A Rough Guide to Titan

Total Page:16

File Type:pdf, Size:1020Kb

A Rough Guide to Titan NATURE|Vol 453|22 May 2008 OPINION resent being defined by their trait. Medical is illusory — our DNA is popularly regarded geneticists have had to adapt to patients’ views as our medical fate, but DNA interrogations of themselves. more often yield notions of risk that have dif- To justify morally the genetic-screening ferent meanings to patients and physicians. programmes she writes about, Cowan cites Physicians rarely know the true cause of our the good intentions of the parties involved, complaints. In those genetic cases where sim- primarily their efforts to relieve suffering. plicity prevails, the testing technology is likely This criterion does not pass philosophical to be adopted. As law in the United States, the muster, nor is it sufficient to sway vehement Genetics Information Non-discrimination Act WWW.SUBTLETECHNOLOGIES.COM opponents. Although her analysis is cursory, may relieve some anxiety about the misuse of it does get to the heart of the matter: heredi- genetic information. If only it were so simple tary diseases cause great human suffering and to dispatch misery. everyone wants to help. Modern healers may claim science to be NORTHERN LIGHTS What no commentator on medical genetics the foundation of their work, but the key is, in The many shades of light in art and acknowledges is the hidden sadness, custom- fact, persuasion: to heed advice, to push and science are the focus of the annual arily buried, that each geneticist feels when persevere, to hope. As the genome is further Subtle Technologies Festival in discussing with patients and parents the dissected and better understood, no family of Toronto, Canada, starting this week. options for treatment, which are generally diseases warrants more genuine hope for suc- A symposium (from 30 May to 1 June) few and unsatisfactory. This takes its toll on cessful management than genetic conditions. will discuss the physics of light, everyone, although patients always astound Cowan understands that we must all share that its use in education, photography, with their resilience. hope for the campaign to be successful. ■ performance, new media and The hard truth is that genetics does not offer Hugh Young Rienhoff Jr is director of architecture. Sound artists muse easy answers. There are many genetic diseases, MyDaughtersDNA.org, based in San Francisco, about synaesthesia; a physicist and each one is unique. The simplicity of DNA California, USA. explains why painters love the light in Provence, France; and a biologist describes how to image cells. www.subtletechnologies.com A rough guide to Titan GREEN FINGERS Gardeners are the canaries of climate Titan Unveiled: Saturn’s Mysterious Moon state of our knowledge of this curious moon, change: first to notice buds blooming Explored and is accessible to most. Lorenz is closely early, lawns that need mowing more by Ralph Lorenz and Jacqueline Mitton involved with the Cassini mission to Sat- often and pests spreading in range Princeton University Press: 2008. 296 pp. urn and the Huygens probe it dropped onto as average temperatures creep up. $29.95, £17.95 Titan’s surface in 2005. The book focuses This week’s Chelsea Flower Show in on his key interests, which include Titan’s London (until 24 May), run by the Royal A future tourist guidebook to this remote surface and lower atmosphere, regions that Horticultural Society, includes scientific destination would warn us to bring our heavy- parallel Earth and are thus the most engag- exhibits to educate plant lovers about duty rain gear, but be prepared not to need ing for readers. climate change. UK researchers from it. Droughts may last many years there, but Titan Unveiled describes how most of the Tyndall Centre in Norwich, the when a hurricane-sized storm sweeps across what we once hypothesized about Titan has University of Reading, Rothamsted the sky, the rainfall is torrential. At high lati- been proved wrong. The story of how we Research in Harpenden, and others tudes, the landscape is dotted with thousands gained our current knowledge is fascinating; will be on hand to explain how plants, of lakes, some mere ponds and others inland even more intriguing is what remains to be ecosystems and practices must adapt. seas. Networks of channels and canyons are learned. Larger than Mercury, Titan is the www.rhs.org.uk/chelsea/2008 etched into the terrain, over which huge vol- only moon in our Solar System that is envel- canic domes loom. Other regions harbour oped in a thick atmosphere. Analogous to BEING HUMAN vast fields of dunes, some 100 metres high. Earth’s water-based weather system, Titan’s An exploration of what it means to be Welcome to Titan, Saturn’s largest moon. atmosphere experiences weather based human in a rapidly changing