specifc morphological adaptations. Here, we focus on the sheaths of the sting (3rd valvulae = gonoplacs) in Aculeata, which do not penetrate and envenom the prey but are responsible for cleaning the ovipositor proper and protecting it from damage, identifcation of the substrate for stinging, and, in some taxa, contain glands that produce alarm pheromones.
    [Show full text]
  • Hymenoptera (Stinging Wasps)
    Return to insect order home Page 1 of 3 Visit us on the Web: www.gardeninghelp.org Insect Order ID: Hymenoptera (Stinging Wasps) Life Cycle–Complete metamorphosis: Queens or solitary adults lay eggs. Larvae eat, grow and molt. This stage is repeated a varying number of times, depending on species, until hormonal changes cause the larvae to pupate. Inside a cell (in nests) or a pupal case (solitary), they change in form and color and develop wings. The adults look completely different from the larvae. Solitary wasps: Social wasps: Adults–Stinging wasps have hard bodies and most have membranous wings (some are wingless). The forewing is larger than the hindwing and the two are hooked together as are all Hymenoptera, hence the name "married wings," but this is difficult to see. Some species fold their wings lengthwise, making their wings look long and narrow. The head is oblong and clearly separated from the thorax, and the eyes are compound eyes, but not multifaceted. All have a cinched-in waist (wasp waist). Eggs are laid from the base of the ovipositor, while the ovipositor itself, in most species, has evolved into a stinger. Thus only females have stingers. (Click images to enlarge or orange text for more information.) Oblong head Compound eyes Folded wings but not multifaceted appear Cinched in waist long & narrow Return to insect order home Page 2 of 3 Eggs–Colonies of social wasps have at least one queen that lays both fertilized and unfertilized eggs. Most are fertilized and all fertilized eggs are female. Most of these become workers; a few become queens.
    [Show full text]
  • ANNUAL REPORT 2020 Plant Protection & Conservation Programs
    Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County .
    [Show full text]
  • Checklist of the Spider Wasps (Hymenoptera: Pompilidae) of British Columbia
    Checklist of the Spider Wasps (Hymenoptera: Pompilidae) of British Columbia Scott Russell Spencer Entomological Collection Beaty Biodiversity Museum, UBC Vancouver, B.C. The family Pompilidae is a cosmopolitan group of some 5000 species of wasps which prey almost exclusively on spiders, giving rise to their common name - the spider wasps. While morphologically monotonous (Evans 1951b), these species range in size from a few millimetres long to among the largest of all hymenopterans; genus Pepsis, the tarantula hawks may reach up to 64 mm long in some tropical species (Vardy 2000). B.C.'s largest pompilid, Calopompilus pyrrhomelas, reaches a more modest body length of 19 mm among specimens held in our collection. In North America, pompilids are known primarily from hot, arid areas, although some species are known from the Yukon Territories and at least one species can overwinter above the snowline in the Colorado mountains (Evans 1997). In most species, the females hunt, attack, and paralyse spiders before laying one egg on (or more rarely, inside) the spider. Prey preferences in Pompilidae are generally based on size, but some groups are known to specialize, such as genus Ageniella on jumping spiders (Araneae: Salticidae) and Tachypompilus on wolf spiders (Araneae: Lycosidae) (Evans 1953). The paralysed host is then deposited in a burrow, which may have been appropriated from the spider, but is typically prepared before hunting from existing structures such as natural crevices, beetle tunnels, or cells belonging to other solitary wasps. While most pompilids follow this general pattern of behaviour, in the Nearctic region wasps of the genus Evagetes and the subfamily Ceropalinae exhibit cleptoparasitism (Evans 1953).
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • The Sirex Woodwasp, Sirex Noctilio: Pest in North America May Be the Ecology, Potential Impact, and Management in the Southeastern U.S
    SREF-FH-003 June 2016 woodwasp has not become a major The Sirex woodwasp, Sirex noctilio: pest in North America may be the Ecology, Potential Impact, and Management in the Southeastern U.S. many insects that are competitors or natural enemies. Some of these insects compete for resources AUTHORED BY: LAUREL J. HAAVIK AND DAVID R. COYLE (e.g. native woodwasps, bark and ambrosia beetles, and longhorned beetles) while others (e.g.parasitoids) are natural enemies and use Sirex woodwasp larvae as hosts. However, should the Sirex woodwasp arrive in the southeastern U.S., with its abundant pine plantations and areas of natural pine, this insect could easily be a major pest for the region. Researchers have monitored and tracked Sirex woodwasp populations since its discovery in North America. The most common detection tool is a flight intercept trap (Fig. 2a) baited with a synthetic chemical lure that consists of pine scents (70% α-pinene, 30% β-pinene) or actual pine branches (Fig. 2b). Woodwasps are attracted to the odors given off by the lure or cut pine branches, and as they fly toward the scent they collide with the sides of the trap and drop Figure 1. The high density of likely or confirmed pine (Pinus spp.) hosts of the Sirex woodwasp suggests the southeastern U.S. may be heavily impacted should this non-native insect become into the collection cup at the bottom. established in this region. The collection cup is usually filled with a liquid (e.g. propylene glycol) that acts as both a killing agent and Overview and Detection preservative that holds the insects until they are collected.
