T Atigkeitsbericht 1996 Arbeitsgruppe Theoretische Informatik

Total Page:16

File Type:pdf, Size:1020Kb

T Atigkeitsbericht 1996 Arbeitsgruppe Theoretische Informatik Tatigkeitsbericht Arb eitsgrupp e Theoretische Informatik Prof Dr Helmut Alt Prof Dr Emo Welzl arz M Institut fur Informatik Fachbereich Mathematik und Informatik at Berlin Freie Universit Takustr D Berlin Tatigkeitsbericht Theoretische Informatik Mitglieder a Professoren Alt Helmut Dr Welzl Emo Dr bis b Gastwissenschaftler Panconesi Alessandro Dr bis HumboldtStip endium c Assistenten wissenschaftliche Mitarb eiter Stip endiaten Alb erts David bis DFG LeibnizPreis Andrzejak Artur bis Felsner Stefan Dr Fuchs Ulrich DFG artner Bernd Dr G Go dau Michael Homann Frank Dr Kettner Lutz bis Graduiertenkolleg Algorithmische Diskrete Mathe matik Kriegel Klaus Dr onherr Sven bis DFG LeibnizPreis seit ESPRIT Sch Pro jekt CGAL Wagner Frank Dr PD HeisenbergStip endium Wernisch Lorenz Dr bis Graduiertenkolleg Algorithmische Diskrete Mathematik Will HansMartin bis Graduiertenkolleg Algorithmische Diskrete Mathematik Wol Alexander DFG seit arin d Sekret arb el bis Bruder B Ro chow Gaye vom bis e Ko ordinatorin des Graduiertenkollegs Felsner Bettina f Forschungstutoren Gerke Stefanie bis DFG LeibnizPreis Papenberg Andre DFG bis Kap o or Vikas DFG Gaste und Vortrage Micha Sharir Tel Aviv University Variants of Szekelys Technique for Incidences and Many Faces Problems Stefan Naher at HalleWittenberg MartinLutherUniversit Ein eleganter und ezienter Algorithmus zum Planaritatstest von Graphen Lutz Kettner ETH Zurich CEBAP ContourEdgeBasedPolyhedronVisualiza tion Friedhelm Meyer auf der Heide at Paderborn Heinz Nixdorf Institut und Universit Universel le Routingstrategien Anand Srivastav at zu Berlin HumboldtUniversit usse uter Randomisierte Konstruktion ganzzahliger Mehrg Martin Skutella at Berlin Technische Universit Approximation Algorithms for the Discrete TimeCost Tradeo Problem Dimitris Alevras KonradZuseZentrum fur Informationstechnik Berlin On the Facial Structure of MinCut Polyhedra Franz Aurenhammer TU Graz ur planare geometrische Graphen Diagramme f Emo Welzl ETH Zurich Kongurationen von Liniensegmenten in der Ebene und Dreiecken im Raum Neue Analysen Tatigkeitsbericht Theoretische Informatik Drittmittel Projekt CGAL Constructing a Geometric Algorithms Library gefordert von der Europaischen Gemeinschaft im Rahmen des Programms ESPRIT IV Pro jektleiter Helmut Alt onherr seit Mitarb eiter Sven Sch Laufzeit Es handelt sich um ein Gemeinschaftspro jekt von sieb en Arb eitsgrupp en in Utrecht Zurich Berlin Sophia AntipolisFrankreich Saarbrucken Linz und Tel Aviv Inhalt des Pro jektes ist die Implementierung der wichtigsten Algo orige theoretische Untersu rithmen der algorithmischen Geometrie und dazugeh chungen Ziel ist es ein Softwarepaket zu erstellen das fur Anwender geome trischer Algorithmen von Interesse ist Das Pro jekt b einhaltet daher auch die Implementierung von Anwendungen aus Gebieten wie Geographische Informati onssysteme GIS Visualisierung und Simulation CADCAM und Formananlyse und rekonstruktion Dies soll in Zusammenarb eit mit mehreren Firmen aus den andern der Pro jektpartner geschehen Unsere Arb eitsgrupp e b eteiligt sich da L b ei an der Implementierung des Kerns elementare geometrische Ob jekte und Algorithmen von Optimierungsalgorithmen und von Matchingalgorithmen fur Muster und Formen Graduiertenkolleg Algorithmische Diskrete Mathematik gefordert von der Deutschen Forschungsgemeinschaft DFG Beteiligte Wissenschaftler Helmut Alt Sprecher Emo Welzl Ko ordination Bettina Felsner Stip endiaten Lutz Kettner bis HansMartin Will bis Lorenz Wernisch bis orderungszeitraum Oktob er September F at der Humboldt Gemeinsames Kolleg von Wissenschaftlern der Freien Universit at und des KonradZuseZentrums