Opinnäyttyön Asettelumalli
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spherical Trigonometry
Spherical trigonometry 1 The spherical Pythagorean theorem Proposition 1.1 On a sphere of radius R, any right triangle 4ABC with \C being the right angle satisfies cos(c=R) = cos(a=R) cos(b=R): (1) Proof: Let O be the center of the sphere, we may assume its coordinates are (0; 0; 0). We may rotate −! the sphere so that A has coordinates OA = (R; 0; 0) and C lies in the xy-plane, see Figure 1. Rotating z B y O(0; 0; 0) C A(R; 0; 0) x Figure 1: The Pythagorean theorem for a spherical right triangle around the z axis by β := AOC takes A into C. The edge OA moves in the xy-plane, by β, thus −−!\ the coordinates of C are OC = (R cos(β);R sin(β); 0). Since we have a right angle at C, the plane of 4OBC is perpendicular to the plane of 4OAC and it contains the z axis. An orthonormal basis −−! −! of the plane of 4OBC is given by 1=R · OC = (cos(β); sin(β); 0) and the vector OZ := (0; 0; 1). A rotation around O in this plane by α := \BOC takes C into B: −−! −−! −! OB = cos(α) · OC + sin(α) · R · OZ = (R cos(β) cos(α);R sin(β) cos(α);R sin(α)): Introducing γ := \AOB, we have −! −−! OA · OB R2 cos(α) cos(β) cos(γ) = = : R2 R2 The statement now follows from α = a=R, β = b=R and γ = c=R. ♦ To prove the rest of the formulas of spherical trigonometry, we need to show the following. -
Spherical Trigonometry Through the Ages
School of Mathematics and Statistics Newcastle University MMath Mathematics Report Spherical Trigonometry Through the Ages Author: Supervisor: Lauren Roberts Dr. Andrew Fletcher May 1, 2015 Contents 1 Introduction 1 2 Geometry on the Sphere Part I 4 2.1 Cross-sections and Measurements . .4 2.2 Triangles on the Sphere . .7 2.2.1 What is the Largest Possible Spherical Triangle? . .7 2.2.2 The Sum of Spherical Angles . .9 3 Menelaus of Alexandria 12 3.1 Menelaus' Theorem . 13 3.2 Astronomy and the Menelaus Configuration: The Celestial Sphere . 16 4 Medieval Islamic Mathematics 18 4.1 The Rule of Four Quantities . 18 4.2 Finding the Qibla . 20 4.3 The Spherical Law of Sines . 22 5 Right-Angled Triangles 25 5.1 Pythagoras' Theorem on the Sphere . 25 5.2 The Spherical Law of Cosines . 27 6 Geometry on the Sphere Part II 30 6.1 Areas of Spherical Polygons . 30 6.2 Euler's Polyhedral Formula . 33 7 Quaternions 35 7.1 Some Useful Properties . 35 7.1.1 The Quaternion Product . 36 7.1.2 The Complex Conjugate and Inverse Quaternions . 36 1 CONTENTS 2 7.2 Rotation Sequences . 37 7.2.1 3-Dimensional Representation . 39 7.3 Deriving the Spherical Law of Sines . 39 8 Conclusions 42 Bibliography 44 Abstract The art of applying trigonometry to triangles constructed on the surface of the sphere is the branch of mathematics known as spherical trigonometry. It allows new theorems relating the sides and angles of spherical triangles to be derived. The history and development of spherical trigonometry throughout the ages is discussed. -
An Introduction to Solving Spherical Triangles
An Introduction to Solving Spherical Triangles Any mathematician worth his salt is capable of solving triangles in the plane using a variety of methodologies: the definition of trigonometric ratios and their inverses, the laws of sines and cosines, and possibly even the Pythagorean theorem. Very few are versed in the art of solving triangles on the sphere, as the art of spherical geometry and spherical trigonometry is all but lost, due to the advent of many technologies which render the necessity to apply these fields obsolete. Spherical Lines, Segments and Triangles Consider, for a moment, any sphere. In spherical geometry and trigonometry, a line is defined as the intersection of a plane with the sphere, provided the plane passes through the sphere’s center. In some circles (pun intended) it is known as a great circle. A spherical segment, similarly, is a finite piece of such a spherical line. Any spherical segment must be incident with a great circle. A spherical triangle, then, is a group of three spherical line segments, where the endpoints are incident with exactly two spherical segments. One can see that the triangles can take a variety of shapes, dependent upon how those segments interact with each other. The “line” through the points A collection of spherical A and B on the sphere. triangles The “segment” through the points A and B on the sphere. In spherical geometry, the spherical angle(henceforth denoted angle) formed by two spherical segments (hereafter referred to as segments) is measured by the angle formed by the planes intersecting the sphere to form the segments. -
Earth-Satellite Geometry
