A Visual Companion to Hatcher's Notes on Basic 3-Manifold Topology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Note on 6-Regular Graphs on the Klein Bottle Michiko Kasai [email protected]
Theory and Applications of Graphs Volume 4 | Issue 1 Article 5 2017 Note On 6-regular Graphs On The Klein Bottle Michiko Kasai [email protected] Naoki Matsumoto Seikei University, [email protected] Atsuhiro Nakamoto Yokohama National University, [email protected] Takayuki Nozawa [email protected] Hiroki Seno [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag Part of the Discrete Mathematics and Combinatorics Commons Recommended Citation Kasai, Michiko; Matsumoto, Naoki; Nakamoto, Atsuhiro; Nozawa, Takayuki; Seno, Hiroki; and Takiguchi, Yosuke (2017) "Note On 6-regular Graphs On The Klein Bottle," Theory and Applications of Graphs: Vol. 4 : Iss. 1 , Article 5. DOI: 10.20429/tag.2017.040105 Available at: https://digitalcommons.georgiasouthern.edu/tag/vol4/iss1/5 This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in Theory and Applications of Graphs by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Note On 6-regular Graphs On The Klein Bottle Authors Michiko Kasai, Naoki Matsumoto, Atsuhiro Nakamoto, Takayuki Nozawa, Hiroki Seno, and Yosuke Takiguchi This article is available in Theory and Applications of Graphs: https://digitalcommons.georgiasouthern.edu/tag/vol4/iss1/5 Kasai et al.: 6-regular graphs on the Klein bottle Abstract Altshuler [1] classified 6-regular graphs on the torus, but Thomassen [11] and Negami [7] gave different classifications for 6-regular graphs on the Klein bottle. In this note, we unify those two classifications, pointing out their difference and similarity. -
An Introduction to Topology the Classification Theorem for Surfaces by E
An Introduction to Topology An Introduction to Topology The Classification theorem for Surfaces By E. C. Zeeman Introduction. The classification theorem is a beautiful example of geometric topology. Although it was discovered in the last century*, yet it manages to convey the spirit of present day research. The proof that we give here is elementary, and its is hoped more intuitive than that found in most textbooks, but in none the less rigorous. It is designed for readers who have never done any topology before. It is the sort of mathematics that could be taught in schools both to foster geometric intuition, and to counteract the present day alarming tendency to drop geometry. It is profound, and yet preserves a sense of fun. In Appendix 1 we explain how a deeper result can be proved if one has available the more sophisticated tools of analytic topology and algebraic topology. Examples. Before starting the theorem let us look at a few examples of surfaces. In any branch of mathematics it is always a good thing to start with examples, because they are the source of our intuition. All the following pictures are of surfaces in 3-dimensions. In example 1 by the word “sphere” we mean just the surface of the sphere, and not the inside. In fact in all the examples we mean just the surface and not the solid inside. 1. Sphere. 2. Torus (or inner tube). 3. Knotted torus. 4. Sphere with knotted torus bored through it. * Zeeman wrote this article in the mid-twentieth century. 1 An Introduction to Topology 5. -
CERF THEORY for GRAPHS Allen Hatcher and Karen Vogtmann
CERF THEORY FOR GRAPHS Allen Hatcher and Karen Vogtmann ABSTRACT. We develop a deformation theory for k-parameter families of pointed marked graphs with xed fundamental group Fn. Applications include a simple geometric proof of stability of the rational homology of Aut(Fn), compu- tations of the rational homology in small dimensions, proofs that various natural complexes of free factorizations of Fn are highly connected, and an improvement on the stability range for the integral homology of Aut(Fn). §1. Introduction It is standard practice to study groups by studying their actions on well-chosen spaces. In the case of the outer automorphism group Out(Fn) of the free group Fn on n generators, a good