at der Technischen Universit Universit Aus den klassischen Gebieten wie Kombinatorik o der Graphentheorie hat sich die diskrete Mathematik unter Einbeziehung des algorithmischen Standpunktes in einen Themenkreis entwickelt der in einzigartiger Weise Asp ekte der Grundlagen wie auch der angewandten Wissenschaften vereint Als Beispie le seien genannt Codierungstheorie und Datensicherheit algorithmische Zahlen theorie und ComputerAlgebra algorithmische Geometrie und Rob otik Netz werkplanung Design von Algorithmen in all diesen Gebieten ist die algorithmi sche diskrete Mathematik Fundament und Wegbereiter fur Anwendungen Vor rangiges Ziel ist es durch eine Konzentrierung von Forschung und Ausbildung age zu wichtigen aktuellen Fragen in den Grundlagen und Anwendungen zu Beitr erarb eiten Projekt Ahnlichkeit geometrischer Ob jekte gefordert von der Deutschen For schungsgemeinschaft DFG Pro jektleiter Helmut Alt Mitarb eiter Ulrich Fuchs orderungszeitraum Mai Dezember F Inhalt des Pro jekts ist die Entwicklung und teilweise Implementierung von Al gorithmen zur Ahnlichkeitsbestimmung und Approximation geometrischer Ob jekte Dab ei sollen Metho den der algorithmischen Geometrie angewandt werden um Muster und Formen zu erkennen o der zu approximieren Fruhere Arb eiten ohere der Arb eitsgrupp e zu diesem Thema sollen verallgemeinert werden auf h Dimensionen und auf allgemeinere Transformationen zum Matching von Formen zB b eliebige ane Abbildungen Insb esondere sollen auch Datenstrukturen ent ahnlichste aus wickelt werden die es erlaub en zu einer gegeb enen Form die dazu einer fest vorgegebenen Menge zu b estimmen Auerdem sollen Algorithmen zur achen im zwei und dreidimensionalen Raum Approximation von Kurven und Fl entwickelt werden Projekt Eziente Algorithmen zur Beschriftung von Landkarten gefordert von der Deutschen Forschungsgemeinschaft DFG Pro jektleiter Frank Wagner Mitarb eiter Alexander Wol Vikas Kap o or orderungszeitraum Juni Mai F Inhalt des Pro jekts ist die Entwicklung die theoretische Analyse die Imple mentierung und exp erimentelle Erprobung von Algorithmen fur eine Reihe von Beschriftungsproblemen von Landkarten Dab ei geht es darum eine gegeb ene Menge von Ob jekten Punkten Linienzugen Regionen so zu b eschriften da keine Beschriftung sich mit einer anderen ub erschneidet die Lesbarkeit durch ei ahrleistet ist und das durch eine Beschriftung oe gew ne hinreichende SchriftGr gekennzeichnete Ob jekt leicht identizierbar ist osung ei ahrten Verfahren zur L Basierend auf einem b ereits in der Praxis b ew ankten Version dieses Problems sollen gemeinsam mit Anwendern ner eingeschr Probleme der klassischen statischen Beschriftung von technischen Karten und ost werden die in geogra dynamische algorithmische Beschriftungsprobleme gel phischen Informationssystemen GIS auftreten oentlichungen und Vortrage Ver oentlichungen in Zeitschriften mit Auswahlverfahren a Ver Helmut Alt Leo Guibas Richard Karp Kurt Mehlhorn Avi Wig derson A Method for Obtaining Probabilistic Algorithms with Smal l Tail Probabilities Algorithmica Vol F Hoffmann E Gyorgi K Kriegel und T Shermer Generalized Guarding and Partitioning for Rectilinear Polygons Computational Geometry Theory and Applications Vol F Hoffmann K Kriegel A Graph Coloring Result and its Consequences for PolygonGuarding Problems SIAM Journal Discrete Mathematics Vol R Kuchem D Wagner F Wagner Optimizing Layer Assignment and Area in KnockKnee Channel Routing Algorithmica Vol J Matousek M Sharir und E Welzl A Subexponential Bound for Linear Programming Algorithmica Vol Tatigkeitsbericht Theoretische Informatik A Panconesi A Srinivasan On the Complexity of Distributed Network Decomposition Journal of Algorithms Vol anden mit Auswahlverfahren oentlichungen in Konferenzb b Ver D Alberts G Cattaneo G F Italiano