Flea Beetle: Organic Control Options
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State 12-2009 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson Wichita State University, [email protected] Darcy E. Oishi 2Hawaii Department of Agriculture, Plant Pest Control Branch, Honolulu, [email protected] Brett C. Ratcliffe University of Nebraska-Lincoln, [email protected] Grant T. McQuate USDA-ARS-PBARC, U.S. Pacific Basin Agricultural Research Center, Hilo, HI, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Jameson, Mary Liz; Oishi, Darcy E.; Ratcliffe, Brett C.; and McQuate, Grant T., "Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii" (2009). Papers in Entomology. 147. https://digitalcommons.unl.edu/entomologypapers/147 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AProcddition. HawaiianAl inv AEsiventomol scA.r SAocbs. in(2009) HAwA 41:25–30ii 25 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson1, Darcy E. Oishi2, Brett C. Ratcliffe3, and Grant T. McQuate4 1Wichita State University, Department of Biological Sciences, 537 Hubbard Hall, Wichita, Kansas 67260 [email protected]; 2Hawaii Department of Agriculture, Plant Pest Control Branch, 1428 South King St., Honolulu, HI 96814 [email protected]; 3University of Nebraska State Museum, Systematics Research Collections, W436 Nebraska Hall, University of Nebraska, Lincoln, Nebraska 68588 [email protected]; 4USDA-ARS-PBARC, U.S. -
Mountain Pine Beetle Voltinism and Life History Characteristics Across Latitudinal and Elevational Gradients in the Western United States
For. Sci. 60(3):434–449 FUNDAMENTAL RESEARCH http://dx.doi.org/10.5849/forsci.13-056 entomology & pathology Mountain Pine Beetle Voltinism and Life History Characteristics across Latitudinal and Elevational Gradients in the Western United States Barbara Bentz, James Vandygriff, Camille Jensen, Tom Coleman, Patricia Maloney, Sheri Smith, Amanda Grady, and Greta Schen-Langenheim Substantial genetic variation in development time is known to exist among mountain pine beetle (Dendroctonus ponderosae Hopkins) populations across the western United States. The effect of this variation on geographic patterns in voltinism (generation time) and thermal requirements to produce specific voltinism pathways have not been investigated. The influence of voltinism on fitness traits, body size, and sex ratio is also unclear. We monitored mountain pine beetle voltinism, adult body size, sex ratio, and air temperatures at sites across latitudinal and elevational gradients in the western United States. With the exception of two sites at the coolest and warmest locations, the number of days required to complete a generation was similar. Thermal units required to achieve a generation, however, were significantly less for individuals at the coolest sites. Evolved adaptations explain this pattern, including developmental rates and thresholds that serve to synchronize cohorts and minimize cold-sensitive life stages in winter. These same adaptations reduce the capacity of mountain pine beetle at the warmest sites to take full advantage of increased thermal units, limiting the capacity for bivoltinism within the current realized distribution. Temperature was not correlated with adult size and sex ratio, and size was greatest in host trees other than lodgepole pine (Pinus contorta Dougl.). -
Darkling Beetles and Mealworms Theresa A
Darkling Beetles and Mealworms Theresa A. Dellinger and Eric R. Day, Department of Entomology, Virginia Tech Description Darkling beetles belong in the beetle family Tenebrionidae, which consists of more than 20,000 species of beetles. Adult darkling beetles widely range in shape and size, with most measuring from 2 – 19 mm (0.13” – 0.75”). Adults are usually a reddish-brown to brownish-black in color and can be shiny or dull. The elytra (the wing covers) can be smooth, grooved, or otherwise sculptured. Most do not have colorful patterns on their wing covers. Adults are most active at night and tend to avoid bright lights. Darkling beetle larvae are often referred to as mealworms or false wireworms. They are long, hard-bodied grubs with a cylindrical shape and are shiny yellow-brown to darKer brown in color. They are active crawlers. Yellow mealworm larva, top. Dark mealworm larva, bottom. Clemson University-USDA Cooperative Adult yellow mealworm, Tenebrio molitor. Extension Slide Series, Bugwood.org. Clemson University-USDA Cooperative Extension Slide Series, Bugwood.org. Life Cycle Darkling beetles have a complete life cycle with egg, larval, pupal, and adult stages. Most species of darkling beetles have a slow rate of development and may live for a year as an adult. Species living on grains or other stored products may develop faster. Habitat/Distribution Darkling beetles are found throughout the world except for places with very cold climates. They are scavengers and omnivores, feeding on decomposing plant material, dead insects, fungi, and stored products. Only a handful of darkling beetles are considered pests; the vast majority of them live in the wild and pose no harm. -