space on which this group acts was constructed in [3]. In the present paper we study an analogous space on which the automorphism group Aut(Fn) acts. This space, which we call An, is a sort of Teichmuller space of nite basepointed graphs with fundamental group Fn. As often happens, specifying basepoints has certain technical advantages. In particu- lar, basepoints give rise to a nice ltration An,0 An,1 of An by degree, where we dene the degree of a nite basepointed graph to be the number of non-basepoint vertices, counted “with multiplicity” (see section 3). The main technical result of the paper, the Degree Theorem, implies that the pair (An, An,k)isk-connected, so that An,k behaves something like the k-skeleton of An. From the Degree Theorem we derive these applications: (1) We show the natural stabilization map Hi(Aut(Fn); Z) → Hi(Aut(Fn+1); Z)isan isomorphism for n 2i + 3, a signicant improvement on the quadratic dimension range obtained in [5]. -
Stable Homology of Automorphism Groups of Free Groups
Annals of Mathematics 173 (2011), 705{768 doi: 10.4007/annals.2011.173.2.3 Stable homology of automorphism groups of free groups By Søren Galatius Abstract Homology of the group Aut(Fn) of automorphisms of a free group on n generators is known to be independent of n in a certain stable range. Using tools from homotopy theory, we prove that in this range it agrees with homology of symmetric groups. In particular we confirm the conjecture that stable rational homology of Aut(Fn) vanishes. Contents 1. Introduction 706 1.1. Results 706 1.2. Outline of proof 708 1.3. Acknowledgements 710 2. The sheaf of graphs 710 2.1. Definitions 710 2.2. Point-set topological properties 714 3. Homotopy types of graph spaces 718 3.1. Graphs in compact sets 718 3.2. Spaces of graph embeddings 721 3.3. Abstract graphs 727 3.4. BOut(Fn) and the graph spectrum 730 4. The graph cobordism category 733 4.1. Poset model of the graph cobordism category 735 4.2. The positive boundary subcategory 743 5. Homotopy type of the graph spectrum 750 5.1. A pushout diagram 751 5.2. A homotopy colimit decomposition 755 5.3. Hatcher's splitting 762 6. Remarks on manifolds 764 References 766 S. Galatius was supported by NSF grants DMS-0505740 and DMS-0805843, and the Clay Mathematics Institute. 705 706 SØREN GALATIUS 1. Introduction 1.1. Results. Let F = x ; : : : ; x be the free group on n generators n h 1 ni and let Aut(Fn) be its automorphism group. -
Part III 3-Manifolds Lecture Notes C Sarah Rasmussen, 2019
Part III 3-manifolds Lecture Notes c Sarah Rasmussen, 2019 Contents Lecture 0 (not lectured): Preliminaries2 Lecture 1: Why not ≥ 5?9 Lecture 2: Why 3-manifolds? + Intro to Knots and Embeddings 13 Lecture 3: Link Diagrams and Alexander Polynomial Skein Relations 17 Lecture 4: Handle Decompositions from Morse critical points 20 Lecture 5: Handles as Cells; Handle-bodies and Heegard splittings 24 Lecture 6: Handle-bodies and Heegaard Diagrams 28 Lecture 7: Fundamental group presentations from handles and Heegaard Diagrams 36 Lecture 8: Alexander Polynomials from Fundamental Groups 39 Lecture 9: Fox Calculus 43 Lecture 10: Dehn presentations and Kauffman states 48 Lecture 11: Mapping tori and Mapping Class Groups 54 Lecture 12: Nielsen-Thurston Classification for Mapping class groups 58 Lecture 13: Dehn filling 61 Lecture 14: Dehn Surgery 64 Lecture 15: 3-manifolds from Dehn Surgery 68 Lecture 16: Seifert fibered spaces 69 Lecture 17: Hyperbolic 3-manifolds and Mostow Rigidity 70 Lecture 18: Dehn's Lemma and Essential/Incompressible Surfaces 71 Lecture 19: Sphere Decompositions and Knot Connected Sum 74 Lecture 20: JSJ Decomposition, Geometrization, Splice Maps, and Satellites 78 Lecture 21: Turaev torsion and Alexander polynomial of unions 81 Lecture 22: Foliations 84 Lecture 23: The Thurston Norm 88 Lecture 24: Taut foliations on Seifert fibered spaces 89 References 92 1 2 Lecture 0 (not lectured): Preliminaries 0. Notation and conventions. Notation. @X { (the manifold given by) the boundary of X, for X a manifold with boundary. th @iX { the i connected component of @X. ν(X) { a tubular (or collared) neighborhood of X in Y , for an embedding X ⊂ Y . -
