Against Asiatic Corn Borer (Ostrinia Furnacalis)

Total Page:16

File Type:pdf, Size:1020Kb

Against Asiatic Corn Borer (Ostrinia Furnacalis) Philippine Journal of Crop Science December 2004, 29(3): 53-60 Copyright 2005, Crop Science Society of the Philippines Released 11 April 2005 EFFICACY OF INSECT-PROTECTED MAIZE (BT-11) AGAINST ASIATIC CORN BORER (OSTRINIA FURNACALIS) EUFEMIO T RASCO JR1, JHOANAVI MANGUBAT1, ARISTOTLE BURGONIO2, MANUEL LOGRONO2, VIOLETA VILLEGAS2 & EDUARDO °C FERNANDEZ2 1 University of the Philippines in Mindanao, 2 Syngenta Philippines Inc. [email protected] Three experimental hybrid versions of NK5445 Bt, a hybrid maize developed by Syngenta Seed Company, along with 3 checks were subjected to repeated artificial infestation with Asiatic corn borer (ACB) egg masses and neonate larvae in a screenhouse study to test the efficacy of Bt-11 containing the truncated gene cry1Ab. Results show that all the 3 experimental hybrids were consistently highly resistant to ACB across 3 assessment periods during the vegetative stage. In contrast, the 3 check entries (non-Bt isogenic hybrid of NK5445, sweet corn hybrid Sugar 73, and NK5468, a commercial non-Bt hybrid), showed several elongated feeding holes on as much as two-thirds of the leaves. At harvest, the checks showed severe damage to the stalks, ears, ear shanks and tassels, and relatively minor damage to the kernel. Pupae of ACB were observed inside the stalks. The NK5445 Bt entries showed little or no damage to the stalk, ear shanks, ears, tassels, and kernels. The data clearly demonstrated the efficacy of Bt-11 in controlling the ACB under screenhouse conditions. The presence of 4 other insect species in both checks and NK5445 Bt plants, possibly introduced through the field-collected egg masses used for infestation, is an indication of the safety of the use of Bt-11 concerning non-target insects. Asiatic corn borer, Bt-11, Bt maize, cry1Ab, genetically modified organism, NK5445, Ostrinia furnacalis, transgenic crop INTRODUCTION increase due to the use of Bt maize. With a 60% reduction in pesticide use, Bt maize gave an Insect-protected maize hybrids (Bt maize) are incremental profit of P10,132 per hectare. among the products of modern biotechnology that Monsanto is not the only maize seed company have proven to be effective in controlling insect pests that is developing Bt maize technology. Syngenta’s Bt and consequently, reducing pesticide usage, increasing maize, using a similar gene (cry1Ab) that Monsanto yield, and reducing mycotoxin contamination of corn uses in its hybrid, is now increasingly being used by kernels (Phipps & Park 2002, Fernandez et al 1997). maize farmers to control European corn borer in the In 2004, Bt maize was planted in 11.2 million hectares USA and Canada. Syngenta aims to introduce its own worldwide, representing 14% of hectarage of all Bt maize in the Philippines. Towards this objective, transgenic crops (James 2005). Syngenta signed a Memorandum of Agreement with The Department of Agriculture of the Philippines the University of the Philippines in Mindanao to test recognized the importance of Bt maize when it gave the efficacy of its Bt maize (Bt-11) against the ACB. approval for commercial planting of Monsanto’s Bt Considering available information about Bt-11, maize in December 2002. Aside from other data, the including the results of various tests that it has been basis of this approval was the demonstrated efficacy of previously subjected to (Essential Biosafety 2002), a this material against the Asiatic corn borer (ACB) screenhouse study on the Syngenta Bt maize was under Philippine conditions. In a study covering conducted by UP Mindanao in Bago-Oshiro, Davao 10,000 hectares of Bt maize in the Philippines during City, Philippines during the period 15 December 2002 the years 2003 and 2004, Yorobe reported a 37% yield to 28 March 2003. The objective of this study was to test the efficacy of Bt-11 maize containing the Artificial infestation truncated gene cry1Ab against the ACB under The experimental plants were artificially infested screenhouse conditions, the results of which would with egg masses of ACB at 27 DAP. This was repeated become the basis for recommendation of further steps at 41 DAP. One egg mass attached to a 1 x 1 cm leaf to take. piece was dropped on the whorl of the corn plant on the first day. Additional egg masses were applied on MATERIALS & METHODS the second and third days; thus a total of 3 egg masses (approximately 100 eggs) were applied per plant Test materials during each infestation during the vegetative stage. Three experimental hybrid versions of Bt-11 were The egg masses were collected from cornfields in used in this study. These were NK5445Bt (A), General Santos City 1 to 2 days before infestation. NK5445Bt (B), and NK5445Bt (C). For comparison, the When they reached blackhead stage, they were kept in following checks were used: NK5445 non-Bt (isogenic a refrigerator until they were used. hybrid of NK5445), sweet corn hybrid Sugar 73, and Starting at early reproductive stage (55 DAP) to 69 NK 5468. Seeds of the 6 entries were planted in 10 clay DAP, tassels and silks were artificially infested with Table 1. Guthrie et al (1960) feeding damage scale Score Resistance Description Rating 1 HR No visible injury or a small amount of pin or fine shot-hole type of injury on a few leaves 2 Small amount of shot-hole type lesions on a few leaves 3 R Shot-hole injury common on several leaves 4 Several leaves with shot-hole and elongated lesions 5 I Several leaves with elongated lesions 6 S Several leaves with elongated lesions about 2.5 cm 7 Long lesions common on about one half of the leaves 8 HS Long lesions common on about 2/3 of the leaves 9 Most leaves with long lesions pots (12-inch diameter) per entry, each pot neonate larvae (total of 15 neonate larvae per silk and representing a replicate in a completely randomized tassel) using camel hairbrush. Most of the tassels were experimental design. Initially, 4 seeds were planted infested at 55 DAP, while silk infestation was more per pot; the plants were subsequently thinned to 2 per diffused over time, with most of the infestation carried pot 12 days after planting (DAP), and finally to 1 plant out at 58 and 62 DAP. The neonate larvae were per pot after the first damage rating. The least produced from egg masses laid on wax paper in the damaged plants were retained during thinning. screen cages in the laboratory by adults derived from Seeds of NK5445 Bt experimental hybrids were field-collected pupae. imported from Syngenta (Hawaii), while seeds of NK5445 non-Bt were imported from Thailand. Evaluation Syngenta (Philippines) supplied the seeds of Sugar 73 Leaf-feeding damage was evaluated using the and NK5468. Plant Quarantine Officers, following Guthrie et al (1960) 1-9 leaf-feeding damage scale as established protocol, supervised importation and shown in Table 1. Individual plants were evaluated 14 subsequent handling of the imported seeds. days after the first infestation, and 11 days and 14 days after the second infestation. 54 Bt Maize Against Asiatic Corn Borer At harvest, damage to the stalks and ear shanks (Figure 1). An ante-room and disinfectant (Lysol) foot- was evaluated by splitting these along the length, and dip were provided. To avoid heat buildup during warm counting the holes and measuring the total length of days, the concrete floor of the plastic house was tunneling by ACB. Damage to the tassel was covered with coco-coir matting that was kept wet by determined by counting the number of cut tassel and drip irrigation. A 50-cm fan aided in air circulation. number of holes in each tassel. Damage to the ear was The prevailing air temperature inside the greenhouse determined by counting the number of holes and was 30-33°C at mid-day. Prevailing soil temperature percent of kernel damaged. at 15 cm depth during mid-day was in the range of 22- 24°C. The entire floor of the plastic house, including Trial facility and plant care the immediate perimeter area were cleaned with The study was conducted under the supervision of pressurized water and subsequently sanitized with the National Committee on Biosafety of the chlorox everyday throughout the study. Philippines (NCBP), the Institutional Biosafety The plastic house was secured by a perimeter Committee of the University of the Philippines in fence of interlinked wire with 3 strands of barbed wire Figure 1. View of the plastic house at 40 days after planting Mindanao and the Plant Quarantine Office of the on top. To prevent rodent invasion, the perimeter at Bureau of Plant Industry. The study was conducted in the bottom of the fence down to the soil level was a 15 x 6 x 4 meters (length x width x height) insect- covered with a strip of galvanized metal sheet 50 cm proof screenhouse specially built for the purpose wide. Entrance to the enclosed facility was restricted Eufemio T Rasco Jr et al 55 to the project personnel and others authorized by the RESULTS Plant Quarantine Service. Steam-sterilized garden soil was used as growing Leaf/plant feeding damage rating medium for the maize. Watering was done daily to Table 2 shows that the 3 experimental hybrids of keep the soil moisture near field capacity. Pots were NK5445 Bt were uniformly rated HR (highly resistant; sited on plastic shallow pails to catch excess water. 1 in a scale of 1-9), showing no visible injury or only a At planting, 45 grams of 14-14-14 granular small amount of pin-hole or fine shot-hole type of fertilizer was applied per pot. Fertilizer application feeding injury on a few leaves.