An Empirical Study of Dynamic Graph Algorithms Pro c th Annual ACMSIAM Symp osium on Discrete Algorithms SODA Helmut Alt Ulrich Fuchs Gunther Rote Gerald Weber Matching Convex Shapes with respect to the Symmetric Dierence Pro c th Annual Europ ean Symp osium on Algorithms ESA Springer Lecture Notes in Computer Science Vol Andreas Fabri GeertJan Giezeman Lutz Kettner Stefan Schirra Sven Schonherr The CGAL Kernel A Basis for Geometric Computation Pro c st ACM Workshop on Applied Computational Geometry WACG ed M C Lin and D Mano cha Lecture Notes in Computer Science Vol Stefan Felsner On the Number of Arrangements of Pseudolines Pro c th Annual ACM Symp osium on on Computational Geometry B Gartner und E Welzl Linear Programming Randomization and Abstract Frameworks Pro c th Annual Symp osium on Theoretical Asp ects of Computer Science STACS Lecture Notes in Computer Science Vol Springer Verlag V Kann S Khanna J Lagergren A Panconesi On the Hardness of Approximating Max k Cut and its Dual Pro c th Israeli Symp osium on Theory of Computing and Systems ISTICS IEEE Computer Science Press Accepted for publication in The Chicago Journal of Theoretical Computer Science Lutz Kettner Emo Welzl Contour Edge Analysis for Polyhedron Pro jections Pro c International Conference Theory and Practice of Geometric Mo deling ed Reinhard Klein Wolfgang Straer Seiten M Sharir und E Welzl Rectilinear and Polygonal pPiercing and pCenter Problems Pro c th Annual ACM Symp osium on Computational Geometry oentlichungen c Sonstige Ver B Gartner Vorlesungsskript zur Algorithmischen Geometrie November F Hoffmann Ch Icking R Klein K Kriegel An Ecient Competitive Strategy for Learning a Polygon Abstracts of the th Europ ean Workshop on Computational Geometry ed K Hinrichs Bericht Institut fur at Munster Informatik Universit A Panconesi E Malesinska On the Hardness of Al locating Frequencies for Hybrid Networks
Recommended publications
  • Fast Distributed Algorithms for LP-Type Problems of Low Dimension
    Fast Distributed Algorithms for LP-Type Problems of Low Dimension Kristian Hinnenthal Paderborn University, Germany [email protected] Christian Scheideler Paderborn University, Germany [email protected] Martijn Struijs TU Eindhoven, The Netherlands [email protected] Abstract In this paper we present various distributed algorithms for LP-type problems in the well-known gossip model. LP-type problems include many important classes of problems such as (integer) linear programming, geometric problems like smallest enclosing ball and polytope distance, and set problems like hitting set and set cover. In the gossip model, a node can only push information to or pull information from nodes chosen uniformly at random. Protocols for the gossip model are usually very practical due to their fast convergence, their simplicity, and their stability under stress and disruptions. Our algorithms are very efficient (logarithmic rounds or better with just polylogarithmic communication work per node per round) whenever the combinatorial dimension of the given LP-type problem is constant, even if the size of the given LP-type problem is polynomially large in the number of nodes. 2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of computation → Mathematical optimization Keywords and phrases LP-type problems, linear optimization, distributed algorithms, gossip al- gorithms Digital Object Identifier 10.4230/LIPIcs.DISC.2019.23 Funding K. Hinnenthal and C. Scheideler are supported by the DFG SFB 901 (On-The-Fly Com- puting). 1 Introduction 1.1 LP-type Problems LP-type problems were defined by Sharir and Welzl [18] as problems characterized by a tuple (H, f) where H is a finite set of constraints and f : 2H → T is a function that maps subsets from H to values in a totally ordered set (T, ≤) containing −∞.