Arxiv:1611.02363V2 [Math.SG] 4 Oct 2018 Non-Degenerate in a Neighborhood of X (See Section2)
SYMPLECTIC NEIGHBORHOOD OF CROSSING SYMPLECTIC SUBMANIFOLDS ROBERTA GUADAGNI ABSTRACT. This paper presents a proof of the existence of standard symplectic coordinates near a set of smooth, orthogonally intersecting symplectic submanifolds. It is a generaliza- tion of the standard symplectic neighborhood theorem. Moreover, in the presence of a com- pact Lie group G acting symplectically, the coordinates can be chosen to be G-equivariant. INTRODUCTION The main result in this paper is a generalization of the symplectic tubular neighbor- hood theorem (and the existence of Darboux coordinates) to a set of symplectic submani- folds that intersect each other orthogonally. This can help us understand singularities in symplectic submanifolds. Orthogonally intersecting symplectic submanifolds (or, more generally, positively intersecting symplectic submanifolds as described in the appendix) are the symplectic analogue of normal crossing divisors in algebraic geometry. Orthog- onal intersecting submanifolds, as explained in this paper, have a standard symplectic neighborhood. Positively intersecting submanifolds, as explained in the appendix and in [TMZ14a], can be deformed to obtain the same type of standard symplectic neighbor- hood. The result has at least two applications to current research: it yields some intuition for the construction of generalized symplectic sums (see [TMZ14b]), and it describes the symplectic geometry of degenerating families of Kahler¨ manifolds as needed for mirror symmetry (see [GS08]). The application to toric degenerations is described in detail in the follow-up paper [Gua]. While the proofs are somewhat technical, the result is a natural generalization of We- instein’s neighborhood theorem. Given a symplectic submanifold X of (M, w), there ex- ists a tubular neighborhood embedding f : NX ! M defined on a neighborhood of X. -
Ordering Thurston's Geometries by Maps of Non-Zero Degree
ORDERING THURSTON’S GEOMETRIES BY MAPS OF NON-ZERO DEGREE CHRISTOFOROS NEOFYTIDIS ABSTRACT. We obtain an ordering of closed aspherical 4-manifolds that carry a non-hyperbolic Thurston geometry. As application, we derive that the Kodaira dimension of geometric 4-manifolds is monotone with respect to the existence of maps of non-zero degree. 1. INTRODUCTION The existence of a map of non-zero degree defines a transitive relation, called domination rela- tion, on the homotopy types of closed oriented manifolds of the same dimension. Whenever there is a map of non-zero degree M −! N we say that M dominates N and write M ≥ N. In general, the domain of a map of non-zero degree is a more complicated manifold than the target. Gromov suggested studying the domination relation as defining an ordering of compact oriented manifolds of a given dimension; see [3, pg. 1]. In dimension two, this relation is a total order given by the genus. Namely, a surface of genus g dominates another surface of genus h if and only if g ≥ h. However, the domination relation is not generally an order in higher dimensions, e.g. 3 S3 and RP dominate each other but are not homotopy equivalent. Nevertheless, it can be shown that the domination relation is a partial order in certain cases. For instance, 1-domination defines a partial order on the set of closed Hopfian aspherical manifolds of a given dimension (see [18] for 3- manifolds). Other special cases have been studied by several authors; see for example [3, 1, 2, 25]. -
11/29/2011 Principal Investigator: Margalit, Dan