Recommended publications
  • Feminizing Wolbachia in an Insect, Ostrinia Furnacalis (Lepidoptera: Crambidae)
    Heredity (2002) 88, 444–449 2002 Nature Publishing Group All rights reserved 0018-067X/02 $25.00 www.nature.com/hdy Feminizing Wolbachia in an insect, Ostrinia furnacalis (Lepidoptera: Crambidae) D Kageyama, G Nishimura, S Hoshizaki and Y Ishikawa Laboratory of Applied Entomology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan Wolbachia, which forms a group of maternally inherited bac- findings indicate that the Wolbachia infection induces femin- teria in arthropods, often cause reproduction alterations in ization of genetic males in O. furnacalis. Differences in the their hosts, such as cytoplasmic incompatibility, partheno- Wolbachia-induced feminization in O. furnacalis and that in genesis, male-killing, hybrid breakdown and feminization. To isopods are discussed along with the differences in sex date, Wolbachia-induced feminization has been reported determination mechanisms between insects and isopods. only in isopods. Here we report that a Wolbachia strain femi- Phylogenetic analysis of the wsp gene sequence of Wolba- nizes an insect host, Ostrinia furnacalis. Among 79 wild chia suggests independent evolutionary origins for the females of O. furnacalis examined, Wolbachia infection was Wolbachia-induced feminizations in O. furnacalis and in iso- detected in 13 females. Twelve of the 13 infected females pods. Our findings over 5 years suggest that the infection produced all-female progenies, and this trait was maternally has been maintained at a low prevalence in the O. furna- inherited. Tetracycline treatment of thelygenic matrilines calis population. resulted in the production of all-male progenies. The present Heredity (2002) 88, 444–449. DOI: 10.1038/sj/hdy/6800077 Keywords: feminization; Lepidoptera; Ostrinia furnacalis; sex-ratio distorter; Wolbachia Introduction In the present study, we reveal that the feminization of genetic males in O.
    [Show full text]
  • Radiation-Induced Substerility of Ostrinia Furnacalis (Lepidoptera
    XA0201538 Radiation-induced substerility of Ostrinia furnacalis (Lepidoptera: Pyralidae) integrated with the release of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) for area-wide control H.S. Wang, Q.R. Liu, D.G. Lu, E.D. Wang, W. Kang, X.H. Liu, Y.J. Li, Q.L. He, H.Q. Zhang Institute for Application of Atomic Energy, Chinese Academy of Agricultural Sciences, Beijing, China Abstract. The mating competitiveness of Ostrinia furnacalis Fi male moths (progeny of male parents irradiated with 200 Gy) was compared with the mating competitiveness of untreated moths. These studies revealed that Fx male moths were involved in more than 50% of the matings with normal females. The flight ability and response towards sex pheromone was similar for Fi and untreated moths, although the number of Fi moths captured was slightly less than the number of untreated moths captured. The number of eupyrene sperm in the testes of Pi moths treated with 200 Gy was similar to the number of eupyrene sperm in the testes of normal moths. However, the number of sperm bundles was significantly reduced in the testes of 200 Gy Fi moths. Compared to normal moths, daily sperm descent into the duplex ejaculatorius was affected only at day 3 after eclosion of Fi moths. Sperm transfer to spermatheca by 200 Gy Fi male moths was less than that of their irradiated (200 Gy) parents and of normal moths. Successive releases of Trichogramma ostriniae in the egg stage of first and second generation Ostrinia furnacalis were combined with the release of Fi moths from male parents treated with 200 Gy.