    [Show full text]
  • Call for Papers RIMS Workshop on Computational Geometry and Discrete Mathematics October 16-18, 2008, Kyoto, Japan
    Call For Papers RIMS Workshop on Computational Geometry and Discrete Mathematics October 16-18, 2008, Kyoto, Japan RIMS Workshop on Computational Geometry and Workshop Organizers: Discrete Mathematics will be held at RIMS (Research Institute for Mathematical Sciences), Tetsuo Asano (JAIST, Japan) Kyoto, October 16-18, 2008. It is an event of RIMS Satoru Fujishige (Kyoto U., Japan) International Project Research 2008, Discrete Satoru Iwata (Kyoto U., Japan) Structures and Algorithms, and intended to provide a Naoki Katoh (Kyoto U., Japan) forum for researchers working in the field of Yoshio Okamoto (Tokyo Inst. Tech, Japan) computational geometry and related topics. Takeshi Tokuyama (Tohoku U., Japan, Chair) Scope: Invited Speakers: The workshop consists of invited talks and presentations on contributed papers. We call for Oswin Aichholzer (T. U. Graz, Austria) submissions of contributed papers on original Boris Aronov (Polytechnic U., USA) research on computational geometry and related Sergey Bereg (U. Texas, USA) topics. Also survey papers on recent results of the Siu Wing Cheng (HKUST, Hong Kong) authors are welcome. Otfried Cheong (KAIST, Korea) Danny Chen (U. Notre Dame, USA) Submissions: Jiri Matousek (Charles U., Czech Republic) Authors should submit short extended abstract in Kurt Mehlhorn (MPI, Germany) PDF format not exceeding 4 pages on A4 (or US Kokichi Sugihara (U. Tokyo, Japan) letter) paper, including author’s names, affiliations, Emo Welzl (ETH, Switzerland) references, and figures. One may use double-column format (we recommend the style of EuroCG). Workshop Web Page : Authors may replace the abstracts with longer ones (up to 10 pages) for the camera-ready version. http://www.dais.is.tohoku.ac.jp/~rimscg08 The submissions should be sent via email to [email protected] Symposium Site: together with your contact information.