Final Report: 1122020 Final Report for Period: 09/2010 - 08/2011 Submitted on: 11/29/2011 Principal Investigator: Margalit, Dan . Award ID: 1122020 Organization: Georgia Tech Research Corp Submitted By: Margalit, Dan - Principal Investigator Title: Algebra and topology of the Johnson filtration Project Participants Senior Personnel Name: Margalit, Dan Worked for more than 160 Hours: Yes Contribution to Project: Post-doc Graduate Student Undergraduate Student Technician, Programmer Other Participant Research Experience for Undergraduates Organizational Partners Other Collaborators or Contacts Mladen Bestvina, University of Utah Kai-Uwe Bux, Bielefeld University Tara Brendle, University of Glasgow Benson Farb, University of Chicago Chris Leininger, University of Illinois at Urbana-Champaign Saul Schleimer, University of Warwick Andy Putman, Rice University Leah Childers, Pittsburg State University Allen Hatcher, Cornell University Activities and Findings Research and Education Activities: Proved various theorems, listed below. Wrote papers explaining the results. Wrote involved computer program to help explore the quotient of Outer space by the Torelli group for Out(F_n). Gave lectures on the subject of this Project at a conference for graduate students called 'Examples of Groups' at Ohio State University, June Page 1 of 5 Final Report: 1122020 2008. Mentored graduate students at the University of Utah in the subject of mapping class groups. Interacted with many students about the book I am writing with Benson Farb on mapping class groups. Gave many talks on this work. Taught a graduate course on my research area, using a book that I translated with Djun Kim. Organized a special session on Geometric Group Theory at MathFest. Finished book with Benson Farb, published by Princeton University Press. -
Computing Triangulations of Mapping Tori of Surface Homeomorphisms
Computing Triangulations of Mapping Tori of Surface Homeomorphisms Peter Brinkmann∗ and Saul Schleimer Abstract We present the mathematical background of a software package that computes triangulations of mapping tori of surface homeomor- phisms, suitable for Jeff Weeks’s program SnapPea. The package is an extension of the software described in [?]. It consists of two programs. jmt computes triangulations and prints them in a human-readable format. jsnap converts this format into SnapPea’s triangulation file format and may be of independent interest because it allows for quick and easy generation of input for SnapPea. As an application, we ob- tain a new solution to the restricted conjugacy problem in the mapping class group. 1 Introduction In [?], the first author described a software package that provides an en- vironment for computer experiments with automorphisms of surfaces with one puncture. The purpose of this paper is to present the mathematical background of an extension of this package that computes triangulations of mapping tori of such homeomorphisms, suitable for further analysis with Jeff Weeks’s program SnapPea [?].1 ∗This research was partially conducted by the first author for the Clay Mathematics Institute. 2000 Mathematics Subject Classification. 57M27, 37E30. Key words and phrases. Mapping tori of surface automorphisms, pseudo-Anosov au- tomorphisms, mapping class group, conjugacy problem. 1Software available at http://thames.northnet.org/weeks/index/SnapPea.html 1 Pseudo-Anosov homeomorphisms are of particular interest because their mapping tori are hyperbolic 3-manifolds of finite volume [?]. The software described in [?] recognizes pseudo-Anosov homeomorphisms. Combining this with the programs discussed here, we obtain a powerful tool for generating and analyzing large numbers of hyperbolic 3-manifolds. -
Graphs on Surfaces, the Generalized Euler's Formula and The
Graphs on surfaces, the generalized Euler's formula and the classification theorem ZdenˇekDvoˇr´ak October 28, 2020 In this lecture, we allow the graphs to have loops and parallel edges. In addition to the plane (or the sphere), we can draw the graphs on the surface of the torus or on more complicated surfaces. Definition 1. A surface is a compact connected 2-dimensional manifold with- out boundary. Intuitive explanation: • 2-dimensional manifold without boundary: Each point has a neighbor- hood homeomorphic to an open disk, i.e., \locally, the surface looks at every point the same as the plane." • compact: \The surface can be