    [Show full text]
  • Megarhyssa Spp., the Giant Ichneumons (Hymenoptera: Ichneumonidae) Ilgoo Kang, Forest Huval, Chris Carlton and Gene Reagan
    Megarhyssa spp., The Giant Ichneumons (Hymenoptera: Ichneumonidae) Ilgoo Kang, Forest Huval, Chris Carlton and Gene Reagan Description Megarhyssa adults comprises combinations of bluish black, Giant ichneumons are members of the most diverse dark brown, reddish brown and/or bright yellow. Female family of wasps in the world (Ichneumonidae), and are members of the species M. atrata, possess distinct bright the largest ichneumonids in Louisiana. Female adults are yellow heads with nearly black bodies and black wings, 1.5 to 3 inches (35 to 75 mm), and male adults are 0.9 to easily distinguishing them from the other three species. In 1.6 inches (23 to 38 mm) in body length. Females can be the U.S. and Canada, four species of giant ichneumons can easily distinguished from males as they possess extremely be found, three of which are known from Louisiana, M. long, slender egg-laying organs called ovipositors that are atrata, M. macrurus and M. greenei. Species other than M. much longer than their bodies. When the ovipositors are atrata require identification by specialists because of their included in body length measurements, the total length similar yellow- and brown-striped color patterns. ranges from 2 to 4 inches (50 to 100 mm). The color of Male Megarhyssa macrurus. Louisiana State Arthropod Museum specimen. Female Megarhyssa atrata. Louisiana State Arthropod Museum specimen. Visit our website: www.lsuagcenter.com Life Cycle References During spring, starting around April in Louisiana, male Carlson, Robert W. Family Ichneumonidae. giant ichneumons emerge from tree holes and aggregate Stephanidae. 1979. In: Krombein K. V., P.
    [Show full text]
  • Journal of Hymenoptera Research
    c 3 Journal of Hymenoptera Research . .IV 6«** Volume 15, Number 2 October 2006 ISSN #1070-9428 CONTENTS BELOKOBYLSKIJ, S. A. and K. MAETO. A new species of the genus Parachremylus Granger (Hymenoptera: Braconidae), a parasitoid of Conopomorpha lychee pests (Lepidoptera: Gracillariidae) in Thailand 181 GIBSON, G. A. P., M. W. GATES, and G. D. BUNTIN. Parasitoids (Hymenoptera: Chalcidoidea) of the cabbage seedpod weevil (Coleoptera: Curculionidae) in Georgia, USA 187 V. Forest GILES, and J. S. ASCHER. A survey of the bees of the Black Rock Preserve, New York (Hymenoptera: Apoidea) 208 GUMOVSKY, A. V. The biology and morphology of Entedon sylvestris (Hymenoptera: Eulophidae), a larval endoparasitoid of Ceutorhynchus sisymbrii (Coleoptera: Curculionidae) 232 of KULA, R. R., G. ZOLNEROWICH, and C. J. FERGUSON. Phylogenetic analysis Chaenusa sensu lato (Hymenoptera: Braconidae) using mitochondrial NADH 1 dehydrogenase gene sequences 251 QUINTERO A., D. and R. A. CAMBRA T The genus Allotilla Schuster (Hymenoptera: Mutilli- dae): phylogenetic analysis of its relationships, first description of the female and new distribution records 270 RIZZO, M. C. and B. MASSA. Parasitism and sex ratio of the bedeguar gall wasp Diplolqjis 277 rosae (L.) (Hymenoptera: Cynipidae) in Sicily (Italy) VILHELMSEN, L. and L. KROGMANN. Skeletal anatomy of the mesosoma of Palaeomymar anomalum (Blood & Kryger, 1922) (Hymenoptera: Mymarommatidae) 290 WHARTON, R. A. The species of Stenmulopius Fischer (Hymenoptera: Braconidae, Opiinae) and the braconid sternaulus 316 (Continued on back cover) INTERNATIONAL SOCIETY OF HYMENOPTERISTS Organized 1982; Incorporated 1991 OFFICERS FOR 2006 Michael E. Schauff, President James Woolley, President-Elect Michael W. Gates, Secretary Justin O. Schmidt, Treasurer Gavin R.