    [Show full text]
  • Olfactory Neuron Responsiveness and Pheromone Blend Preference in Hybrids Between Ostrinia Furnacalis and Ostrinia Nubilalis (Lepidoptera: Crambidae)
    Journal of Insect Physiology 54 (2008) 1261–1270 Contents lists available at ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Olfactory neuron responsiveness and pheromone blend preference in hybrids between Ostrinia furnacalis and Ostrinia nubilalis (Lepidoptera: Crambidae) Michael J. Domingue a,*, Callie J. Musto b, Charles E. Linn Jr.b, Wendell L. Roelofs b, Thomas C. Baker a a Department of Entomology, Chemical Ecology Laboratory, Penn State University, University Park, PA 16802, USA b Department of Entomology, Barton Laboratory, New York State Agricultural Experiment Station, 630 W. North Street, Cornell University, Geneva, NY 14456, USA ARTICLE INFO ABSTRACT Article history: The olfactory receptor neuron (ORN) and behavioral responses of hybrids between the Asian corn borer Received 15 April 2008 (ACB), Ostrinia furnacalis, and the E-strain European corn borer (ECB(E)), Ostrinia nubilalis were examined Received in revised form 15 June 2008 and compared to the parental populations. In hybrids and both parents, the large-spike-size ORN was Accepted 18 June 2008 capable of responding to all four pheromone components of ACB and ECB, despite differences in which compounds elicited the greatest spike frequency in each population. There was a small-spiking ORN more Keywords: narrowly tuned to the minor pheromone components in both ACB and ECB(E). In hybrids the homologous Olfactory receptor neurons small-spiking ORN was tuned primarily to the ECB(E) minor pheromone component, with some Hybridization Pheromone shift responsiveness to the ACB minor component. Both species and all the hybrids had an intermediate spike- Single-sensillum recordings size ORN tuned primarily to their common behavioral antagonist.
    [Show full text]
  • Unusual Response Characteristics of Pheromone-Specific Olfactory Receptor Neurons in the Asian Corn Borer Moth, Ostrinia Furnaca
    4946 The Journal of Experimental Biology 209, 4946-4956 Published by The Company of Biologists 2006 doi:10.1242/jeb.02587 Unusual response characteristics of pheromone-specific olfactory receptor neurons in the Asian corn borer moth, Ostrinia furnacalis Takuma Takanashi1,2,*, Yukio Ishikawa2, Peter Anderson1, Yongping Huang3, Christer Löfstedt4, Sadahiro Tatsuki2 and Bill S. Hansson1,† 1Division of Chemical Ecology, Department of Crop Science, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden, 2Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, 3Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China and 4Department of Ecology, Lund University, SE-223 62 Lund, Sweden *Author for correspondence at present address: Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8634, Japan (e-mail: [email protected]) †Present address: Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany Accepted 5 October 2006 Summary Male moth pheromone-detecting receptor neurons are furnacalis males are sensitive to ratios of E12- and Z12- known to be highly specific and very sensitive. We 14:OAc and that (Z)-9-tetradecenyl acetate acts as a investigated physiological and behavioral responses to behavioral antagonist. O. furnacalis males thus display an female sex pheromone components in male Ostrinia unusual coding system for odors involved in sexual furnacalis moths (Lepidoptera: Crambidae). Using communication, mainly built on less specific neurons, but recordings from a cut-sensillum technique, trichoid still have the ability to detect and respond to the correct sensilla could be grouped into four physiological types female blend.