    [Show full text]
  • Dagst%Uh|-Seminar-Report; 59
    Helmut Alt, Bernard Chazelle, Emo Welzl (editors): Computational Geometry Dagst%uh|-Seminar-Report;59 22.03.-26.03.93 (9312) ISSN 0940-1 121 Copyright © 1993 by IBF l GmbH,Schloß Dagstuhl, 66687Wadern, Germany TeI.: +49-6871 - 2458 Fax: +49-6871 - 5942 Das Intemationale Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemein- nützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag der Tagungsleiter undBegutachtung durchdas wissenschaftliche Direktorium mit persönlich eingeladenen Gästen durchgeführt werden. ' Verantwortlich für das Programm: Prof. Dr.-Ing. José Encamagao, Prof. Dr. Winfried Görke, Prof. Dr. Theo Härder Dr. Michael Laska, Prof. Dr. Thomas Lengauer, Prof. Walter Fchy Ph. D. Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor) Gesellschafter: Universität des Saarlandes, Universität Kaiserslautern, Universität Karlsruhe, Gesellschaft für Informatik e.V. Bonn Träger: Die Bundesländer Saarland und Rheinland-Pfalz Bezugsadresse: Geschäftsstelle Schloß Dagstuhl Informatik, Bau 36 Universität des Saarlandes Postfach 1150 66041 Saarbrücken Gennany TeI.: +49 681 - 302 - 4396 Fax: +49 -681 302 - 4397 Report of the Third Dagstuhl Seminar on Computational Geometry March 22-26, 1993 The Third DagstuhlSeminar on ComputationalGeometry was organized by Helmut.Alt. (FU Berlin), BernardCha.zelle (Princeton University), and Emo Welzl (F U Berlin). The 32 participants ca.mefrom 10 countries, among them 13 who came from North America a.nd Israel. This report contains abstracts of the 30 talks (in chronologicalorder) given at the meeting as well as Micha.Sharirs report of the open problem sessionwhich took place on Tuesday afternoon and was chaired by Kurt Mehlhorn. Berichterstatter: Frank Hoffmann Participants Pankaj Agarwal, Duke University Helmut Alt, Freie Universität Berlin Boris Aronov, PolytechnicUniversity New York Franz Aurenharmner, TU Graz Jean-Daniel Boissounat, INRIA Sophia.
    [Show full text]
  • Pseudo Unique Sink Orientations Arxiv:1704.08481V1 [Math.CO] 27
    Pseudo Unique Sink Orientations Vitor Bosshard Bernd G¨artner July 17, 2018 Abstract A unique sink orientation (USO) is an orientation of the n-dimensional cube graph (n-cube) such that every face (subcube) has a unique sink. The number of unique sink orientations is nΘ(2n) [13]. If a cube orientation is not a USO, it contains a pseudo unique sink orientation (PUSO): an orientation of some subcube such that every proper face of it has a unique sink, but the subcube itself hasn't. In this paper, we characterize and count PUSOs of the n-cube. We show that PUSOs have a much more rigid structure than USOs and that their number is between 2Ω(2n−log n) and 2O(2n) which is negligible compared to the number of USOs. As tools, we introduce and characterize two new classes of USOs: border USOs (USOs that appear as facets of PUSOs), and odd USOs which are dual to border USOs but easier to understand. 1 Introduction Unique sink orientations. Since more than 15 years, unique sink orientations (USOs) have been studied as particularly rich and appealing combinatorial ab- stractions of linear programming (LP) [6] and other related problems [3]. Orig- inally introduced by Stickney and Watson in the context of the P-matrix linear complementarity problem (PLCP) in 1978 [19], USOs have been revived by Szab´o and Welzl in 2001, with a more theoretical perspective on their structural and algorithmic properties [20]. The major motivation behind the study of USOs is the open question whether arXiv:1704.08481v1 [math.CO] 27 Apr 2017 efficient combinatorial algorithms exist to solve PLCP and LP.
    [Show full text]
  • The Epsilon-T-Net Problem, Proc. Symposium on Computational
    The -t-Net Problem Noga Alon Department of Mathematics, Princeton University, Princeton, NJ 08544, USA Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv 69978, Israel [email protected] Bruno Jartoux Department of Computer Science, Ben-Gurion University of the Negev, Be’er-Sheva, Israel [email protected] Chaya Keller Department of Computer Science, Ariel University, Ariel, Israel [email protected] Shakhar Smorodinsky Department of Mathematics, Ben-Gurion University of the Negev, Be’er-Sheva, Israel [email protected] Yelena Yuditsky Department of Mathematics, Ben-Gurion University of the Negev, Be’er-Sheva, Israel [email protected] Abstract We study a natural generalization of the classical -net problem (Haussler–Welzl 1987), which we t call the -t-net problem: Given a hypergraph on n vertices and parameters t and ≥ n , find a minimum-sized family S of t-element subsets of vertices such that each hyperedge of size at least n contains a set in S. When t = 1, this corresponds to the -net problem. We prove that any sufficiently large hypergraph with VC-dimension d admits an -t-net of (1+log t)d 1 size O( log ). For some families of geometrically-defined hypergraphs (such as the dual 1 hypergraph of regions with linear union complexity), we prove the existence of O( )-sized -t-nets. We also present an explicit construction of -t-nets (including -nets) for hypergraphs with bounded VC-dimension. In comparison to previous constructions for the special case of -nets (i.e., for t = 1), it does not rely on advanced derandomization techniques.