world and Our guidebook would go on to explain that on the phase changes of methane, shifting vast Universe is the theme of the 55th the dune particles are not sand, but hydrocar- between its gas, liquid and solid states. At Carnegie International. The largest US bons, totalling more than all the coal reserves the extremely cold temperatures on Titan’s survey of contemporary art, it opened on Earth. The magma flowing from the vol- surface (94 K, or –179 °C), water is frozen this month at Pittsburgh’s Carnegie canoes is not liquid rock, but a mix of ammo- and acts like rock. The moon is geologically Museum of Art (until January 2009). nia and water, similar to antifreeze. Liquid active, including volcanism and uplifting of Life on Mars, named after David ethane fills the lakes. And liquid methane mountain ranges. Deep under the icy sur- Bowie’s song, offers 300 works from carved the gullies at rates far in excess of the face, evidence for an ocean of liquid water 40 international artists, including Vija worst flash-flooding on Earth. and ammonia has been found. Celmins, who received the US$10,000 Titan Unveiled, by planetary scientist Ralph Scattered throughout the text are per- Carnegie Prize for her Night Sky series Lorenz and astronomy writer Jacqueline sonal anecdotes by Lorenz, labelled “Ralph’s of paintings. Mitton, presents a good overview of the Log”. Key to the book’s success, these sections www.cmoa.org CULTURE DISH CULTURE 453 OPINION NATURE|Vol 453|22 May 2008 convey how planetary exploration, Liquid ethane fills lakes it from Earth nearly every night, new and science in general, progresses as on the surface of Titan, discoveries are regular. It is inevitable a human enterprise. Lorenz commu- Saturn’s largest moon. that any book on Titan is a little out- nicates what it is like to be a scientist of-date before it is released, but this AP PHOTO/NASA AP PHOTO/NASA involved with a current space mission, reflects the vitality of the research. working with diverse colleagues and We won’t be able to book a ticket following your curiosity to make new to Titan in the next few decades, discoveries. but further robotic spacecraft will Advances may come serendipi- be sent to explore. A Titan orbiter tously, but they are usually hard-won could map the surface, observe the following years of intense work, car- seasonal weather patterns and study ried out with the risk of failure and the subsurface ocean. Balloon-borne research dead-ends. Some obstacles to detectors could examine the atmos- progress are simple to overcome. For phere and surface up close. And a example, Lorenz recounts how, while new mission will add detail to our working alone at night at an observa- guidebook to Titan. Hopefully, tory, he was once held back by a crucial piece Huygens probe after its launch. It required a someone working on that mission will write of equipment that lay behind a locked stor- major effort to retarget and replan nearly the an insider’s account, like Titan Unveiled, to age-room door. His eventual solution was to entire mission, involving hundreds of people tell us how it all happened. ■ remove the door’s hinges. Other challenges are and thousands of hours of work. Henry Roe is an astronomer at Lowell Observatory, greater, such as the discovery of an engineer- With the Cassini mission flying past Titan 1400 West Mars Hill Road, Flagstaff, ing problem with the radio transmitter on the every few weeks and astronomers observing Arizona 86001, USA. before the Second World War was Secrets How science hit the small screen of Nature (1922–33), produced by British Instructional Films. Its successor was Secrets of Films of Fact they stimulated demand for nature-based Life (1934–50). Celebrated cameraman Percy Science Museum, London films. Producer Charles Urban exploited Smith, a clerk at the UK government’s Depart- From 29 May to 2 November 2008. this commercial potential in a series of photo- ment of Education, worked on both series. He Films of Fact: A History of Science in micrography films called ‘The Unseen World: specialized in filming through microscopes Documentary Films and Television Revealing Nature’s Closest Secrets by Means of or glass aquaria in his London greenhouse, by Timothy Boon the Urban–Duncan Micro-Bioscope’, which using a timing device he made from a cuckoo Wallflower Press: 2008. 224 pp. included The Circulation of the Protoplasm of clock to record plant growth with time-lapse £45.00 (hbk), £16.99 (pbk) the Canadian Waterweed (1903). Nature series photography. quickly became established as a popular genre Television programming about science took “Is it not a scandal, in this day and age, that and remain so today, from movies of meerkat off in the mid-1950s in the United Kingdom, there seems to be no place for continuing series antics to marching penguins.