    [Show full text]
  • Susceptibility of Three Species of the Genus Ostrinia (Lepidoptera: Crambidae) to Nosema Pyrausta (Microsporidia: Nosematida)
    BIO Web of Conferences 21, 00040 (2020) https://doi.org/10.1051/bioconf/20202100040 XI International Scientific and Practical Conference “Biological Plant Protection is the Basis of Agroecosystems Stabilization” Susceptibility of three species of the genus Ostrinia (Lepidoptera: Crambidae) to Nosema pyrausta (Microsporidia: Nosematida) Inna Grushevaya*, Anastasia Ignatieva, and Yuri Tokarev All-Russian Institute of Plant Protection, sh. Podbelskogo 3, St. Petersburg, Pushkin 196608 Russia Abstract. Microsporidia are obligate intracellular parasites that affect the population density of many insect pests. In particular, infection with Nosema pyrausta is one of the major mortality factors for the European corn borer Ostrinia nubilalis, the Asian corn borer Ostrinia furnacalis and the adzuki bean borer Ostrinia scapulalis. The purpose of the work is to compare the susceptibility to N. pyrausta and pathogenesis of three species of moths of the genus Ostrinia. Studies conducted over 2 years have shown that in all three species of host insects under laboratory conditions, both during oral infection and transovarian transmission of infection (in the daughter generations of experimentally infected insects), only diplokaryotic spores formed corresponding to the main morphotype of the genus Nosema. Mean lethal time increased with instar of larvae used for infection but didn’t differ between the three species. The rates of transovarial transmission of N. pyrausta were also similar. Thus, all the insect species examined may equally participate in the parasite persistence in nature and serve as model laboratory hosts for parasitological research and mass propagation of the microsporidium. 1 Introduction A study of the population biology of the European corn moth Ostrinia nubilalis (Hbn., 1796), as a dangerous pest of maize, reveals regular changes in the dynamics of insect populations, indicating the formation and gradual improvement of mechanisms for regulating its numbers in agricultural ecosystems involving maize as the main crop [1].
    [Show full text]
  • Toward the Efficient Use of Beauveria Bassiana in Integrated Cotton Insect Pest Management DANNON H
    DANNON et al. Journal of Cotton Research (2020) 3:24 Journal of Cotton Research https://doi.org/10.1186/s42397-020-00061-5 REVIEW Open Access Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management DANNON H. Fabrice1,2* , DANNON A. Elie2,3, DOURO-KPINDOU O. Kobi2, ZINSOU A. Valerien1, HOUNDETE A. Thomas4, TOFFA-MEHINTO Joëlle5, ELEGBEDE I. A. T. Maurille1, OLOU B. Dénis6 and TAMÒ Manuele2 Abstract Background: For controlling the resistance to insects, in particular carpophagous and phyllophagous caterpillars, using chemical pesticides has led to contamination of cotton area in Benin. Facing this problem, alternative methods including the use of entomopathogenic fungi as biopesticide could be a sound measure to preserve the environment, biodiversity and ensure good quality of crops. Previous studies have revealed the insecticidal potential of the entomopathogenic Beauveria bassiana on some insect pest species. However, little is known about its effectiveness on cotton Lepidopteran pests. This review is done to learn more about B. bassina for its application in controlling cotton insect pests, especially Lepidopteran species. Main body: Different sections of the current review deal with the related description and action modes of B. bassiana against insects, multi-trophic interactions between B. bassiana and plants, arthropods, soil and other microbes, and biological control programs including B. bassiana during last decade. Advantages and constraints in applying B. bassiana and challenges in commercialization of B. bassiana-based biopesticide have been addressed. In this review, emphasis is put on the application methods and targeted insects in various studies with regard to their applicability in cotton.
    [Show full text]
  • (Ostrinia Furnacalis) on F1 of Beauveria Bassiana-Inoculated Corn
    Advances in Biological Sciences Research, volume 8 International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019) Population of Asian Corn Stem Borer (Ostrinia furnacalis) on F1 of Beauveria bassiana-Inoculated Corn Itji Diana Daud1*, Sylvia Sjam1, Sari Bulang1, Mustika Tuwo2 1Department of Plant Pests and Diseases, Faculty of Agriculture, Hasanuddin University, Makassar 90245, Indonesia 2Department of Biology, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia *Corresponding author. E-mail: [email protected] ABSTRACT Corn is a commodity in agriculture and Indonesian economic that has a multi-purpose function, both for food and feed. Corn in Indonesia is a major food staple and agricultural commodity after rice. One obstacle in effort to increase the productivity of corn is stem borer Ostrinia furnacalis which can attack plants in all phases of growth. Entomopathogenic application of Beauveria bassiana is an effort to control stem borer. The objective of the study is to observe B. bassiana still exist in FI seeds that grow as endophytic and the ability to infect stem borer on two corn varieties, Lamuru and Batara. Both varieties are F1 of B. bassiana endophytic–corn. The results showed that the number of larvae of O. furnacalis on the Lamuru variety was higher than Batara. Lamuru variety has higher infestation of O. furnacalis than Batara variety. The percentages of infected larvae by B. bassiana in Lamuru and Batara varities are 83% (from 18 larvae) and 100% (from 4 larvae), respectively. Keywords: Batara, entomopathogenic, infection, Lamuru 1. INTRODUCTION can be carried out by entomopathogenic Beauveria bassiana [8].
