Blechnum Polinesicum (Aspleniaceae, Blechnoideae), a New Name for Doodia Scaberula

Total Page:16

File Type:pdf, Size:1020Kb

Blechnum Polinesicum (Aspleniaceae, Blechnoideae), a New Name for Doodia Scaberula J. Jpn. Bot. 91(5): 308–309 (2016) Eduardo Antonio MOLINARI-NOVOA: Blechnum polinesicum (Aspleniaceae, Blechnoideae), a New Name for Doodia scaberula “Augusto Weberbauer” Herbarium, Academic Department of Biology, Faculty of Sciences, La Molina National Agrarian University, Apartado postal 456, La Molina, Lima 12, PERU E-mail: [email protected] Summary: Doodia scaberula Parris was Chase (2014) and Christenhusz et al. (2015) transferred to Blechnum as B. papuanum by for our systematic treatment. The present work Christenhusz in 2011, due the pre-existence is framed within the pteridology postgraduate of B. scaberulum Sodiro, a South American course of the San Marcos National University, at species. However, this is a later homonym of B. Lima, Peru (León 2015). papuanum Brause and thus, is here replaced by B. polinesicum. A brief description of this species is Systematics provided. Family Aspleniaceae Newman The genus Doodia R. Br. was erected by Subfamily Blechnoideae Hook. Robert Brown (1810) for New Zealand ferns. Genus Blechnum R. Br. It was differentiated from the closely related Blechnum polinesicum Molinari, nom. nov. Blechnum L. by the venation of the leaves ≡ Doodia scaberula Parris in Blumea 24(2): (Kramer et al. 1990) and the reniform, smaller 505 (1978), non Blechnum scaberulum Sodiro in spores of Doodia (Harris 1955, Tryon and Anales Univ. Centr. Ecuador 8(57): 211 (1893). Lugardon 1991). However, molecular studies ≡ Blechnum papuanum Christenhusz in discovered it was embedded in Blechnum, a Phytotaxa 19: 20 (2011), nom. illeg., non highly paraphyletic genus then (Cranfill and Blechnum papuanum Brause in Bot. Jahrb. Syst. Kato 2003, Smith et al. 2006, Lehtonen 2011, 56(1): 158 (1921). Rothfels et al. 2012). Therefore, Christenhusz Holotype: NEW GUINEA. Papua, Milne et al. (2011) transferred Doodia species to Bay district, N slopes Mt. Dayman, Maneau Blechnum in order to attain the monophyly of Range, 2230 m alt., 1 June 1953. Clumps of the latter genus. numerous harsh leaves up to about 60 cm long. In doing so, he used the binomial Blechnum Uncommon. Terrestrial in mossy forest. Brass papuanum as a replacement name for Doodia 22701 (L, digital image!). scaberula Parris (1978), a New Guinean Paratypes: NeW GUINeA. Chimbu Dist.: endemic fern described on the basis of four Womatne, ca. 2200 m, 14 Sept. 1971. Sterly collections. Within Blechnum, the original epithet 139 (L). Milne Bay Dist.: Maneau Range, Mt. of the species is preoccupied by B. scaberulum Dayman, 2000 m, 27 May 1953. Brass 22581 Sodiro (1893: 211), but so is the newly proposed (L); Raba Raba subdist., Mt. Suckling, Mayu epithet, which has been previously used for B. 2, 1745 m, 18 June 1972. Stevens & Veldkamp papuanum Brause (1929: 158). 