covered by a finite number of such neigh- borhoods." • connected: \The surface has just one piece." Examples: • The sphere and the torus are surfaces. • The plane is not a surface, since it is not compact. • The closed disk is not a surface, since it has a boundary. From the combinatorial perspective, it does not make sense to distinguish between some of the surfaces; the same graphs can be drawn on the torus and on a deformed torus (e.g., a coffee mug with a handle). For us, two surfaces will be equivalent if they only differ by a homeomorphism; a function f :Σ1 ! Σ2 between two surfaces is a homeomorphism if f is a bijection, continuous, and the inverse f −1 is continuous as well. In particular, this 1 implies that f maps simple continuous curves to simple continuous curves, and thus it maps a drawing of a graph in Σ1 to a drawing of the same graph in Σ2. -
Lens Spaces We Introduce Some of the Simplest 3-Manifolds, the Lens Spaces
CHAPTER 10 Seifert manifolds In the previous chapter we have proved various general theorems on three- manifolds, and it is now time to construct examples. A rich and important source is a family of manifolds built by Seifert in the 1930s, which generalises circle bundles over surfaces by admitting some “singular”fibres. The three- manifolds that admit such kind offibration are now called Seifert manifolds. In this chapter we introduce and completely classify (up to diffeomor- phisms) the Seifert manifolds. In Chapter 12 we will then show how to ge- ometrise them, by assigning a nice Riemannian metric to each. We will show, for instance, that all the elliptic andflat three-manifolds are in fact particular kinds of Seifert manifolds. 10.1. Lens spaces We introduce some of the simplest 3-manifolds, the lens spaces. These manifolds (and many more) are easily described using an important three- dimensional construction, called Dehnfilling. 10.1.1. Dehnfilling. If a 3-manifoldM has a spherical boundary com- ponent, we can cap it off with a ball. IfM has a toric boundary component, there is no canonical way to cap it off: the simplest object that we can attach to it is a solid torusD S 1, but the resulting manifold depends on the gluing × map. This operation is called a Dehnfilling and we now study it in detail. LetM be a 3-manifold andT ∂M be a boundary torus component. ⊂ Definition 10.1.1. A Dehnfilling ofM alongT is the operation of gluing a solid torusD S 1 toM via a diffeomorphismϕ:∂D S 1 T. -
A Computation of Knot Floer Homology of Special (1,1)-Knots
A COMPUTATION OF KNOT FLOER HOMOLOGY OF SPECIAL (1,1)-KNOTS Jiangnan Yu Department of Mathematics Central European University Advisor: Andras´ Stipsicz Proposal prepared by Jiangnan Yu in part fulfillment of the degree requirements for the Master of Science in Mathematics. CEU eTD Collection 1 Acknowledgements I would like to thank Professor Andras´ Stipsicz for his guidance on writing this thesis, and also for his teaching and helping during the master program. From him I have learned a lot knowledge in topol- ogy. I would also like to thank Central European University and the De- partment of Mathematics for accepting me to study in Budapest. Finally I want to thank my teachers and friends, from whom I have learned so much in math. CEU eTD Collection 2 Abstract We will introduce Heegaard decompositions and Heegaard diagrams for three-manifolds and for three-manifolds containing a knot. We define (1,1)-knots and explain the method to obtain the Heegaard diagram for some special (1,1)-knots, and prove that torus knots and 2- bridge knots are (1,1)-knots. We also define the knot Floer chain complex by using the theory of holomorphic disks and their moduli space, and give more explanation on the chain complex of genus-1 Heegaard diagram. Finally, we compute the knot Floer homology groups of the trefoil knot and the (-3,4)-torus knot. 1 Introduction Knot Floer homology is a knot invariant defined by P. Ozsvath´ and Z. Szabo´ in [6], using methods of Heegaard diagrams and moduli theory of holomorphic discs, combined with homology theory.