General Disclaimer One Or More of the Following Statements May Affect
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Paleoecology and Fire History from Crater Lake
THE PALEOECOLOGY AND FIRE HISTORY FROM CRATER LAKE, COLORADO: THE LAST 1000 YEARS By Charles T. Mogen A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science and Policy Northern Arizona University August 2018 Approved: R. Scott Anderson, Ph.D., Chair Nicholas P. McKay, Ph.D. Darrell S. Kaufman, Ph.D. Abstract High-resolution pollen, plant macrofossil, charcoal and pyrogenic Polycyclic Aromatic Hydrocarbon (PAH) records were developed from a 154 cm long sediment core collected from Crater Lake (37.39°N, 106.70°W; 3328 m asl), San Juan Mountains, Colorado. Several studies have explored Holocene paleo-vegetation and fire histories from mixed conifer and subalpine bogs and lakes in the San Juan and southern Rocky Mountains utilizing both palynological and charcoal studies, but most have been at relatively low resolution. In addition to presenting the highest resolution palynological study over the last 1000 years from the southern Rocky Mountains, this thesis also presents the first high-resolution pyrogenic PAH and charcoal paired analysis aimed at understanding both long-term fire history and the unresolved relationship between how each of these proxies depict paleofire events. Pollen assemblages, pollen ratios, and paleofire activity, indicated by charcoal and pyrogenic PAH records, were used to infer past climatic conditions. Although the ecosystem surrounding Crater Lake has remained a largely spruce (Picea) dominated forest, the proxies developed in this thesis suggest there were two distinct climate intervals between ~1035 to ~1350 CE and ~1350 to ~1850 CE in the southern Rocky Mountains, associated with the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) respectively. -
January 2019 Cardanus & Krafft
A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2019 CARDANUS & KRAFFT Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA September 24, 2018 04:40-05:04 UT, 15 cm refl, 170x, seeing 7/10, transparence 6/6. I drew these craters and vicinity on the night of Sept. 23/24, 2018. The moon was about 22 hours before full. This area is in far western Oceanus Procellarum, and was favorably placed for observation that night. Cardanus is the southern one of this pair and is of moderate depth. Krafft to the north is practically identical in size, and is perhaps slightly deeper. Neither crater has a central peak. Several small craters are near and within Krafft. The crater just outside the southeast rim of Krafft is Krafft E, and Krafft C is nearby within Krafft. The small pit to the west is Krafft K, and Krafft D is between Krafft and Cardanus. Krafft C, D and E are similar sized, but K is smaller than these. A triangular-shaped swelling protrudes from the north side of Krafft. The tiny pit, even smaller than Krafft K, east of Cardanus is Cardanus E. There is a dusky area along the southwest side of Cardanus. Two short dark strips in this area may be part of the broken ring Cardanus R as shown on the. Lunar Quadrant map. -
Grumbles from the Grave
GRUMBLES FROM THE GRAVE Robert A. Heinlein Edited by Virginia Heinlein A Del Rey Book BALLANTINE BOOKS • NEW YORK For Heinlein's Children A Del Rey Book Published by Ballantine Books Copyright © 1989 by the Robert A. and Virginia Heinlein Trust, UDT 20 June 1983 All rights reserved under International and Pan-American Copyright Conventions. Published in the United States by Ballantine Books, a division of Random House, Inc., New York, and simultaneously in Canada by Random House of Canada Limited, Toronto. Grateful acknowledgment is made to the following for permission to reprint the following material: Davis Publications, Inc. Excerpts from ten letters