    [Show full text]
  • Hymenoptera: Aculeata Part 1 – Bees
    SCOTTISH INVERTEBRATE SPECIES KNOWLEDGE DOSSIER Hymenoptera: Aculeata Part 1 – Bees A. NUMBER OF SPECIES IN UK: 318 B. NUMBER OF SPECIES IN SCOTLAND: 110 (4 thought to be extinct, 2 may be found – insufficient data) C. EXPERT CONTACTS Please contact [email protected] for details. D. SPECIES OF CONSERVATION CONCERN Listed species UK Biodiversity Action Plan Species known to occur in Scotland (the current list was published in August 2007): Andrena tarsata Tormentil mining bee Bombus distinguendus Great yellow bumblebee Bombus muscorum Moss (Large) carder bumblebee Bombus ruderarius Red-shanked (Red-tailed) carder bumblebee Colletes floralis Northern colletes Osmia inermis a mason bee Osmia parietina a mason bee Osmia uncinata a mason bee Bombus distinguendus is also listed under the Species Action Framework of Scottish Natural Heritage, launched in 2007 (Category 1: Species for Conservation Action). 1 Other species The Scottish Biodiversity List was published in 2005 and lists the additional species (arranged below by sub-family): Andreninae Andrena cineraria Andrena helvola Andrena marginata Andrena nitida 1 Andrena ruficrus Anthophorinae Anthidium maniculatum Anthophora furcata Epeolus variegatus Nomada fabriciana Nomada leucophthalma Nomada obtusifrons Nomada robertjeotiana Sphecodes gibbus Apinae Bombus monticola Colletinae Colletes daviesanus Colletes fodiens Hylaeus brevicornis Halictinae Lasioglossum fulvicorne Lasioglossum smeathmanellum Lasioglossum villosulum Megachillinae Osmia aurulenta Osmia caruelescens Osmia rufa Stelis
    [Show full text]
  • Phylogeny of the Hymenoptera: a Cladistic Reanalysis of Rasnitsyn's (1988) Data
    Phylogeny of the Hymenoptera: A cladistic reanalysis of Rasnitsyn's (1988) data FREDRIK RONQUIST,ALEXANDR P. RASNITSYN,ALAIN ROY,KATARINA ERIKSSON &MAGNUS LINDGREN Accepted: 26 April 1999 Ronquist, F., Rasnitsyn, A. P., Roy, A., Eriksson, K. & Lindgren, M. (1999) Phylogeny of the Hymenoptera: A cladistic reanalysis of Rasnitsyn's (1998) data. Ð Zoologica Scripta 28, 13±50. The hypothesis of higher-level relationships among extinct and extant hymenopterans presented by Rasnitsyn in 1988 is widely cited but the evidence has never been presented in the form of a character matrix or analysed cladistically. We review Rasnitsyn's morphological work and derive a character matrix for fossil and recent hymenopterans from it. Parsimony analyses of this matrix under equal weights and implied weights show that there is little support for Rasnitsyn's biphyletic hypothesis, postulating a sister-group relationship between tenthredinoids and macroxyelines. Instead, the data favour the conventional view that Hymenoptera excluding the Xyelidae are monophyletic. Higher- level symphytan relationships are well resolved and, except for the basal branchings, largely agree with the tree presented by Rasnitsyn. There is little convincing support for any major divisions of the Apocrita but the Microhymenoptera and the Ichneumonoidea + Aculeata appear as monophyletic groups in some analyses and require only a few extra steps in the others. The Evaniomorpha appear as a paraphyletic grade of basal apocritan lineages and enforcing monophyly of this grouping requires a considerable increase in tree length. The Ceraphronoidea are placed in the Proctotrupomorpha, close to Chalcidoidea and Platygastroidea. This signal is not entirely due to loss characters that may have evolved independently in these taxa in response to a general reduction in size.
    [Show full text]
  • Phylogeny and Evolution of Wasps, Ants and Bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea) Phylogeny of Aculeata D. J. B
    Phylogeny and evolution of wasps, ants and bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea) DENIS J. BROTHERS Accepted 25 November 1998 Brothers, D. J. (1999) Phylogeny and evolution of wasps, ants and bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea). Ð Zoologica Scripta 28, 233±249. The comprehensive cladistic study of family-level phylogeny in the Aculeata (sensu lato)by Brothers & Carpenter, published in 1993, is briefly reviewed and re-evaluated, particularly with respect to the sections dealing with Vespoidea and Apoidea. This remains the most recent general treatment of the subject, but several of the relationships indicated are only weakly supported, notably those of Pompilidae and Rhopalosomatidae. Characters used were almost entirely morphological, and re-evaluation of ground-plan states and hypotheses of character-state changes, specially from examination of different exemplars, is likely to lead to slightly different conclusions for some taxa, as is the use of additional or new characters, including molecular ones. The relationships of taxa within the Vespoidea are much better known than for those in the Apoidea, but recent work on the two major groups of bees (by Michener and colleagues) and various groups of sphecoid wasps (by Alexander and Melo) have provided greater clarity, for some families at least. A single cladogram showing the putative relationships of those taxa which should be recognized at the family level for the entire Aculeata is presented. These are, for the Chrysidoidea, Apoidea and Vespoidea, respectively (limits indicated by curly brackets): {Plumariidae + (Scolebythidae + ((Bethylidae + Chrysididae) + (Sclerogibbidae + (Dryinidae + Embolemidae))))} + ({Heterogynaidae + (Ampulicidae + (Sphecidae + (Crabronidae + Apidae)))} + {Sierolomorphidae + ((Tiphiidae + (Sapygidae + Mutillidae)) + ((Pompilidae + Rhopalosomatidae) + (Bradynobaenidae + (Formicidae + (Vespidae + Scoliidae)))))}).
    [Show full text]