54126 (L). Since no correction has been issued on this Erect or ascending rhizome, ramose; with matter (Christenhusz and Schneider 2011), we dark, linear-lanceolate, acuminate scales, 3–5 here propose a new name for the Parris’ entity, mm long. Sterile and fertile fronds similar. Stipes and provide a brief description of it. We follow dark, minutely tuberculate at the base; rachis and the classification proposal of Christenhusz and costa with dark scales. Lamina pinnate, elliptic, —308— October 2016 The Journal of Japanese Botany Vol. 91 No. 5 309 12–44 × 3.5–13 cm. Basal pinnae sub-sessile; recommendations to the Angiosperm Phylogeny Group medial and distal pinnae decurrent, up to 3 cm for thorny problems in plant classification. Bot. J. Linn. Soc. 178: 501–528. long. Costa of the pinnae with scales similar to Christenhusz M. J. M., Zhang X. C. and Schneider H. those of the rachis. Sori in one series; indusium 2011. A linear sequence of extant families and genera 1 mm long. Spores plain, smooth, ellipsoidal to of lycophytes and ferns. Phytotaxa 19: 7–54. slightly reniform. Harris W. F. 1955. A manual of the spores of New Zealand pteridophyta. Dept. Sci. Ind. res. Bull. 116: 1–186. Kramer K. U., Chambers T. C. and Hennipman E. 1990. References Blechnaceae. In: Kramer K. U. and Green P. S. Brause G. 1921. Bearbeitung der von C. Ledermann (eds.), The Families and Genera of Vascular Plants. von der Sepik- (Kaiserin-Augusta-) Fluß-Expedition Pteridophytes and Gymnosperms. pp. 60–68. Springer 1912–1913 und von anderen Sammlern aus dem Verlag, Berlin. Papuagebiete früher mitgebrachten Pteridophyten, Lehtonen S. 2011. Towards Resolving the Complete Fern nebst Übersicht über alle bis jetzt aus dem Papuagebiet Tree of Life. PLoS ONE 6(10): e24851. bekannt gewordenen Arten derselben. Bot. Jahrb. Syst. León B. 2015. Pteridología. Universidad Nacional Mayor 56(1): 31–250. de San Marcos, Lima. Brown R. 1810. Prodromus Florae Novae Hollandiae et Parris B. S. 1978. A new species of Doodia R. Br. Insulae Van Diemen. J. Johnson, London. (Blechnaceae: Filicales) from New Guinea. Blumea Cranfillr . and Kato M. 2003. Phylogenetics, biogeography 24: 505–506. and classification of the woodwardioid ferns Rothfels C. J., Larsson A., Kuo L. Y., Korall P, Chiou W. (Blechnaceae). In: Chandra S. and Srivastava M. L. and Pryer K. M. 2012. Overcoming deep roots, (eds.), Pteridology in the New Millennium. pp. 25–48. fast rates, and short internodes to resolve the ancient Kluwer Academic Publishers, Berlin. rapid radiation of eupolypod II ferns. Syst. Biol. 61(1): Christenhusz M. J. M. and Chase M. W. 2015. Trends and 490–509. concepts in fern classification. Ann. Bot. (Oxford) 113: Smith A. R., Pryer K. M., Schuettpelz E., Korall P., 571–594. Schneider H. and Wolf P. g. 2006. A Classification for Christenhusz M. J. M. and Schneider H. 2011. Corrections Extant Ferns. Taxon 55(3): 705–731. to Phytotaxa 19. Linear sequence of lycophytes and Sodiro A. 1893. Cryptogamae vasculares quitenses. ferns. Phytotaxa 28: 50–52. Annales Univ. Centr. Ecuador 8(57): 208–217. Christenhusz M. J. M., Vorontsova M. S., Fay M. F. and Tryon A. F. and Lugardon B. 1991. Spores of the Chase M. W. 2015. Results from an online survey Pteridophyta. Springer Verlag, New York. of family delimitation in angiosperms and ferns: E. A. Molinari-Novoa: Doodia scaberula の 新 名 Blechnum polinesicum(チャセンシダ科) チ ャ セ ン シ ダ 科 の Doodia scaberula Parris は 本 種 の Blechnum 属 で の 学 名,Blechnum polinesicum Christenhusz (2011) に よ っ て Blechnum 属 へ 移 さ れ た Molinari を新たに与え,タイプ標本を整理するとともに, が,南アメリカ産の B. scaberulum Sodiro があったため 簡単な記載を付けた. に,Blechnum papuanum Christenhusz とされた.しかし (ペルー・La Molina National Agrarian University, な が ら,Blechnum papuanum Christenhusz (2011) は B. Faculty of Sciences, Academic Department of Biology, papuanum Brause (1929) の後続同名であった.そこで, “Augusto Weberbauer” Herbarium).