Altica Tombacina</Em>
Linfield University DigitalCommons@Linfield Jane Claire Dirks-Edmunds Documents Jane Claire Dirks-Edmunds Collection 1965 Habits and Life History of the Bronze Flea Beetle, Altica tombacina (Mannerheim) (Coleoptera-Chrysomelidae) Jane C. Dirks-Edmunds Follow this and additional works at: https://digitalcommons.linfield.edu/jcde_docs Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Dirks-Edmunds, Jane C., "Habits and Life History of the Bronze Flea Beetle, Altica tombacina (Mannerheim) (Coleoptera-Chrysomelidae)" (1965). Jane Claire Dirks-Edmunds Documents. Published Version. Submission 24. https://digitalcommons.linfield.edu/jcde_docs/24 This Published Version is protected by copyright and/or related rights. It is brought to you for free via open access, courtesy of DigitalCommons@Linfield, with permission from the rights-holder(s). Your use of this Published Version must comply with the Terms of Use for material posted in DigitalCommons@Linfield, or with other stated terms (such as a Creative Commons license) indicated in the record and/or on the work itself. For more information, or if you have questions about permitted uses, please contact [email protected]. Habits and Life History of the Bronze Flea Beetle, Attica tombacina (Mannerheim) ( Coleoptera -Chrysomelidae) JANE C. DIRKS-EDMUNDS Department of Biology, Linfield College McMinnville, Oregon N THE summer of 1959 during an ecological study on Saddleback Moun I tain in the Oregon Coast Range in Northwestern Oregon, a bronze flea beetle, which proved to be Altica tombacina (Mannerheim), was found feed ing extensively on the fireweed plant, Epilobium angustifolium L. Corres pondence with Dr. Louis G. Gentner, a recognized authority on the genus Altica, concerning identification of the beetle disclosed that very little was known about the life history or habits of this species. -
Biological Control of Paterson's Curse with the Tap-Root Flea Beetle (DSE Vic)
January 1999 Biological control of Paterson's curse LC0155 with the taproot flea beetle ISSN 1329-833X Keith Turnbull Research Institute, Frankston Common and scientific names laying within a few weeks. Some adults may survive until late in spring. Paterson’s curse taproot flea beetle Eggs are laid on and around the crown of the plant. Larvae Longitarsus echii Koch (grubs) hatch after about three weeks, depending on the Family Chrysomelidae, leaf beetles environmental temperature. Background The larvae initially feed on the plant crown and leaf stalks, and then descend into the taproot where they feed Paterson’s curse (Salvation Jane), Echium plantagineum, is internally. After three months the larvae leave the root and a noxious weed of European origin found through much of pupate in the soil. Around one month later, they transform Victoria. It is a Regionally Controlled Weed in all into adults, which remain inactive in earthen cells in the Victorian Catchment and Land Protection Regions except soil until winter. Mallee. Landholders in these areas must take all reasonable steps to control and prevent the spread of this weed on their land and the roadsides which adjoin their land. A national program for biological control of Paterson’s curse involves the establishment of populations of the weed’s natural enemies and the redistribution of them to other sites as populations increase. A cooperative project between CSIRO and DNRE has led to the release of the Paterson’s curse taproot feeding flea beetle, Longitarsus echii, in Victoria. The flea beetle has been tested to ensure it is specific to Paterson’s curse and presents no danger to native plants or plants of economic importance. -
Corn Flea Beetle
Pest Profile Photo credit: North Central Branch-Entomological Society of America, UNL-Entomology Extension Common Name: Corn flea beetle Scientific Name: Chaetocnema pulicaria Order and Family: Coleoptera, Chrysomelidae Size and Appearance: Length (mm) Appearance white have a pointy end Egg ~0.35 darken slightly in color before hatching white slimly shaped Larva/Nymph < 9 cylindrical prothorax and last abdominal segment are slightly darkened small shiny black Adult < 2 enlarged hind legs white Pupa (if soft in texture applicable) gets dark before development is complete Type of feeder (Chewing, sucking, etc.): Chewing mouthparts Host plant/s: Corn is the preferred host plant, but they are also found on a