    [Show full text]
  • Crossing-Free Configurations on Planar Point Sets
    Diss. ETH No. 18607 Crossing-Free Configurations on Planar Point Sets A dissertation submitted to the Swiss Federal Institute of Technology Zurich for the degree of Doctor of Sciences presented by Andreas Razen Dipl. Math. ETH born May 7, 1982 citizen of Austria accepted on the recommendation of Prof. Dr. Emo Welzl, examiner Prof. Dr. Jack Snoeyink, co-examiner Dr. Uli Wagner, co-examiner 2009 to my parents Acknowledgments I am deeply grateful to my supervisor Emo Welzl for his motivating and encouraging support during my time as Ph.D. student. He introduced me to the beautiful field of geometric graph theory, and with his inspiring advice he made it an unforgettable experience to learn from him. It was an honor being part of his research group Gremo, which provided both a stimulating research environment and a wonderful academic home where I met people who I will greatly miss. My sincerest thanks go to Jack Snoeyink for working with me and giving me the opportunity to learn about applications of geometric computations in molecular biology, for reviewing my thesis and providing me with many valuable suggestions and comments which greatly helped to improve the presentation of this dissertation. I am also indebted to Uli Wagner for working together with me on the transformation graphs of compatible spanning trees, for broadening my horizon by teaching vivid courses on Fourier-analytic, topological, and algebraic methods in combinatorics, and for co-refereeing my thesis and commenting on its write-up. I would like to thank all the current and previous members of Gremo for making my time as Ph.D.
    [Show full text]
  • Federated Computing Research Conference, FCRC’96, Which Is David Wise, Steering Being Held May 20 - 28, 1996 at the Philadelphia Downtown Marriott
    CRA Workshop on Academic Careers Federated for Women in Computing Science 23rd Annual ACM/IEEE International Symposium on Computing Computer Architecture FCRC ‘96 ACM International Conference on Research Supercomputing ACM SIGMETRICS International Conference Conference on Measurement and Modeling of Computer Systems 28th Annual ACM Symposium on Theory of Computing 11th Annual IEEE Conference on Computational Complexity 15th Annual ACM Symposium on Principles of Distributed Computing 12th Annual ACM Symposium on Computational Geometry First ACM Workshop on Applied Computational Geometry ACM/UMIACS Workshop on Parallel Algorithms ACM SIGPLAN ‘96 Conference on Programming Language Design and Implementation ACM Workshop of Functional Languages in Introductory Computing Philadelphia Skyline SIGPLAN International Conference on Functional Programming 10th ACM Workshop on Parallel and Distributed Simulation Invited Speakers Wm. A. Wulf ACM SIGMETRICS Symposium on Burton Smith Parallel and Distributed Tools Cynthia Dwork 4th Annual ACM/IEEE Workshop on Robin Milner I/O in Parallel and Distributed Systems Randy Katz SIAM Symposium on Networks and Information Management Sponsors ACM CRA IEEE NSF May 20-28, 1996 SIAM Philadelphia, PA FCRC WELCOME Organizing Committee Mary Jane Irwin, Chair Penn State University Steve Mahaney, Vice Chair Rutgers University Alan Berenbaum, Treasurer AT&T Bell Laboratories Frank Friedman, Exhibits Temple University Sampath Kannan, Student Coordinator Univ. of Pennsylvania Welcome to the second Federated Computing Research Conference, FCRC’96, which is David Wise, Steering being held May 20 - 28, 1996 at the Philadelphia downtown Marriott. This second Indiana University FCRC follows the same model of the highly successful first conference, FCRC’93, in Janice Cuny, Careers which nine constituent conferences participated.