EARTH-REFERENCED AIRCRAFT NAVIGATION AND SURVEILLANCE ANALYSIS Michael Geyer S π/2 - α - θ d h α N U Re Re θ O Michael Geyer Frederick de Wit Navigation Vertical Plane Model Peter Mercator Federico Rostagno Spherical Surface Model Surveillance Project Memorandum — June 2016 DOT-VNTSC-FAA-16-12 Prepared for: Federal Aviation Administration Wake Turbulence Research Office DOT Volpe Center FOREWORD This document addresses a basic function of aircraft (and other vehicle) surveillance and navi- gation systems analyses — quantifying the geometric relationship of two or more locations relative to each other and to the earth. Here, geometry means distances and angles, including their projections in a defined coordinate frame. Applications that fit well with these methods include (a) planning a vehicle’s route; (b) determining the coverage region of a radar or radio installation; and (c) calculating a vehicle’s latitude and longitude from measurements (e.g., of slant- and spherical-ranges or range differences, azimuth and elevation angles, and altitudes). The approach advocated is that the three-dimensional problems inherent in navigation/surveil- lance analyses should, to the extent possible, be re-cast as a sequence of sub-problems: . Vertical-Plane Formulation (two-dimensional (2D) problem illustrated in top right panel on cover) — Considers the vertical plane containing two problem-specific locations and the center of a spherical earth, and utilizes plane trigonometry as the primary analysis method. This formulation provides closed-form solutions. Spherical-Surface Formulation (2D problem illustrated in bottom left panel on cover) — Considers two or three problem-specific locations on the surface of a spherical earth; utilizes spherical trigonometry as the primary analysis method. -
Hyperbolic Law of Cosines from Wikipedia, the Free Encyclopedia
Hyperbolic law of cosines From Wikipedia, the free encyclopedia Jump to: navigation, search In hyperbolic geometry, the law of cosines is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the ordinary law of cosines from plane trigonometry or the one in spherical trigonometry. Take a hyperbolic plane whose Gaussian curvature is . Then given a triangle on this plane, and designating the length of each side a, b, c, the angles at the opposite corners α, β, γ, the following two rules hold: considering the sides, while for the angles. [edit] References • Reiman, István (1999). Geometria és határterületei. Szalay Könyvkiadó és Kereskedőház Kft.. ISBN 9789632370125. Law of cosines From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about the law of cosines in Euclidean geometry. For the cosine law of optics, see Lambert's cosine law. Figure 1 – A triangle. The angles α, β, and γ are respectively opposite the sides a, b, and c. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) is a statement about a general triangle that relates the lengths of its sides to the cosine of one of its angles. Using notation as in Fig. 1, the law of cosines states that where γ denotes the angle contained between sides of lengths a and b and opposite the side of length c. The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if the angle γ is a right angle (of measure 90° or π/2 radians), then cos(γ) = 0, and thus the law of cosines reduces to The law of cosines is useful for computing the third side of a triangle when two sides and their enclosed angle are known, and in computing the angles of a triangle if all three sides are known. -
Spherical Trigonometry
Spherical Trigonometry Rob Johnson West Hills Institute of Mathematics 1 Introduction The sides of a spherical triangle are arcs of great circles. A great circle is the intersection of a sphere with a central plane, a plane through the center of that sphere. The angles of a spherical triangle are measured in the plane tangent to the sphere at the intersection of the sides forming the angle. To avoid conflict with the antipodal triangle, the triangle formed by the same great circles on the opposite side of the sphere, the sides of a spherical triangle will be restricted between 0 and π radians. The angles will also be restricted between 0 and π radians, so that they remain interior. To derive the basic formulas pertaining to a spherical triangle, we use plane trigonometry on planes related to the spherical triangle. For example, planes tangent to the sphere at one of the vertices of the triangle, and central planes containing one side of the triangle. Unless specified otherwise, when projecting onto a plane tangent to the sphere, the projection will be from the center of the sphere. Since each side of a spherical triangle is contained in a central plane, the projection of each side onto a tangent plane is a line. We will also assume the radius of the sphere is 1. Thus, the length of an arc of a great circle, is its angle. Figure 1: Central Plane of a Unit Sphere Containing the Side α 1 One of the simplest theorems of Spherical Trigonometry to prove using plane trigonometry is The Spherical Law of Cosines.