Recommended publications
  • California's Native Ferns
    CALIFORNIA’S NATIVE FERNS A survey of our most common ferns and fern relatives Native ferns come in many sizes and live in many habitats • Besides living in shady woodlands and forests, ferns occur in ponds, by streams, in vernal pools, in rock outcrops, and even in desert mountains • Ferns are identified by producing fiddleheads, the new coiled up fronds, in spring, and • Spring from underground stems called rhizomes, and • Produce spores on the backside of fronds in spore sacs, arranged in clusters called sori (singular sorus) Although ferns belong to families just like other plants, the families are often difficult to identify • Families include the brake-fern family (Pteridaceae), the polypody family (Polypodiaceae), the wood fern family (Dryopteridaceae), the blechnum fern family (Blechnaceae), and several others • We’ll study ferns according to their habitat, starting with species that live in shaded places, then moving on to rock ferns, and finally water ferns Ferns from moist shade such as redwood forests are sometimes evergreen, but also often winter dormant. Here you see the evergreen sword fern Polystichum munitum Note that sword fern has once-divided fronds. Other features include swordlike pinnae and round sori Sword fern forms a handsome coarse ground cover under redwoods and other coastal conifers A sword fern relative, Dudley’s shield fern (Polystichum dudleyi) differs by having twice-divided pinnae. Details of the sori are similar to sword fern Deer fern, Blechnum spicant, is a smaller fern than sword fern, living in constantly moist habitats Deer fern is identified by having separate and different looking sterile fronds and fertile fronds as seen in the previous image.
    [Show full text]
  • Fern News 67
    I " yaASSOCIATION %M@% Of 52% gas. We: (/5sz 67 ”snag; li'iixé‘r' ~ g lSSN 08ll-531l DATE— DECEMBER 1994 ‘30.»? ***************************************t************************** LEADER: Peter Hind, 41 Miller Street, Mount Druitt, 2770 SECRETARY: Moreen Woollett, 3 Currawang Place, Como West, 2226 TREASURER: Joan Moore, 2 Ganne't Street, Gladesville, 2111 SPORE BANK: Dulcie Buddee, 4 Leigh Street, Merrylands, 2160 ****************************************************************** FERNS IN GARDEN DESIGN Some time ago, Diana Snape Leader of the ASGAP Garden Design Group, asked Study Groups to list plants (in our case ferns) that are valuable for garden design. In endeavouring to help Diana, some infomation was gathered together and is recorded here. In the past our Group has paid little attention to questions of design even though several of our Study Group members are obviously interested in the subject and have joined the Garden Design Study Group. It is an important area that needs to be developed and all members are invited to make a contribution to our store of knowledge by advising their thoughts on the subject of ferns in garden design and / or providing comments regarding the suitability or otherwise of particular fern species. Design in gardens like most things is either good or bad depending on personal preference but obviously a well designed garden will be perceived as such by the majority of viewers. To be considered “well designed” gardens probably need to exhibit the following features: — Be of attractive 0r pleasing appearance - Look natural or complementary to the environment - Suit :1 range of out of doors uses - Be relatively easy to maintain. One of the challenges in gardening is to maintain form and appearance of the garden without it being an all time consuming occupation.
    [Show full text]
  • Journal of Ethnopharmacology Antiinflammatory And
    Journal of Ethnopharmacology 125 (2009) 102–107 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jethpharm Antiinflammatory and antinociceptive activities of Blechnum occidentale L. extract Fabiana Regina Nonato a, Tais Adelita Almeida Barros a, Angélica Maria Lucchese b, Carlos Eduardo Cordeiro Oliveira b, Ricardo Ribeiro dos Santos a,c, Milena Botelho Pereira Soares a,c, Cristiane Flora Villarreal a,d,∗ a Centro de Pesquisas Gonc¸ alo Moniz, Fundac¸ ão Oswaldo Cruz, Rua Waldemar Falcão 121, CEP 40296-710 Salvador, Bahia, Brazil b Laboratório de Química de Produtos Naturais e Bioativos, Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana, Avenida Transnordestina s/n, CEP 44036-900 Feira de Santana, Bahia, Brazil c Hospital São Rafael, Av. São Rafael 2152, CEP 41253-190 Salvador, Bahia, Brazil d Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Geremoabo s/n, CEP 40170-290 Salvador, Bahia, Brazil article info abstract Article history: Aim of study: Blechnum occidentale L. is a terrestrial fern that ranges from the United States to South Amer- Received 5 March 2009 ica, and is employed in Brazilian folk medicine. In the present study we investigated the antinociceptive Received in revised form 29 May 2009 and antiinflammatory activities of the methanolic extract of Blechnum occidentale L. (MEB) in animal mod- Accepted 5 June 2009 els of pain and inflammation to support its medicinal use in treatment of inflammatory and pulmonary Available online 12 June 2009 diseases, urinary infections and liver diseases. Materials and methods: The antinociceptive activity of MEB was evaluated using the writhing, formalin, Keywords: and tail flick tests.