    [Show full text]
  • Ostrinia Furnacalis Asian Corn Borer Field Screening Aid
    Ostrinia furnacalis Asian Corn Borer Field Screening Aid Forewing: •Yellowish brown, pale yellow, or pale greyish brown crossed with irregular dark brown or reddish brown lines •Hindwing: •Same background color as forewing and with two irregular greyish brown bands By R. Nakano Length from head to tip of abdomen 13 mm (~½ inch) Photo by Alma Solis Wingspan 20 to 26 mm (up to ~1 inch) Resting pose The Asian corn borer (ACB), Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) is found in eastern Asia and the South Pacific, including Australia and Guam. In coloration it is practically identical to the closely related Ostrinia nubilalis (Hübner), the European corn borer (ECB), a destructive pest introduced and now widely distributed and common in the United States and Canada. Dissection of genitalia is necessary for final species identification. This screening aid was produced by Julieta Brambila (USDA/APHIS/PPQ) for CAPS (Cooperative Agriculture Pest Survey program). The spread-moth image courtesy of Alma Solis, Systematic Entomology Laboratory, ARS, USDA, at the National Museum of Natural History, Smithsonian Institution, Washington, DC. The resting pose image courtesy of Roy Nakano, NARO Institute of Fruit Tree Science, Japan. March 2014 Ostrinia furnacalis Asian Corn Borer Diagnostic Aid Forewing: •Yellowish or pale greyish brown crossed with two irregular dark brown or reddish brown lines, the area between them darker than the background color •Orbicular spot (with red circle) and reniform bar (with red oval) small and greyish brown
    [Show full text]
  • Cellular Immune Response of the Asian Corn Borer, Ostrinia Furnacalis (Lepidoptera: Pyralidae), to Infection by the Entomopathogenic Fungus, Beauveria Bassiana
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 415–422, 2016 http://www.eje.cz doi: 10.14411/eje.2016.054 ORIGINAL ARTICLE Cellular immune response of the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Pyralidae), to infection by the entomopathogenic fungus, Beauveria bassiana DONGXU SHEN 1, *, MIAO LI 1, *, YUAN CHU 1, MINGLIN LANG 2 and CHUNJU AN 1, ** 1 Department of Entomology, China Agricultural University, 100193, Beijing, China; e-mails: [email protected]; [email protected]; [email protected]; [email protected] 2 College of Life Science, University of Chinese Academy of Sciences, 100049, Baoding, China; e-mail: [email protected] Key words. Lepidoptera, Pyralidae, Ostrinia furnacalis, cellular immune response, haemocyte, phagocytosis, nodulation, Beauveria bassiana, entomopathogenic fungus Abstract. The term cellular immune response refers to haemocyte-mediated responses, including phagocytosis, nodulation, and encapsulation. In the present study, we identifi ed fi ve types of circulating haemocytes in larvae of the haemolymph of the Asian corn borer, Ostrinia furnacalis (Guenée), including granulocytes, oenocytoids, plasmatocytes, prohaemocytes, and spherulocytes. The relative number of total free haemocytes per larva decreased signifi cantly 0.5, 24, and 36 h after the injection of Beauveria bassiana conidia. Upon conidia challenge, both phagocytosis and nodulation were observed in the collected haemolymph from O. furnacalis larvae. In addition, plasma was found to be necessary for both phagocytosis and nodulation. Therefore, we here confi rm that phagocytosis and nodulation are involved in O. funacalis larvae during their fi ght against infection by B. bassiana, and further, that the cellular immune response of O.