number of different grass types, oats, Timothy, barley and wheat. Description of Damage (larvae and adults): The adult corn flea beetle injures corn plants by removing leaf tissue and by transmitting pathogenic bacteria. Injury by the adults appears as scratches in the upper and lower surfaces of the leaf, usually parallel to the veins. They feed on both the upper and the lower epidermis of corn leaves, but they do not chew completely through the leaves. The scratches rarely result in economy injury. The leaves of severely injured plants appear whitish or silvery. More importantly, the beetles transmit the bacterium Erwinia stewartia, the casual organism of Stewart’s wilt, to susceptible varieties of corn. Field corn infested with Stewart’s disease will show little sign of disease until late in the summer when numerous leaf lesions will appear on the leaves. The result is often small ears or no ears at all. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
CDA Leafy Spurge Brochure
Frequently Asked Questions About the Palisade Insectary Mission Statement How do I get Aphthona beetles? You can call the Colorado Department of We are striving to develop new, effective Agriculture Insectary in Palisade at (970) ways to control non-native species of plants 464-7916 or toll free at (866) 324-2963 and and insects that have invaded Colorado. get on the request list. We are doing this through the use of biological controls which are natural, non- When are the insects available? toxic, and environmentally friendly. We collect and distribute adult beetles in June and July. The Leafy Spurge Program In Palisade How long will it take for them to control my leafy spurge? The Insectary has been working on leafy Biological Control You can usually see some damage at the spurge bio-control since 1988. Root feeding point of release the following year, but it flea beetles are readily available for release of typically takes three to ten years to get in early summer. Three other insect species widespread control. have been released and populations are growing with the potential for future Leafy Spurge What else do the beetles feed on? distribution. All of the leafy spurge feeding The beetles will feed on leafy spurge and insects are maintained in field colonies. cypress spurge. They were held in Additional research is underway to explore quarantine and tested to ensure they would the potential use of soilborne plant not feed on other plants before they were pathogens as biocontrol agents. imported and released in North America What makes the best release site? A warm dry location with moderate leafy spurge growth is best. -
The Life History and Management of Phyllotreta Cruciferae and Phyllotreta Striolata (Coleoptera: Chrysomelidae), Pests of Brassicas in the Northeastern United States
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2004 The life history and management of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae), pests of brassicas in the northeastern United States. Caryn L. Andersen University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Andersen, Caryn L., "The life history and management of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae), pests of brassicas in the northeastern United States." (2004). Masters Theses 1911 - February 2014. 3091. Retrieved from https://scholarworks.umass.edu/theses/3091 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE LIFE HISTORY AND MANAGEMENT OF PHYLLOTRETA CRUCIFERAE AND PHYLLOTRETA STRIOLATA (COLEOPTERA: CHRYSOMELIDAE), PESTS OF BRASSICAS IN THE NORTHEASTERN UNITED STATES A Thesis Presented by CARYN L. ANDERSEN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2004 Entomology © Copyright by Caryn L. Andersen 2004 All Rights Reserved THE LIFE HISTORY AND MANAGEMENT OF PHYLLOTRETA CRUCIFERAE AND PHYLLOTRETA STRIOLATA (COLEOPTERA: CHRYSOMELIDAE), PESTS OF BRASSICAS IN THE NORTHEASTERN UNITED STATES A Thesis Presented by CARYN L. ANDERSEN Approved as to style and content by: Tt, Francis X. Mangan, Member Plant, Soil, and Insect Sciences DEDICATION To my family and friends. ACKNOWLEDGMENTS I would like to thank my advisors, Roy Van Driesche and Ruth Hazzard, for their continual support, encouragement and thoughtful advice. -
Agent: Flea Beetle Longitarsus Jacobaeae Plant Species Attacked: Tansy Ragwort Senecio Jacobaea