    [Show full text]
  • The Fern Family Blechnaceae: Old and New
    ANDRÉ LUÍS DE GASPER THE FERN FAMILY BLECHNACEAE: OLD AND NEW GENERA RE-EVALUATED, USING MOLECULAR DATA Tese apresentada ao Programa de Pós-Graduação em Biologia Vegetal do Departamento de Botânica do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Doutor em Biologia Vegetal. Área de Concentração Taxonomia vegetal BELO HORIZONTE – MG 2016 ANDRÉ LUÍS DE GASPER THE FERN FAMILY BLECHNACEAE: OLD AND NEW GENERA RE-EVALUATED, USING MOLECULAR DATA Tese apresentada ao Programa de Pós-Graduação em Biologia Vegetal do Departamento de Botânica do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Doutor em Biologia Vegetal. Área de Concentração Taxonomia Vegetal Orientador: Prof. Dr. Alexandre Salino Universidade Federal de Minas Gerais Coorientador: Prof. Dr. Vinícius Antonio de Oliveira Dittrich Universidade Federal de Juiz de Fora BELO HORIZONTE – MG 2016 Gasper, André Luís. 043 Thefern family blechnaceae : old and new genera re- evaluated, using molecular data [manuscrito] / André Luís Gasper. – 2016. 160 f. : il. ; 29,5 cm. Orientador: Alexandre Salino. Co-orientador: Vinícius Antonio de Oliveira Dittrich. Tese (doutorado) – Universidade Federal de Minas Gerais, Departamento de Botânica. 1. Filogenia - Teses. 2. Samambaia – Teses. 3. RbcL. 4. Rps4. 5. Trnl. 5. TrnF. 6. Biologia vegetal - Teses. I. Salino, Alexandre. II. Dittrich, Vinícius Antônio de Oliveira. III. Universidade Federal de Minas Gerais. Departamento de Botânica. IV. Título. À Sabrina, meus pais e a vida, que não se contém! À Lucia Sevegnani, que não pode ver esta obra concluída, mas que sempre foi motivo de inspiração.
    [Show full text]
  • Brisbane Native Plants by Suburb
    INDEX - BRISBANE SUBURBS SPECIES LIST Acacia Ridge. ...........15 Chelmer ...................14 Hamilton. .................10 Mayne. .................25 Pullenvale............... 22 Toowong ....................46 Albion .......................25 Chermside West .11 Hawthorne................. 7 McDowall. ..............6 Torwood .....................47 Alderley ....................45 Clayfield ..................14 Heathwood.... 34. Meeandah.............. 2 Queensport ............32 Trinder Park ...............32 Algester.................... 15 Coopers Plains........32 Hemmant. .................32 Merthyr .................7 Annerley ...................32 Coorparoo ................3 Hendra. .................10 Middle Park .........19 Rainworth. ..............47 Underwood. ................41 Anstead ....................17 Corinda. ..................14 Herston ....................5 Milton ...................46 Ransome. ................32 Upper Brookfield .......23 Archerfield ...............32 Highgate Hill. ........43 Mitchelton ...........45 Red Hill.................... 43 Upper Mt gravatt. .......15 Ascot. .......................36 Darra .......................33 Hill End ..................45 Moggill. .................20 Richlands ................34 Ashgrove. ................26 Deagon ....................2 Holland Park........... 3 Moorooka. ............32 River Hills................ 19 Virginia ........................31 Aspley ......................31 Doboy ......................2 Morningside. .........3 Robertson ................42 Auchenflower
    [Show full text]
  • Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China
    diversity Article Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China Xiaohua Dai 1,2,* , Chunfa Chen 1, Zhongyang Li 1 and Xuexiong Wang 1 1 Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; [email protected] (C.C.); [email protected] (Z.L.); [email protected] (X.W.) 2 National Navel-Orange Engineering Research Center, Ganzhou 341000, China * Correspondence: [email protected] or [email protected]; Tel.: +86-137-6398-8183 Received: 16 March 2020; Accepted: 30 March 2020; Published: 1 April 2020 Abstract: Human disturbances are greatly threatening to the biodiversity of vascular plants. Compared to seed plants, the diversity patterns of ferns have been poorly studied along disturbance gradients, including aspects of their taxonomic, phylogenetic, and functional diversity. Longnan County, a biodiversity hotspot in the subtropical zone in South China, was selected to obtain a more thorough picture of the fern–disturbance relationship, in particular, the taxonomic, phylogenetic, and functional diversity of ferns at different levels of disturbance. In 90 sample plots of 5 5 m2 along roadsides × at three sites, we recorded a total of 20 families, 50 genera, and 99 species of ferns, as well as 9759 individual ferns. The sample coverage curve indicated that the sampling effort was sufficient for biodiversity analysis. In general, the taxonomic, phylogenetic, and functional diversity measured by Hill numbers of order q = 0–3 indicated that the fern diversity in Longnan County was largely influenced by the level of human disturbance, which supports the ‘increasing disturbance hypothesis’.