    [Show full text]
  • Or How Two Maize Pests of the Genus Ostrinia
    ’Becoming a species by becoming a pest’ or how two maize pests of the genus Ostrinia possibly evolved through parallel ecological speciation events Denis Bourguet, Sergine Ponsard, Rejane Streiff, Serge Meusnier, Philippe Audiot, Jing Li, Zhen-Ying Wang To cite this version: Denis Bourguet, Sergine Ponsard, Rejane Streiff, Serge Meusnier, Philippe Audiot, et al.. ’Becom- ing a species by becoming a pest’ or how two maize pests of the genus Ostrinia possibly evolved through parallel ecological speciation events. Molecular Ecology, Wiley, 2014, 23 (2), pp.325-342. 10.1111/mec.12608. hal-01837253 HAL Id: hal-01837253 https://hal.archives-ouvertes.fr/hal-01837253 Submitted on 12 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ‘Becoming a species by becoming a pest’ or how two maize pests of the genus Ostrinia possibly evolved through parallel ecological speciation events DENIS BOURGUET,* SERGINE PONSARD,†‡§¶ REJANE STREIFF,* SERGE MEUSNIER,* PHILIPPE AUDIOT,* JING LI†‡§** and ZHEN-YING WANG§ *Centre de Biologie pour la Gestion des Populations
    [Show full text]
  • CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia Furnacalis Confers High-Level Resistance to the Bacillus Thuringiensis Cry1fa Toxin
    toxins Article CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin Xingliang Wang , Yanjun Xu, Jianlei Huang, Wenzhong Jin, Yihua Yang and Yidong Wu * College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; [email protected] (X.W.); [email protected] (Y.X.); [email protected] (J.H.); [email protected] (W.J.); [email protected] (Y.Y.) * Correspondence: [email protected]; Tel.: +86-25-8439-6062 Received: 16 March 2020; Accepted: 9 April 2020; Published: 11 April 2020 Abstract: The adoption of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystalline (Cry) proteins has reduced insecticide application, increased yields, and contributed to food safety worldwide. However, the efficacy of transgenic Bt crops is put at risk by the adaptive resistance evolution of target pests. Previous studies indicate that resistance to Bacillus thuringiensis Cry1A and Cry1F toxins was genetically linked with mutations of ATP-binding cassette (ABC) transporter subfamily C gene ABCC2 in at least seven lepidopteran insects. Several strains selected in the laboratory of the Asian corn borer, Ostrinia furnacalis, a destructive pest of corn in Asian Western Pacific countries, developed high levels of resistance to Cry1A and Cry1F toxins. The causality between the O. furnacalis ABCC2 (OfABCC2) gene and resistance to Cry1A and Cry1F toxins remains unknown. Here, we successfully generated a homozygous strain (OfC2-KO) of O. furnacalis with an 8-bp deletion mutation of ABCC2 by the CRISPR/Cas9 approach. The 8-bp deletion mutation results in a frame shift in the open reading frame of transcripts, which produced a predicted protein truncated in the TM4-TM5 loop region.
    [Show full text]
  • Micronesica Vol. 22 No. 1 Aug., 1989
    Micronesica 22(1) :65- 106, 1989. Biological Control Activities in the Mariana Islands from 1911 to 1988. DONALD NAFUS AND ILSE SCHREINER Agricultural Experiment Station, College of Agriculture and Life Sciences, University of Guam, Mangilao, Guam 96923 Abstract-Biological control started in the Marianas in 1911. Biocontrol agents have been intro- duced to control herbivorous insects, weeds, dung, molluscs, livestock pests, mosquitoes and household pests. In all, 104 species of insects, two predatory mites, three snails, one nematode and four vertebrates have been intentionally introduced to Guam for the purposes of controlling 41 pest species. Of the insect species, 34 established, 48 did not establish, 5 established temporarily and the status of the rest is not known. Additional introductions were made to other islands in the Marianas. Among the pests most successfully controlled by biological agents were Achatina fulica, Aleuro- canthus spiniferus, Aleurothrixus fioccosus, Aspidiotus destructor, Brontispa mariana, B. palauen- sis, t.:pilachna vigintisexpunctata philippinensis, Nipaecoccus viridis, Erionota thrax, Penicillaria jocosatrix, and Spodoptera litura. Two weeds, Lantana camara and Chromolaena odorata have been successfully controlled by herbivorous insects. Most attempts at biological control in the Mari- anas have been transfers of species successfully introduced elsewhere. Most species introduced from temperate climatic zones failed to establish. Species which established on Hawaii, frequently established on Guam as well. Reasons for failure to establish are varied. Against Homopteran pests, 58% of the introduced natural enemies established. The establishment rate against Lepidoptera and Diptera was low. Introduction The introduction of new pests is a serious and recurring problem on islands including Guam (Schreiner and Nafus, 1986; Beardsley, 1979).
    [Show full text]