Recommended publications
  • Titan and Enceladus $1 B Mission
    JPL D-37401 B January 30, 2007 Titan and Enceladus $1B Mission Feasibility Study Report Prepared for NASA’s Planetary Science Division Prepared By: Kim Reh Contributing Authors: John Elliott Tom Spilker Ed Jorgensen John Spencer (Southwest Research Institute) Ralph Lorenz (The Johns Hopkins University, Applied Physics Laboratory) KSC GSFC ARC Approved By: _________________________________ Kim Reh Dr. Ralph Lorenz Jet Propulsion Laboratory The Johns Hopkins University, Applied Study Manager Physics Laboratory Titan Science Lead _________________________________ Dr. John Spencer Southwest Research Institute Enceladus Science Lead Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B The following members of an Expert Advisory and Review Board contributed to ensuring the consistency and quality of the study results through a comprehensive review and advisory process and concur with the results herein. Name Title/Organization Concurrence Chief Engineer/JPL Planetary Flight Projects Gentry Lee Office Duncan MacPherson JPL Review Fellow Glen Fountain NH Project Manager/JHU-APL John Niehoff Sr. Research Engineer/SAIC Bob Pappalardo Planetary Scientist/JPL Torrence Johnson Chief Scientist/JPL i Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B This page intentionally left blank ii Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B Table of Contents 1. EXECUTIVE SUMMARY.................................................................................................. 1-1 1.1 Study Objectives and Guidelines............................................................................ 1-1 1.2 Relation to Cassini-Huygens, New Horizons and Juno.......................................... 1-1 1.3 Technical Approach...............................................................................................
    [Show full text]
  • Ralph Lorenz Johns Hopkins – Applied Physics Lab
    Space phySicS Seminar Ralph Lorenz Johns Hopkins – Applied Physics Lab Sailing the Seas of Titan, Saturn's Earth-Like Moon Thursday, September 19, 2013 725 Commonwealth Ave. Refreshments at 3:30pm in CAS 500 Talk begins at 4:00pm in CAS 502 Abstract: Oceanography is no longer just an Earth Science. The ongoing NASA/ESA Cassini mission - still making exciting discoveries 10 years after its arrival in the rich Saturnian system - has found that three seas of liquid hydrocarbons adorn Saturn’s giant, frigid moon Titan. Titan was already exotic, having a thick, organic-rich atmosphere, and a diverse landscape with mountains, craters, river channels and vast fields of sand dunes, but these seas, and hundreds of lakes, present a new environment (low gravity, dense atmosphere, hydrocarbon liquid) in which to explore familiar and important physical processes such as air:sea heat and moisture exchange, wind- driven currents and waves, etc. Moreover, Titan’s seas (notably the two largest ones, Kraken Mare and Ligiea Mare, about 1000km and 400km across, respectively) offer an appealing and accessible target for future Titan exploration. This talk will review the latest findings from Cassini, and its prospects for new discoveries as we move towards Titan’s northern summer solstice in 2017, and the opportunities for future exploration which might include (as at Mars) orbiters and landers, but also vehicles that can exploit Titan’s environment such as balloons or airplanes. The most affordable near-term prospect for in-situ exploration is a capsule to float in the seas of Titan, where after splashdown it would drift in the winds to make a traverse across the sea, measuring the liquid composition and turbidity, studying conditions with cameras and meteorological instruments, and exploring the seabed with a depth sounder.