written by John W. Campbell as editor of Astounding Science Fiction. Copyright ® 1989 by Davis Publications, Inc. Putnam Publishing Group: Excerpt from the original manuscript of Podkayne of Mars by Robert A. Heinlein. Copyright ® 1963 by Robert A. Heinlein. Reprinted by permission of the Putnam Publishing Group. Library of Congress Catalog Card Number: 89-6859 ISBN 0-345-36941-6 Manufactured in the United States of America First Hardcover Edition: January 1990 First Mass Market Edition: December 1990 CONTENTS Foreword A Short Biography of Robert A. Heinlein by Virginia Heinlein CHAPTER I In the Beginning CHAPTER II Beginnings CHAPTER III The Slicks and the Scribner's Juveniles CHAPTER IV The Last of the Juveniles CHAPTER V The Best Laid Plans CHAPTER VI About Writing Methods and Cutting CHAPTER VII Building CHAPTER VIII Fan Mail and Other Time Wasters CHAPTER IX Miscellany CHAPTER X Sales and Rejections CHAPTER XI Adult Novels CHAPTER XII Travel CHAPTER XIII Potpourri CHAPTER XIV Stranger CHAPTER XV Echoes from Stranger AFTERWORD APPENDIX A Cuts in Red Planet APPENDIX B Postlude to Podkayne of Mars—Original Version APPENDIX C Heinlein Retrospective, October 6, 1988 Bibliography Index FOREWORD This book does not contain the polished prose one normally associates with the Heinlein stories and articles of later years. -
A La Torre Aaker Aalbers Aaldert Aarmour Aaron
A LA TORRE ABDIE ABLEMAN ABRAMOWITCH AAKER ABE ABLES ABRAMOWITZ AALBERS ABEE ABLETSON ABRAMOWSKY AALDERT ABEEL ABLETT ABRAMS AARMOUR ABEELS ABLEY ABRAMSEN AARON ABEKE ABLI ABRAMSKI AARONS ABEKEN ABLITT ABRAMSON AARONSON ABEKING ABLOTT ABRAMZON AASEN ABEL ABNER ABRASHKIN ABAD ABELA ABNETT ABRELL ABADAM ABELE ABNEY ABREU ABADIE ABELER ABORDEAN ABREY ABALOS ABELES ABORDENE ABRIANI ABARCA ABELI ABOT ABRIL ABATE ABELIN ABOTS ABRLI ABB ABELL ABOTSON ABRUZZO ABBA ABELLA ABOTT ABSALOM ABBARCROMBIE ABELLE ABOTTS ABSALON ABBAS ABELLS ABOTTSON ABSHALON ABBAT ABELMAN ABRAHAM ABSHER ABBATE ABELS ABRAHAMER ABSHIRE ABBATIELLO ABELSON ABRAHAMI ABSOLEM ABBATT ABEMA ABRAHAMIAN ABSOLOM ABBAY ABEN ABRAHAMOF ABSOLON ABBAYE ABENDROTH ABRAHAMOFF ABSON ABBAYS ABER ABRAHAMOV ABSTON ABBDIE ABERCROMBIE ABRAHAMOVITZ ABT ABBE ABERCROMBY ABRAHAMOWICZ ABTS ABBEKE ABERCRUMBIE ABRAHAMS ABURN ABBEL ABERCRUMBY ABRAHAMS ABY ABBELD ABERCRUMMY ABRAHAMSEN ABYRCRUMBIE ABBELL ABERDEAN ABRAHAMSOHN ABYRCRUMBY ABBELLS ABERDEEN ABRAHAMSON AC ABBELS ABERDEIN ABRAHAMSSON ACASTER ABBEMA ABERDENE ABRAHAMY ACCA ABBEN ABERG ABRAHM ACCARDI ABBERCROMBIE ABERLE ABRAHMOV ACCARDO ABBERCROMMIE ABERLI ABRAHMOVICI ACE ABBERCRUMBIE ABERLIN ABRAHMS ACERO ABBERDENE ABERNATHY ABRAHMSON ACESTER ABBERDINE ABERNETHY ABRAM ACETO ABBERLEY ABERT ABRAMCHIK ACEVEDO ABBETT ABEYTA ABRAMCIK ACEVES ABBEY ABHERCROMBIE ABRAMI ACHARD ABBIE ABHIRCROMBIE ABRAMIN ACHENBACH ABBING ABIRCOMBIE ABRAMINO ACHENSON ABBIRCROMBIE ABIRCROMBIE ABRAMO ACHERSON ABBIRCROMBY ABIRCROMBY ABRAMOF ACHESON ABBIRCRUMMY ABIRCROMMBIE ABRAMOFF -
Read Ebook {PDF EPUB} the Moon Maze Game by Larry Niven the Moon Maze Game by Larry Niven
Read Ebook {PDF EPUB} The Moon Maze Game by Larry Niven The Moon Maze Game by Larry Niven. Completing the CAPTCHA proves you are a human and gives you temporary access to the web property. What can I do to prevent this in the future? If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware. If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices. Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store. Cloudflare Ray ID: 661a828c784f2c22 • Your IP : 116.202.236.252 • Performance & security by Cloudflare. The Moon Maze Game by Larry Niven. Completing the CAPTCHA proves you are a human and gives you temporary access to the web property. What can I do to prevent this in the future? If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware. If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices. Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store. -