    [Show full text]
  • LINEAR PROGRAMMING Martin Dyer, Bernd G¨Artner, Nimrod Megiddo, and Emo Welzl
    49 LINEAR PROGRAMMING Martin Dyer, Bernd G¨artner, Nimrod Megiddo, and Emo Welzl INTRODUCTION Linear programming has many important practical applications, and has also given rise to a wide body of theory. See Section 49.9 for recommended sources. Here we consider the linear programming problem in the form of maximizing a linear function of d variables subject to n linear inequalities. We focus on the relationship of the problem to computational geometry, i.e., we consider the problem in small dimension. More precisely, we concentrate on the case where d n, i.e., d = d(n) is a function that grows very slowly with n. By linear programming≪ duality, this also includes the case n d. This has been called fixed-dimensional linear programming, though our viewpoint≪ here will not treat d as constant. In this case there are strongly polynomial algorithms, provided the rate of growth of d with n is small enough. The plan of the chapter is as follows. In Section 49.2 we consider the sim- plex method, in Section 49.3 we review deterministic linear time algorithms, in Section 49.4 randomized algorithms, and in Section 49.5 we consider the deran- domization of the latter. Section 49.6 discusses the combinatorial framework of LP-type problems, which underlie most current combinatorial algorithms and al- lows their application to a host of optimization problems. We briefly describe the more recent combinatorial framework of unique sink orientations, in the context of striving for algorithms with a milder dependence on d. In Section 49.7 we examine parallel algorithms for this problem, and finally in Section 49.8 we briefly discuss related issues.
    [Show full text]
  • Computational Geometry – 99102
    Computational Geometry – 99102 Michael Goodrich (Johns Hopkins) Rolf Klein (Hagen) Raimund Seidel (Saarbr¨ucken) 07.03.1999 to 12.03.1999 Abstract Geometric computing is creeping into virtually every corner of science and engineering, from design and manufacturing to astrophysics and cartography. This report describes presentations made at a workshop focused on recent advances in this computational geometry field. Previous Dagstuhl workshops on computational geometry dealt mostly with theoretical issues: the development of provably efficient algorithms for various geometric problems on point sets, arrangements of curves and sur- faces, triangulations and other sets of objects; proving various combinatorial results on sets of geomtric objects, which usually have implications on the performance of performance guarantees of geometric algorithms; describing the intrinsic computational complexity of various geometric problems. This workshop continued some of this tradition, but as one more point there was a strong emphasis on the exchange of ideas regarding carrying the many theoretical findings of the last years into computational practice. There were presentations about the recent development of software libraries such as CGAL, LEDA, JDSL, VEGA, and TPIE, and also some experimentation with them. These libraries should help to simplify the realization of abstractly conceived geometric algorithms as actually executable software. The participants and organizers of this workshop would like to thank the Dagstuhl office and the local personnel for the engaged and competent support in all matters. The cordial atmosphere provided for an unusually successful and enjoyable workshop. 1 Computational Geometry Program - Monday, 8 March 1999 9.00-9.30: Marc Van Kreveld, Utrecht University Six CG Problems from Cartographic Generalization 9.30-10.00: Rolf Klein, FernUniversität Hagen Optimal Strategy for Walking an Unknown Street 10.00-10.45 COFFEE BREAK 10.45-11.15: Subhash Suri, Washington University Analysis of a Bounding Box Heuristic 11.15-11.45: Ferran Hurtado, Univ.