    [Show full text]
  • Titan a Moon with an Atmosphere
    TITAN A MOON WITH AN ATMOSPHERE Ashley Gilliam Earth 450 – Satellites of Jupiter and Saturn 4/29/13 SATURN HAS > 60 SATELLITES, WHY TITAN? Is the only satellite with a dense atmosphere Has a nitrogen-rich atmosphere resembles Earth’s Is the only world besides Earth with a liquid on its surface • Possible habitable world Based on its size… Titan " a planet in its o# $ght! R = 6371 km R = 2576 km R = 1737 km Ch$%iaan Huy&ns (1629-1695) DISCOVERY OF TITAN Around 1650, Huygens began building telescopes with his brother Constantijn On March 25, 1655 Huygens discovered Titan in an attempt to study Saturn’s rings Named the moon Saturni Luna (“Saturns Moon”) Not properly named until the mid-1800’s THE DISCOVERY OF TITAN’S ATMOSPHERE Not much more was learned about Titan until the early 20th century In 1903, Catalan astronomer José Comas Solà claimed to have observed limb darkening on Titan, which requires the presence of an atmosphere Gerard P. Kuiper (1905-1973) José Comas Solà (1868-1937) This was confirmed by Gerard Kuiper in 1944 Image Credit: Ralph Lorenz Voyager 1 Launched September 5, 1977 M"sions to Titan Pioneer 11 Launched April 6, 1973 Cassini-Huygens Images: NASA Launched October 15, 1997 Pioneer 11 Could not penetrate Titan’s Atmosphere! Image Credit: NASA Vo y a &r 1 Image Credit: NASA Vo y a &r 1 What did we learn about the Atmosphere? • Composition (N2, CH4, & H2) • Variation with latitude (homogeneously mixed) • Temperature profile Mesosphere • Pressure profile Stratosphere Troposphere Image Credit: Fulchignoni, et al., 2005 Image Credit: Conway et al.
    [Show full text]
  • DAVINCI: Deep Atmosphere Venus Investigation of Noble Gases, Chemistry, and Imaging Lori S
    DAVINCI: Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging Lori S. Glaze, James B. Garvin, Brent Robertson, Natasha M. Johnson, Michael J. Amato, Jessica Thompson, Colby Goodloe, Dave Everett and the DAVINCI Team NASA Goddard Space Flight Center, Code 690 8800 Greenbelt Road Greenbelt, MD 20771 301-614-6466 Lori.S.Glaze@ nasa.gov Abstract—DAVINCI is one of five Discovery-class missions questions as framed by the NRC Planetary Decadal Survey selected by NASA in October 2015 for Phase A studies. and VEXAG, without the need to repeat them in future New Launching in November 2021 and arriving at Venus in June of Frontiers or other Venus missions. 2023, DAVINCI would be the first U.S. entry probe to target Venus’ atmosphere in 45 years. DAVINCI is designed to study The three major DAVINCI science objectives are: the chemical and isotopic composition of a complete cross- section of Venus’ atmosphere at a level of detail that has not • Atmospheric origin and evolution: Understand the been possible on earlier missions and to image the surface at origin of the Venus atmosphere, how it has evolved, optical wavelengths and process-relevant scales. and how and why it is different from the atmospheres of Earth and Mars. TABLE OF CONTENTS • Atmospheric composition and surface interaction: Understand the history of water on Venus and the 1. INTRODUCTION ....................................................... 1 chemical processes at work in the lower atmosphere. 2. MISSION DESIGN ..................................................... 2 • Surface properties: Provide insights into tectonic, 3. PAYLOAD ................................................................. 2 volcanic, and weathering history of a typical tessera 4. SUMMARY ................................................................ 3 (highlands) terrain.