Science Journals
SCIENCE ADVANCES | RESEARCH ARTICLE GEOPHYSICS Copyright © 2017 The Authors, some A two-billion-year history for the lunar dynamo rights reserved; exclusive licensee 1,2,3,4 1,2 2,3 1 American Association Sonia M. Tikoo, * Benjamin P. Weiss, David L. Shuster, Clément Suavet, for the Advancement 1 1 Huapei Wang, Timothy L. Grove of Science. No claim to original U.S. Government Magnetic studies of lunar rocks indicate that the Moon generated a core dynamo with surface field intensities of ~20 to Works. Distributed 110 mT between at least 4.25 and 3.56 billion years ago (Ga). The field subsequently declined to <~4 mTby3.19Ga,but under a Creative it has been unclear whether the dynamo had terminated by this time or just greatly weakened in intensity. We present Commons Attribution analyses that demonstrate that the melt glass matrix of a young regolith breccia was magnetized in a ~5 ± 2 mT NonCommercial dynamo field at ~1 to ~2.5 Ga. These data extend the known lifetime of the lunar dynamo by at least 1 billion years. License 4.0 (CC BY-NC). Such a protracted history requires an extraordinarily long-lived power source like core crystallization or precession. No single dynamo mechanism proposed thus far can explain the strong fields inferred for the period before 3.56 Ga while also allowing the dynamo to persist in such a weakened state beyond ~2.5 Ga. Therefore, our results suggest that the dynamo was powered by at least two distinct mechanisms operating during early and late lunar history. Downloaded from INTRODUCTION ~200 million years old (Ma) formed in lunar paleofields of ~1 to The Moon is a unique venue for exploring the longevity of dynamos ~10 mT(28), most of these values are likely upper limits given the generated by planetary bodies intermediate in size between planets samples’ magnetic recording fidelities (8, 27, 29). -
The Pancam Instrument for the Exomars Rover
ASTROBIOLOGY ExoMars Rover Mission Volume 17, Numbers 6 and 7, 2017 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2016.1548 The PanCam Instrument for the ExoMars Rover A.J. Coates,1,2 R. Jaumann,3 A.D. Griffiths,1,2 C.E. Leff,1,2 N. Schmitz,3 J.-L. Josset,4 G. Paar,5 M. Gunn,6 E. Hauber,3 C.R. Cousins,7 R.E. Cross,6 P. Grindrod,2,8 J.C. Bridges,9 M. Balme,10 S. Gupta,11 I.A. Crawford,2,8 P. Irwin,12 R. Stabbins,1,2 D. Tirsch,3 J.L. Vago,13 T. Theodorou,1,2 M. Caballo-Perucha,5 G.R. Osinski,14 and the PanCam Team Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. -
APOLLO 15 VOICE TRANSCRIPT PERTAINING to the GEOLOGY of the LANDING SITE APOLLO 15 VOICE TRANSCRIPT Pertaining to the Geology of the Landing Site
* * * * APOLLO 15 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE APOLLO 15 VOICE TRANSCRIPT Pertaining to the geology of the landing site � N.G. Bailey and G.E. Ulrich U.S. Geological Survey Branch of Astrogeology Flagstaff , Arizona 1�5 ,I. BIBLIOGRAPHIC DATA Report No. 2- 3. Recipient's Accession No. SHEET liSGS-GD-74-029 r 14• Ill e and >illlltlll< 5. Report Date Apollo 15 Voice Transcript 1975 Pertaining to the Geology of the Landing Site 6. 7. Aurhor(s) 8. Performing Organiza,ion Rept. N. G. Bailey and G. E. Ulrich No. 9. Performina Oraanizacion Name and Address 10. Projecr/Task/Work Unil No. u.s. Geological Survey Branch of Astrogeology 11. Coouacr/Grant No. 601 East Cedar Avenue Flagstaff, AZ 86001 12. SponaorinJ Oraanization Name and Address 13. Type of Repou & Period Co vered Same Final 14. 15. Supplementary Noceo This is Apollo Voice Transcript Volume No. 4 of a series to be produced for the six manned lunar landings 16. Abstracts This document is an edited record of the conversations between the Apollo 15 astro- nauts and mission control pertaining to the geology of the landing site. It contains all discussions and observations documenting the lunar landscape, its geologic characteristics, the rocks and soils collected, and the lunar surface photographic record along with supplementary remarks essential to the continuity of events during the mission. This transcript is derived from audio tapes and the NASA Technical Air-to-Ground Voice Transcription and includes time of transcription and, photograph and sample numbers. The report also includes a glossary, landing site map, and sample table. -