    [Show full text]
  • Blechnum Vulcanicum Complex
    Volume 22: 153–156 ELOPEA Publication date: 20 September 201 9 T dx.doi.org/10.7751/telopea14000 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) New combinations in Cranllia (Blechnaceae: Polypodiopsida) for recent segregates of the Blechnum vulcanicum complex Peter J. de Lange1 and Barbara Parris2 1School of Environmental & Animal Sciences, Unitec Institute of Technology, Private Bag 92025, Victoria Street West, Auckland 1142 2Fern Research Foundation, 21 James Kemp Place, Kerikeri, North Auckland 0230 Corresponding author: [email protected] Abstract New combinations in Cranllia (Blechnaceae: Polypodiopsida) are provided for: Blechnum aequabile T.C.Chambers, B. humile T.C.Chambers, B. megavulcanicum T.C.Chambers, Blechnum nukuhivense E.D.Br., B. phanerophlebium Baker ex C.Chr., B. venosum Copel., Blechnum vulcanicum var. feani E.D.Br. (B. feani (E.D.Br.) T.C.Chambers), and Blechnum vulcanicum var. tovii E.D.Br. (B. tovii (E.D.Br.) T.C.Chambers) and Lomaria deltoides Colenso (Blechnum deltoides (Colenso) T.C.Chambers, following the generic classication accepted by the Pteridophyte Phylogeny Group. Introduction Chambers and Wilson (2019) revised Blechnum vulcanicum (Blume) Kuhn oering a narrower circumscription of that species recognising three new species and reinstating three species previously treated as synonyms of B. vulcanicum. In their paper the authors adopted the broad ‘traditional, inclusive view’ of the Blechnaceae because this was ‘favoured by the senior author’ (see Chambers and Wilson 2019, p. 43). Chambers and Wilson (2019) did note however, that under the classication of Gasper et al.
    [Show full text]
  • Doodia Australis
    Doodia australis COMMON NAME Rasp fern SYNONYMS Doodia media subsp. australis Parris; Doodia kunthiana sensu A.Cunn.; Doodia australis (Parris) Parris, Blechnum parrisiae Christenh. FAMILY Blechnaceae AUTHORITY Doodia australis (Parris) Parris FLORA CATEGORY Vascular – Native ENDEMIC TAXON No ENDEMIC GENUS Kerikeri. Photographer: John Barkla No ENDEMIC FAMILY No STRUCTURAL CLASS Ferns NVS CODE DOOAUS CHROMOSOME NUMBER 2n = 128 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened DISTRIBUTION Indigenous. Kermadec Islands (Raoul and Macauley Islands). New Coromandel. Dec 1982. Photographer: Jeremy Zealand: Three Kings, North and South Islands from Te Paki south to Rolfe Wellington, the Marlborough Sounds, north-west Nelson and Banks Peninsula. Abundant north of the Waikato, otherwise scarce. Present in Australia, Norfolk and Lord Howe Islands. HABITAT Coastal to lowland in open or forested sites, within light scrub, in rough pasture, and even known as a weedy fern of urban gardens and environments. FEATURES Vegetative reproduction by stolons or shortly branching rhizome. Rhizome rarely prostrate and creeping; clad in dense black scales. Fertile and sterile fronds mostly similar sometimes moderately dimorphic. Fronds more or less erect or sterile fronds sometimes inclined to prostrate; harsh; lamina 110-600 mm long. Stipes and raches bearing brown scales, these more persistent at the stipe base though mostly shed at frond maturation; pubescent. Lower pinnae attached by costae, sometimes with auricles developed, or very rarely adnate to the rachis, lowest pair rarely longer than the pairs immediately above them; middle pinnae usually completely, but often partly, adnate, occasionally decurrent, rarely auriculate; upper pinnae adnate to decurrent.
    [Show full text]
  • Fern Classification
    16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed.