    [Show full text]
  • Scientific Observations with the Insight Solar Arrays: Dust, Clouds
    Scientific Observations With the InSight Solar Arrays: Dust, Clouds, and Eclipses on Mars Ralph Lorenz, Mark Lemmon, Justin Maki, Donald Banfield, Aymeric Spiga, Constantinos Charalambous, Elizabeth Barrett, Jennifer Herman, Brett White, Samuel Pasco, et al. To cite this version: Ralph Lorenz, Mark Lemmon, Justin Maki, Donald Banfield, Aymeric Spiga, et al.. Scientific Obser- vations With the InSight Solar Arrays: Dust, Clouds, and Eclipses on Mars. Earth and Space Science, American Geophysical Union/Wiley, 2020, 7 (5), 10.1029/2019EA000992. hal-02872154 HAL Id: hal-02872154 https://hal.sorbonne-universite.fr/hal-02872154 Submitted on 17 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License RESEARCH ARTICLE Scientific Observations With the InSight Solar Arrays: 10.1029/2019EA000992 Dust, Clouds, and Eclipses on Mars Special Section: Ralph D. Lorenz1 , Mark T. Lemmon2 , Justin Maki3 , Donald Banfield4 , InSight at Mars 5,6 7 3 3 Aymeric Spiga
    [Show full text]
  • EGU2018-19456-1, 2018 EGU General Assembly 2018 © Author(S) 2018
    Geophysical Research Abstracts Vol. 20, EGU2018-19456-1, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license. DRAGONFLY: in situ exploration of Titan’s meteorology Scot Rafkin (1), Ralph Lorenz (2), Elizabeth Turtle (2), Jason Barnes (3), Melissa Trainer (4), Alice Le Gall (5), Juan Lora (6), Chris McKay (7), Claire Newman (8), Mark Panning (9), Kristin Sotzen (2), Tetsuya Tokano (10), Colin Wilson (11), and the Dragonfly Team (1) Southwest Research Institute, Boulder, CO, USA, (2) Johns Hopkins Applied Physics Lab., Laurel, MD, USA, (3) Univ. Idaho, Moscow, ID, USA, (4) NASA Goddard Space Flight Center, Greenbelt, MD, USA, (5) Laboratoire Atmosphères, Milieux, Observations Spatiales, Guyancourt, France, (6) Univ. California, Los Angeles, CA, USA, (7) NASA Ames Research Center, Moffett Field, CA, USA, (8) Aeolis Research, Pasadena, CA, USA, (9) Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA, USA, (10) Inst. fur Geophysik und Meteorologie, Univ. Koln, Koln, Germany, (11) Oxford Univ., Oxford, UK Dragonfly is a rotorcraft lander mission currently in a Phase A study under NASA’s New Frontiers Program that would take advantage of Titan’s dense atmosphere and low gravity to visit a number of surface locations to study how far chemistry can progress in environments that provide key ingredients for life. This mission architecture also permits and demands investigation of Titan’s atmosphere. First, Dragonfly is a lander that will spend >2 Earth years on Titan’s surface, long enough to observe many diurnal cycles, atmospheric waves, and perhaps even some seasonal change. The DraGMet (Dragonfly Geophysics and Meteorology) instrument package includes measurement of wind speed and direction (using sensors on each of the four rotor pylons, to assure that one or more sensors are upwind of and thus unperturbed by the vehicle), temperature and pressure, and methane humidity.
    [Show full text]
  • Titan Mare Explorer
    TiME Titan Mare Explorer Titan Mare Explorer (TiME): Proxemy Research First Exploration of an Extraterrestrial Sea Ellen Stofan TiME Science . Discovery of lakes and seas in Titan’s northern hemisphere confirmed the expectation that liquid hydrocarbons exist . Detection of the presence of ethane in Ontario Lacus near the South Pole (Brown et al., 2008) . 2 distinct types of features- lakes and seas, likely 10’s, >100 m deep . Post-Cassini, major questions will remain on the chemistry of sea liquids, their role in the overall methane cycle, the origin of sea basins, and seasonal processes and variability TiME Proprietary Information/Competition Sensitive Titan’s methane cycle • Titan’s methane cycle is analogous to Earth’s hydrologic cycle, with meteorological working fluid existing in condensed phase on surface and within crust, cycling through the surface atmosphere system and transporting mass and energy TiME Proprietary Information/Competition Sensitive TiME Science Target •Target: Ligeia Mare (78°N, 250°W) –One of the largest seas identified to date on Titan, surface area ~100,000 km2 –Backup target- Kraken Mare TiME Proprietary Information/Competition Sensitive TiME Science Team .PI: Ellen Stofan (Proxemy Research) .Co-Is: .Jonathan Lunine (Univ. of Az.) - Deputy PI .Ralph Lorenz (APL)- Project Scientist .Oded Aharonson (CalTech) .Beau Bierhaus (LM) .Ben Clark (SSI) .Caitlin Griffith (Univ. Arizona) .Ari-Matti Harri (FMI) .Erich Karkoschka (Univ. Arizona) .Randy Kirk (USGS) .Paul Mahaffy (Goddard) .Claire Newman (Ashima Research) .Mike Ravine (MSSS) .Melissa Trainer (GSFC) .Elizabeth Turtle (APL) .Hunter Waite (SWRI) .Margaret Yelland (Univ. Southampton) .John Zarnecki (Open University) TiME Proprietary Information/Competition Sensitive TiME Science Goals and Objectives .
