Stable Homology of Automorphism Groups of Free Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CERF THEORY for GRAPHS Allen Hatcher and Karen Vogtmann
CERF THEORY FOR GRAPHS Allen Hatcher and Karen Vogtmann ABSTRACT. We develop a deformation theory for k-parameter families of pointed marked graphs with xed fundamental group Fn. Applications include a simple geometric proof of stability of the rational homology of Aut(Fn), compu- tations of the rational homology in small dimensions, proofs that various natural complexes of free factorizations of Fn are highly connected, and an improvement on the stability range for the integral homology of Aut(Fn). §1. Introduction It is standard practice to study groups by studying their actions on well-chosen spaces. In the case of the outer automorphism group Out(Fn) of the free group Fn on n generators, a good space on which this group acts was constructed in [3]. In the present paper we study an analogous space on which the automorphism group Aut(Fn) acts. This space, which we call An, is a sort of Teichmuller space of nite basepointed graphs with fundamental group Fn. As often happens, specifying basepoints has certain technical advantages. In particu- lar, basepoints give rise to a nice ltration An,0 An,1 of An by degree, where we dene the degree of a nite basepointed graph to be the number of non-basepoint vertices, counted “with multiplicity” (see section 3). The main technical result of the paper, the Degree Theorem, implies that the pair (An, An,k)isk-connected, so that An,k behaves something like the k-skeleton of An. From the Degree Theorem we derive these applications: (1) We show the natural stabilization map Hi(Aut(Fn); Z) → Hi(Aut(Fn+1); Z)isan isomorphism for n 2i + 3, a signicant improvement on the quadratic dimension range obtained in [5]. -
11/29/2011 Principal Investigator: Margalit, Dan
Final Report: 1122020 Final Report for Period: 09/2010 - 08/2011 Submitted on: 11/29/2011 Principal Investigator: Margalit, Dan . Award ID: 1122020 Organization: Georgia Tech Research Corp Submitted By: Margalit, Dan - Principal Investigator Title: Algebra and topology of the Johnson filtration Project Participants Senior Personnel Name: Margalit, Dan Worked for more than 160 Hours: Yes Contribution to Project: Post-doc Graduate Student Undergraduate Student Technician, Programmer Other Participant Research Experience for Undergraduates Organizational Partners Other Collaborators or Contacts Mladen Bestvina, University of Utah Kai-Uwe Bux, Bielefeld University Tara Brendle, University of Glasgow Benson Farb, University of Chicago Chris Leininger, University of Illinois at Urbana-Champaign Saul Schleimer, University of Warwick Andy Putman, Rice University Leah Childers, Pittsburg State University Allen Hatcher, Cornell University Activities and Findings Research and Education Activities: Proved various theorems, listed below. Wrote papers explaining the results. Wrote involved computer program to help explore the quotient of Outer space by the Torelli group for Out(F_n). Gave lectures on the subject of this Project at a conference for graduate students called 'Examples of Groups' at Ohio State University, June Page 1 of 5 Final Report: 1122020 2008. Mentored graduate students at the University of Utah in the subject of mapping class groups. Interacted with many students about the book I am writing with Benson Farb on mapping class groups. Gave many talks on this work. Taught a graduate course on my research area, using a book that I translated with Djun Kim. Organized a special session on Geometric Group Theory at MathFest. Finished book with Benson Farb, published by Princeton University Press. -
Algebraic Topology
Algebraic Topology Vanessa Robins Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200, Australia. email: [email protected] September 11, 2013 Abstract This manuscript will be published as Chapter 5 in Wiley's textbook Mathe- matical Tools for Physicists, 2nd edition, edited by Michael Grinfeld from the University of Strathclyde. The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology. arXiv:1304.7846v2 [math-ph] 10 Sep 2013 1 Contents 1 Introduction 3 2 Homotopy Theory 4 2.1 Homotopy of paths . 4 2.2 The fundamental group . 5 2.3 Homotopy of spaces . 7 2.4 Examples . 7 2.5 Covering spaces . 9 2.6 Extensions and applications . 9 3 Homology 11 3.1 Simplicial complexes . 12 3.2 Simplicial homology groups . 12 3.3 Basic properties of homology groups . 14 3.4 Homological algebra . 16 3.5 Other homology theories . 18 4 Cohomology 18 4.1 De Rham cohomology . 20 5 Morse theory 21 5.1 Basic results . 21 5.2 Extensions and applications . 23 5.3 Forman's discrete Morse theory . 24 6 Computational topology 25 6.1 The fundamental group of a simplicial complex . 26 6.2 Smith normal form for homology . 27 6.3 Persistent homology . 28 6.4 Cell complexes from data . 29 2 1 Introduction Topology is the study of those aspects of shape and structure that do not de- pend on precise knowledge of an object's geometry. -
Some Finiteness Results for Groups of Automorphisms of Manifolds 3