    [Show full text]
  • Doodia Hindii ( Blechnaceae) a New Species from North Eastern New South Wales, Australia
    Telopea 12(2) 257–261 Doodia hindii ( Blechnaceae) a new species from north eastern New South Wales, Australia T. Carrick Chambers National Herbarium of NSW, Mrs Macquaries Road, Sydney, NSW 2000, Australia Email: [email protected] Abstract Doodia hindii Tindale ex T.C.Chambers is described for the first time. This is a rarely collected species from rainforest in mountain regions of north eastern New South Wales, bringing to nine the number of species of Doodia in Australia . Introduction The genus Doodia (Blechnaceae) is estimated to contain more than 30 species distributed through Australasia, Papuasia, Malesia, Sri Lanka and the Pacific region extending north east to Hawaii and as far east as Easter Island (Parris 1972, 1998). Hybrids have been reported among some of the species especially in the D. caudata complex (Andrews 1990). Eight species have been defined by Parris (1998) in the Flora of Australia treatment. By modifying the key provided there, this additional (ninth) Australian taxon can be accommodated as follows (modifications are in italics): 4: Numerous strongly reduced basal pinnae/segments present; abaxial surface of pinnae/segments mid vein either with or without tubercles .............................................................................. 5 5 Rhizome erect, forming caudex up to 30 cm ................................................ 1. D. maxima 5: Rhizome short to long creeping; tubercles present on stipe .......................... 5. D. australis 5a Rhizome short (but may develop an erect
    [Show full text]
  • Blechnum Spicant Joe Sime
    THE NEWSLETTER OF THE SHADE AND WOODLAND PLANTS GROUP February 2019 Plant of the Month: Blechnum spicant Joe Sime It is at this time of the year when the truly evergreen ferns come into their own, and one of the best of these is Blechnum spicant. This is a widespread species occurring in western North America, N.E. Asia and Europe. It is known as the deer fern or the hard fern. Like other members of the genus it produces two types of fronds: low growing, green sterile fronds about 18 ins long that form a bright mat at this time of the year and are shown in the photo, and taller (up to 3 ft) upright, fertile fronds growing from the centre of the clump. Once the spores are cast in early autumn these die back, and can be trimmed off if you are a tidy gardener. It is a trouble free plant accepting any spot in full or part shade, although it would like some moisture occasionally. The one shown is by a path at the foot of a young oak tree. They are said to divide easily (I have not tried) and to grow quite well from spore. And if you are hungry, the North American Indians used to eat the roots and make tea from the fronds! Epimedium (a love affair!) Colin Moat It’s always quite interesting when putting together a piece like this to hark back to when you first became attracted to the plant you are writing about. It happened probably more than 20 years ago at a plant fair, and I was wowed by seeing a fabulous display offered by Europa Nursery (then based in London but they moved to Devon, and, I believe, closed their nursery).
    [Show full text]
  • A Revised Family-Level Classification for Eupolypod II Ferns (Polypodiidae: Polypodiales)
    TAXON 61 (3) • June 2012: 515–533 Rothfels & al. • Eupolypod II classification A revised family-level classification for eupolypod II ferns (Polypodiidae: Polypodiales) Carl J. Rothfels,1 Michael A. Sundue,2 Li-Yaung Kuo,3 Anders Larsson,4 Masahiro Kato,5 Eric Schuettpelz6 & Kathleen M. Pryer1 1 Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, U.S.A. 2 The Pringle Herbarium, Department of Plant Biology, University of Vermont, 27 Colchester Ave., Burlington, Vermont 05405, U.S.A. 3 Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan 4 Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, 752 36, Uppsala, Sweden 5 Department of Botany, National Museum of Nature and Science, Tsukuba 305-0005, Japan 6 Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, North Carolina 28403, U.S.A. Carl J. Rothfels and Michael A. Sundue contributed equally to this work. Author for correspondence: Carl J. Rothfels, [email protected] Abstract We present a family-level classification for the eupolypod II clade of leptosporangiate ferns, one of the two major lineages within the Eupolypods, and one of the few parts of the fern tree of life where family-level relationships were not well understood at the time of publication of the 2006 fern classification by Smith & al. Comprising over 2500 species, the composition and particularly the relationships among the major clades of this group have historically been contentious and defied phylogenetic resolution until very recently. Our classification reflects the most current available data, largely derived from published molecular phylogenetic studies.
    [Show full text]