    [Show full text]
  • Proquest Dissertations
    Characterizing transiting extrasolar giant planets: On companions, rings, and love handles Item Type text; Dissertation-Reproduction (electronic) Authors Barnes, Jason Wayne Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 05:33:59 Link to Item http://hdl.handle.net/10150/290019 NOTE TO USERS This reproduction is the best copy available. UMI CHARACTERIZING TRANSITING EXTRASOLAR GIANT PLANETS: ON COMPANIONS, RINGS, AND LOVE HANDLES by Jason Wayne Barnes A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 0 4 UMI Number: 3131584 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3131584 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O.
    [Show full text]
  • COPYRIGHT NOTICE: Ralph Lorenz and Jacqueline Mitton: Titan Unveiled Is Published by Princeton University Press and Copyrighted, © 2008, by Princeton University Press
    COPYRIGHT NOTICE: Ralph Lorenz and Jacqueline Mitton: Titan Unveiled is published by Princeton University Press and copyrighted, © 2008, by Princeton University Press. All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher, except for reading and browsing via the World Wide Web. Users are not permitted to mount this file on any network servers. Follow links for Class Use and other Permissions. For more information send email to: [email protected] 1. The Lure of Titan On July 1, 2004, the Cassini spacecraft arrived at Saturn after a journey from Earth lasting almost seven years. At 6.8 m in length, this monstrous robotic explorer was the largest western spacecraft ever to be dispatched on an interplanetary mission. Its battery of scientific instruments was designed to return images and data not only from the giant planet itself and its spectacular ring system, but also from members of Saturn’s family of over fifty moons. Foremost in interest among the diverse collection of icy worlds in orbit around Saturn was Titan, a body so special, so intri­ guing in its own right that Cassini carried with it a detachable package of instruments—named the Huygens probe—that would parachute through Titan’s atmosphere to observe its surface. By any reckoning, Titan is an unusual moon. It is 5,150 km across— nearly 50 percent bigger than our own Moon and 6 percent larger than Mercury.
    [Show full text]
  • Mars Insight Landing Press Kit
    Introduction National Aeronautics and Space Administration Mars InSight Landing Press Kit NOVEMBER 2018 www.nasa.gov 1 Table of Contents Introduction 3 Media Services 6 Quick Facts: Landing Facts 11 Quick Facts: Mars at a Glance 15 Mission: Overview 17 Mission: Spacecraft 29 Mission: Science 40 Mission: Landing Site 54 Program & Project Management 56 Appendix: Mars Cube One Tech Demo 58 Appendix: Gallery 62 Appendix: Science Objectives, Quantified 64 Appendix: Historical Mars Missions 65 Appendix: NASA’s Discovery Program 67 2 Introduction Mars InSight Landing Press Kit Introduction NASA’s next mission to Mars -- InSight -- is expected to land on the Red Planet on Nov. 26, 2018. InSight is a mission to Mars, but it is also more than a Mars mission. It will help scientists understand the formation and early evolution of all rocky planets, including Earth. In addition to InSight, a technology demonstration called Mars Cube One (MarCO) is flying separately to the Red Planet. It will test a new kind of data relay from another InSight will help us learn about the formation of Mars -- as well planet for the first time, though InSight’s success is not as all rocky planets. Credit: NASA/JPL-Caltech dependent on MarCO. Five Things to Know About Landing 1. Landing on Mars is difficult Only about 40 percent of the missions ever sent to Mars -- by any space agency -- have been successful. The U.S. is the only nation whose missions have survived a Mars landing. The thin atmosphere -- just 1 percent of Earth’s -- means that there’s little friction to slow down a spacecraft.