Agent: Flea beetle Plant species attacked: Tansy ragwort Longitarsus jacobaeae Senecio jacobaea Impact on target plant: The adults feed on the foliage and cause significant mortality of rosettes during the winter months. The larvae feed in the roots and the leaf petioles. Collection and release: Use a motorized vacuum unit to suck adults from rosettes in the fall. Releases of 100-500 are recommended. Because the beetle is so widespread, redistribution in western Oregon is unnecessary. Distribution: The beetle has been released in 24 Oregon counties and is established in 21. History: The ragwort flea beetle Longitarsus jacobaeae, introduced in 1971, the workhorse of the ragwort program, has reduced ragwort density by 95% in western Oregon. The combination of the cinnabar moth and flea beetle has nearly eliminated large outbreaks of flowering ragwort in many areas in western Oregon. Occasional flare-ups of ragwort reoccur, but the insects usually control the plants within a couple of years. Plant competition is an important factor in maintaining biocontrol of ragwort. In 2007, cooperative research project with Dr. Mark Schwarzländer and staff (U of ID), looked into the feasibility of using the Swiss biotype of the flea beetle to control infestations in Eastern Oregon, where the Italian biotype is ineffective. Releases of the Swiss biotype were made in Umatilla County in 2007 and in Umatilla and Union Counties in 2008. The insect readily established in similar habitats in Idaho and Montana. Monitoring in 2010 and 2011 for the Swiss biotype did not show that that the beetles established in eastern Oregon. Flea beetle populations can exist where host densities are low. -
Altitudinal Variation of Dung Beetle (Scarabaeidae: Scarabaeinae
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2005) 14, 327–337 Blackwell Publishing, Ltd. RESEARCH Altitudinal variation of dung beetle PAPER (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes Federico Escobar1,2,*, Jorge M. Lobo3 and Gonzalo Halffter1 1Departamento de Biodiversidad y ABSTRACT Comportamiento Animal, Instituto de Ecología, Aim We describe the changes in species richness, rarity and composition with alti- A.C., Apartado Postal 63, 91000 Xalapa, tude, and explore whether the differences in Scarabaeinae dung beetle composition Veracruz, México; 2Programa de Inventarios de Biodiversidad, Instituto Humboldt, Apartado along five altitudinal transects of the same mountain range are related to altitude or Aéreo 8693 Santafé de Bogotá, Colombia; and if there are interregional differences in these altitudinal gradients. 3 Departamento de Biodiversidad y Biología Location Field work was carried out on the eastern slope of the eastern Cordillera, Evolutiva, Museo Nacional de Ciencias Colombian Andes, between Tamá Peak to the north, in the Tamá National Park Naturales (CSIC), c/José Gutiérrez Abascal, 2. (07°23′ N, 72°23′ W) and the San Miguel River (00°28′ N, 77°17′ W) to the south. E-28006 Madrid, Spain Methods Sampling was carried out between February 1997 and November 1999 in five regions spanning elevation gradients. In each gradient, six sites were chosen at 250 m intervals between 1000 and 2250 m a.s.l. Results We found a curvilinear relationship between altitude and mean species rich- ness, with a peak in richness at middle elevations. However, the diversity of dung beetle assemblages does not seem to be related to the interregional differences in environ- mental conditions. -
A General Study of the Mint Flea-Beetle, Longitarus Waterhousei Kutsch
AN ABSTRACT OF THE THESIS OF Leung, Yuk Viaan . S. Eitomo1ogy ---------------------- for the -------- in --------------- (Naine) (Degree) (Majr) La'r 11th 1938 Date Thesis presented-- --------- Title ------ Abstract APProved:L (Major Professor) The nii.nt flea-beetle, Lonitarsuswaterhouei,is a new dilsoovery in Ore:on. It mi:ht have been brought in in the infested roots froi Michigan. As far a is iciown the beetle attacks the raint family only. The roatest damage is done by larvae which feed on the epidermis of the small rooUets and tunnel through the large roots in the spring, causing the abnornial growth of the plant or killing the plant coplete1y ir. sorne cases. The adult beetles feed on the epidermis of the fo1iace and frequently riddle the loaves vth tiny holes. There is but one generation a year. The insects overwinter in the egg stage. The adult beetles appeared in the field sometime in July. The females begin to deposit eggs a month or so after emergence. The larvae will hatch at any time after spring approaches. After the larvae are fully developed, they leave the roots to pupate in the soll. The stae thkes about 26 days. Several control methods are suyested, A GEITERíL STUDY OF TI MINT FLEA-BEETLE, LONGITRSUS VATEHHOUSEI J11TSCH by YUK iAN LEUNG A THESIS submitted to the OREGON STATE GRICULTURL COLLEGE in partial fulfillment of the reauirements for the degree of lIASTER OF SCIENCE May 1938 APPROVED: Head of Department of Entomology In Charge of i:ajor Chairman of School Graduate Coniittee Chairman of College Graduate Council TABLE OF CONTENTS Introduction ..........