Surveyor 1 Space- Craft on June 2, 1966 As Seen by the Narrow Angle Camera of the Lunar Re- Connaissance Orbiter Taken on July 17, 2009 (Also See Fig
i “Project Surveyor, in particular, removed any doubt that it was possible for Americans to land on the Moon and explore its surface.” — Harrison H. Schmitt, Apollo 17 Scientist-Astronaut ii Frontispiece: Landing site of the Surveyor 1 space- craft on June 2, 1966 as seen by the narrow angle camera of the Lunar Re- connaissance Orbiter taken on July 17, 2009 (also see Fig. 13). The white square in the upper photo outlines the area of the enlarged view below. The spacecraft is ca. 3.3 m tall and is casting a 15 m shadow to the East. (NASA/LROC/ ASU/GSFC photos) iii iv Surveyor I: America’s First Moon Landing by William F. Mellberg v © 2014, 2015 William F. Mellberg vi About the author: William Mellberg was a marketing and public relations representative with Fokker Aircraft. He is also an aerospace historian, having published many articles on both the development of airplanes and space vehicles in various magazines. He is the author of Famous Airliners and Moon Missions. He also serves as co-Editor of Harrison H. Schmitt’s website: http://americasuncommonsense.com Acknowledgments: The support and recollections of Frank Mellberg, Harrison Schmitt, Justin Rennilson, Alexander Gurshstein, Paul Spudis, Ronald Wells, Colin Mackellar and Dwight Steven- Boniecki is gratefully acknowledged. vii Surveyor I: America’s First Moon Landing by William F. Mellberg A Journey of 250,000 Miles . December 14, 2013. China’s Chang’e 3 spacecraft successfully touched down on the Moon at 1311 GMT (2111 Beijing Time). The landing site was in Mare Imbrium, the Sea of Rains, about 25 miles (40 km) south of the small crater, Laplace F, and roughly 100 miles (160 km) east of its original target in Sinus Iridum, the Bay of Rainbows. -
Rine and the Apennine Mountains. INSTITUTION National Aeronautics and Space Administration, Washington, D.C
DOCUMENT RESUME ED 053 930 SE 012 016 AUTHOR Simmons, Gene TITLE On the Moon with Apollo 15,A Guidebook to Hadley Rine and the Apennine Mountains. INSTITUTION National Aeronautics and Space Administration, Washington, D.C. PUB DATE Jun 71 NOTE 52p. AVAILABLE FROM Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (3300-0384 $0.50) EDRS PRICE EDRS Price MF-$0.65 HC-$3.29 DESCRIPTORS *Aerospace Technology, Geology, Reading Materials, Resource Materials IDENTIFIERS *Lunar Studies, Moon ABSTRACT The booklet, published before the Apollo 15 mission, gives a timeline for the mission; describes and illustrates the physiography of the landing site; and describes and illustrates each lunar surface scientific experiment. Separate timelines are included for all traverses (the traverses are the Moon walks and, for Apollo 15, the Moon rides in the Rover) with descriptions of activities at each traverse stop. Each member of the crew and the backup crew is identified. Also included is a bibliography of lunar literature and glossary of terms used in lunar studies. Photographs and diagrams are utilized throughout. Content is descriptive and informative but with a minimum of technical detail. (Author/PR) , ON THE MOON WITH APOLLO 15 A Guidebook to Hadley Rille and the Apennine Mountains U.S. DEPARTMENT