    [Show full text]
  • Planetary Penetrators: Their Origins, History and Future
    Author's personal copy Available online at www.sciencedirect.com Advances in Space Research 48 (2011) 403–431 www.elsevier.com/locate/asr Planetary penetrators: Their origins, history and future Ralph D. Lorenz ⇑ Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723, USA Received 6 January 2011; received in revised form 19 March 2011; accepted 24 March 2011 Available online 30 March 2011 Abstract Penetrators, which emplace scientific instrumentation by high-speed impact into a planetary surface, have been advocated as an alter- native to soft-landers for some four decades. However, such vehicles have yet to fly successfully. This paper reviews in detail, the origins of penetrators in the military arena, and the various planetary penetrator mission concepts that have been proposed, built and flown. From the very limited data available, penetrator developments alone (without delivery to the planet) have required $30M: extensive analytical instrumentation may easily double this. Because the success of emplacement and operation depends inevitably on uncontrol- lable aspects of the target environment, unattractive failure probabilities for individual vehicles must be tolerated that are higher than the typical ‘3-sigma’ (99.5%) values typical for spacecraft. The two pathways to programmatic success, neither of which are likely in an aus- tere financial environment, are a lucky flight as a ‘piggyback’ mission or technology demonstration, or with a substantial and unprec- edented investment to launch a scientific (e.g. seismic) network mission with a large number of vehicles such that a number of terrain- induced failures can be tolerated. Ó 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.
    [Show full text]
  • The Dragonfly Entry and Descent System IPPW 2019; Oxford, UK July 12, 2019
    The Dragonfly Entry and Descent System IPPW 2019; Oxford, UK July 12, 2019 Michael Wright (Dragonfly EDL Phase Lead) Jeff Herath, Helen Hwang, Jim Corliss, Aaron Brandis, Dave Buecher, Doug Adams, Ralph Lorenz New Frontiers 4 Site Visit | April 24, 2019 Proprietary Information/Competition Sensitive Michael Wright Introduction • As of June 27, we are going to Titan! - launch 2026, arrival 2034 • This talk will focus on the Entry and Descent system that will deliver the rotorcraft safely to its release point - see talks by Ken Hibbard (Tuesday) and Doug Adams (tomorrow morning) at this workshop for more details how we get from there to the ground! • Dragonfly EDL team combines expertise from NASA Ames/Langley and Lockheed Martin - Aeroshell hardware provider (LM) has extensive hardware expertise for all relevant EDL missions since Pathfinder • Titan EDL is well understood with robust performance margins across the subsystems - Extensive heritage exists that can be adapted to this mission application - Prior work for Huygens risk review (2004) and In-Space Propulsion Program lay the foundation for current EDL models - Titan EDL is more straightforward than Mars in several important ways InternationalNew Frontiers Planetary 4 Site Visit Probe | April Workshop 24, 2019 2019 Proprietary Information/Competition Sensitive Michael Wright 2 EDL Video Not included at the moment in the interest of file size for editing InternationalNew Frontiers Planetary 4 Site Visit Probe | April Workshop 24, 2019 2019 Proprietary Information/Competition Sensitive Michael Wright 3 EDL Concept of Operations • Entry Interface 1270 km - Spin stabilized to 2 RPM • Entry heat pulse: 250 sec. - Peak heat flux 250 W/cm2 margined • Drogue deploy E+6 min, ~Mach 1.5.
    [Show full text]