    [Show full text]
  • Fast Distributed Algorithms for LP-Type Problems of Bounded Dimension
    Fast Distributed Algorithms for LP-Type Problems of Bounded Dimension Kristian Hinnenthal Paderborn University, Germany [email protected] Christian Scheideler Paderborn University, Germany [email protected] Martijn Struijs TU Eindhoven, The Netherlands [email protected] Abstract In this paper we present various distributed algorithms for LP-type problems in the well-known gossip model. LP-type problems include many important classes of problems such as (integer) linear programming, geometric problems like smallest enclosing ball and polytope distance, and set problems like hitting set and set cover. In the gossip model, a node can only push information to or pull information from nodes chosen uniformly at random. Protocols for the gossip model are usually very practical due to their fast convergence, their simplicity, and their stability under stress and disruptions. Our algorithms are very efficient (logarithmic rounds or better with just polylogarithmic communication work per node per round) whenever the combinatorial dimension of the given LP-type problem is constant, even if the size of the given LP-type problem is polynomially large in the number of nodes. 2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of computation → Mathematical optimization Keywords and phrases LP-type problems, abstract optimization problems, abstract linear programs, distributed algorithms, gossip algorithms 1 Introduction 1.1 LP-type problems LP-type problems were defined by Sharir and Welzl [30] as problems characterized by a tuple (H, f) where H is a finite set and f : 2H → T is a function that maps subsets from H to values in a totally ordered set (T, ≤) containing ∞.
    [Show full text]
  • A Subexponential Bound for Linear Programming∗†
    appeared in Algorithmica 16 (1996) 498-516. A Subexponential Bound for Linear Programming∗† Jirˇ´i Matouˇsek‡ Micha Sharir Department of Applied Mathematics School of Mathematical Sciences Charles University, Malostransk´e n´am. 25 Tel Aviv University, Tel Aviv 69978, Israel 118 00 Praha 1, Czechoslovakia e-mail: [email protected] e-mail: [email protected] and Courant Institute of Mathematical Sciences New York University, New York, NY 10012, USA Emo Welzl Institut f¨ur Informatik, Freie Universit¨at Berlin Takustraße 9, 14195 Berlin, Germany e-mail: [email protected] Abstract We present a simple randomized algorithm which solves linear programs with n constraints and d variables in expected min O(d22dn),e2√d ln(n/√d )+O(√d+ln n) { } time in the unit cost model (where we count the number of arithmetic operations on the numbers in the input); to be precise, the algorithm computes the lexicographically smallest nonnegative point satisfying n given linear inequalities in d variables. The expectation is over the internal randomizations performed by the algorithm, and holds for any input. In conjunction with Clarkson’s linear programming algorithm, this gives an expected bound of O(d2n + eO(√d ln d)) . The algorithm is presented in an abstract framework, which facilitates its appli- cation to several other related problems like computing the smallest enclosing ball (smallest volume enclosing ellipsoid) of n points in d-space, computing the distance of two n-vertex (or n-facet) polytopes in d-space, and others. The subexponential running time can also be established for some of these problems (this relies on some recent results due to G¨artner).
    [Show full text]
  • Fast and Robust Smallest Enclosing Balls *
    Fast and Robust Smallest Enclosing Balls ? Bernd GÄartner Institut furÄ Theoretische Informatik, ETH ZuricÄ h, ETH-Zentrum, CH-8092 ZuricÄ h, Switzerland ( [email protected]) Abstract. I describe a C++ program for computing the smallest en- closing ball of a point set in d-dimensional space, using oating-point arithmetic only. The program is very fast for d · 20, robust and simple (about 300 lines of code, excluding prototype de¯nitions). Its new fea- tures are a pivoting approach resembling the simplex method for linear programming, and a robust update scheme for intermediate solutions. The program with complete documentation following the literate pro- gramming paradigm [3] is available on the Web.1 1 Introduction The smallest enclosing ball (or Euclidean 1-center) problem is a classical problem of computational geometry. It has a long history which dates back to 1857 when Sylvester formulated it for points in the plane [8]. The ¯rst optimal linear-time algorithm for ¯xed dimension was given by Megiddo in 1982 [4]. In 1991, Emo Welzl developed a simple randomized method to solve the problem in expected linear time [9]. In contrast to Megiddo's method, his algorithm is easy to imple- ment and very fast in practice, for dimensions 2 and 3. In higher dimensions, a heuristic move-to-front variant considerably improves the performance. The roots of the program I will describe go back to 1991 when I ¯rst imple- mented Emo Welzl's new method. Using the move-to-front variant I was able to solve problems on 5000 points up to dimension d = 10 (see [9] for all results).
    [Show full text]