OFHEALTH, EDUCATION,& WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS SEENREPRO- DUCED EXACTLY AS RECEIVEDFROM THE PERSON OR ORGANIZATIONORIG INATING IT. POINTS OF VIEWOR OPIN IONS STATED DO NOTNECESSARILY REPRESENT OFFICIAL OFFICEOF EDU CATION POSITION OR POLICY isr) 1..r1 w fl R CO iiii0OP" O NATIONAL AERONAUTICS AND SPACE ADMINISTRATION June 1971 1 \n ON THE MOON WITH APOLLO 15 A uidebook to Hadley Rille and the Apennine Mountains by Gene Simmons Chief Scientist Manned Spacecraft Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION June 1971 2 For sale by the Superintendent of Documents, U.S. -
Earth-Moon System
©JSR 2013/2018 Astronomy: Earth-Moon system Earth-Moon System Earth at night To see even the bright Moon properly you need clear skies and I can't resist taking the opportunity of beginning with NASA’s spectacular Earth-at-night picture - or how the Earth would appear without cloud cover. It's a picture that is not only of astronomical interest, but one that says a lot about the world's demography and economy. This section of the course, taking two to three lectures, covers the Earth-Moon system. Moon slide There are many features of the Earth-Moon system that are relevant to the study of the Universe at large. • It is held together by universal gravitation, whose basic law is simple but whose effects are not. • The Moon has craters, like many other objects in our solar system and presumably throughout the Universe. How were they formed and what do they tell us? • Measuring size and distance is a fundamental issue in astronomy. We have to start from homebase. The surer we are of distances in the solar system, the surer we are of measuring the much larger distances between stars and between galaxies. The Moon is the first permanent body beyond the Earth. The Earth-Moon system is the obvious first solar system distance to find. • The Earth-Moon system provides the fascinating spectacle of both lunar and solar eclipses. These have influenced societies, ancient and modern, and provided valuable insights into the nature of the Sun in particular. • There is a tendency to think of heavenly objects as points, because they are so far away. -
Guide to Observing the Moon
Your guide to The Moonby Robert Burnham A supplement to 618128 Astronomy magazine 4 days after New Moon south is up to match the view in a the crescent moon telescope, and east lies to the left. f you look into the western sky a few evenings after New Moon, you’ll spot a bright crescent I glowing in the twilight. The Moon is nearly everyone’s first sight with a telescope, and there’s no better time to start watching it than early in the lunar cycle, which begins every month when the Moon passes between the Sun and Earth. Langrenus Each evening thereafter, as the Moon makes its orbit around Earth, the part of it that’s lit by the Sun grows larger. If you look closely at the crescent Mare Fecunditatis zona I Moon, you can see the unlit part of it glows with a r a ghostly, soft radiance. This is “the old Moon in the L/U. p New Moon’s arms,” and the light comes from sun- /L tlas Messier Messier A a light reflecting off the land, clouds, and oceans of unar Earth. Just as we experience moonlight, the Moon l experiences earthlight. (Earthlight is much brighter, however.) At this point in the lunar cycle, the illuminated Consolidated portion of the Moon is fairly small. Nonetheless, “COMET TAILS” EXTENDING from Messier and Messier A resulted from a two lunar “seas” are visible: Mare Crisium and nearly horizontal impact by a meteorite traveling westward. The big crater Mare Fecunditatis. Both are flat expanses of dark Langrenus (82 miles across) is rich in telescopic features to explore at medium lava whose appearance led early telescopic observ- and high magnification: wall terraces, central peaks, and rays.