SOME FINITENESS RESULTS FOR GROUPS OF AUTOMORPHISMS OF MANIFOLDS ALEXANDER KUPERS Abstract. We prove that in dimension =6 4, 5, 7 the homology and homotopy groups of the classifying space of the topological group of diffeomorphisms of a disk fixing the boundary are finitely generated in each degree. The proof uses homological stability, embedding calculus and the arithmeticity of mapping class groups. From this we deduce similar results for the homeomorphisms of Rn and various types of automorphisms of 2-connected manifolds. Contents 1. Introduction 1 2. Homologically and homotopically finite type spaces 4 3. Self-embeddings 11 4. The Weiss fiber sequence 19 5. Proofs of main results 29 References 38 1. Introduction Inspired by work of Weiss on Pontryagin classes of topological manifolds [Wei15], we use several recent advances in the study of high-dimensional manifolds to prove a structural result about diffeomorphism groups. We prove the classifying spaces of such groups are often “small” in one of the following two algebro-topological senses: Definition 1.1. Let X be a path-connected space. arXiv:1612.09475v3 [math.AT] 1 Sep 2019 · X is said to be of homologically finite type if for all Z[π1(X)]-modules M that are finitely generated as abelian groups, H∗(X; M) is finitely generated in each degree. · X is said to be of finite type if π1(X) is finite and πi(X) is finitely generated for i ≥ 2. Being of finite type implies being of homologically finite type, see Lemma 2.15. Date: September 4, 2019. Alexander Kupers was partially supported by a William R. -
Experimental Statistics of Veering Triangulations
EXPERIMENTAL STATISTICS OF VEERING TRIANGULATIONS WILLIAM WORDEN Abstract. Certain fibered hyperbolic 3-manifolds admit a layered veering triangulation, which can be constructed algorithmically given the stable lamination of the monodromy. These triangulations were introduced by Agol in 2011, and have been further studied by several others in the years since. We obtain experimental results which shed light on the combinatorial structure of veering triangulations, and its relation to certain topological invariants of the underlying manifold. 1. Introduction In 2011, Agol [Ago11] introduced the notion of a layered veering triangulation for certain fibered hyperbolic manifolds. In particular, given a surface Σ (possibly with punctures), and a pseudo-Anosov homeomorphism ' ∶ Σ → Σ, Agol's construction gives a triangulation ○ ○ ○ ○ T for the mapping torus M' with fiber Σ and monodromy ' = 'SΣ○ , where Σ is the surface resulting from puncturing Σ at the singularities of its '-invariant foliations. For Σ a once-punctured torus or 4-punctured sphere, the resulting triangulation is well understood: it is the monodromy (or Floyd{Hatcher) triangulation considered in [FH82] and [Jør03]. In this case T is a geometric triangulation, meaning that tetrahedra in T can be realized as ideal hyperbolic tetrahedra isometrically embedded in M'○ . In fact, these triangulations are geometrically canonical, i.e., dual to the Ford{Voronoi domain of the mapping torus (see [Aki99], [Lac04], and [Gu´e06]). Agol's definition of T was conceived as a generalization of these monodromy triangulations, and so a natural question is whether these generalized monodromy triangulations are also geometric. Hodgson{Issa{Segerman [HIS16] answered this question in the negative, by producing the first examples of non- geometric layered veering triangulations. -
Studying the Mapping Class Group of a Surface Through Its Actions
TOPIC PROPOSAL Studying the mapping class group of a surface through its actions R. Jimenez Rolland discussed with Professor B. Farb November, 2008 Los grupos como los hombres son conocidos por sus acciones.1 G. Moreno Our main purpose is to introduce the study of the mapping class group. We try to “know the group by its actions.” Following mainly [FM08], we describe some sets on which the group acts and how this translates into properties of the group itself.2 1 The mapping class group n We denote by Sg,b an orientable surface of genus g with b boundary components and n punctures (or marked n n points). The mapping class group of a surface S = Sg,b is the group ΓS (Γg,b) of isotopy classes of orientation- preserving self-homeomorphisms of S. We require the self-homeomorphism to be the identity on the boundary components and fixes the set of punctures. When including orientation-reversing self-homeomorphisms of S ± ∼ we use the notation ΓS . The mapping class groups of the annulus A and the torus T = S1 are ΓA = Z and ∼ ΓT = SL2(Z). We define the pure mapping class group P ΓS by asking that the punctures remain pointwise fixed. If S is a surface with n punctures then P ΓS is related to ΓS by the short exact sequence 1 → P ΓS → ΓS → Symn → 1. For a surface S with χ(S) < 0, let S0 = S\{p}. The Birman exact sequence is Push F 1 −→ π1(S) −−−→ P ΓS0 −→ P ΓS → 1. 0 Here F is the map induced by the inclusion S ,→ S. -
On the Finiteness of the Classifying Space of Diffeomorphisms Of
ON THE FINITENESS OF THE CLASSIFYING SPACE OF DIFFEOMORPHISMS OF REDUCIBLE THREE MANIFOLDS Sam Nariman Abstract In this paper, we use homological techniques and a theorem of Thurston to study homological finiteness of BDiffpM, rel Bq when M is a reducible 3-manifold with a non-empty boundary that has distinct irreducible factors. Kontsevich ([Kir95, Problem 3.48]) conjectured that BDiffpM, rel Bq has the homotopy type of a fi- nite CW complex for all 3-manifolds with non-empty boundary. Hatcher-McCullough ([HM97]) proved this conjecture when M is irreducible. We show that when M is reducible with non-empty boundary that has distinct irreducible factors, BDiffpM, rel Bq is homology isomorphic to a finite CW-complex. 1. Introduction For a closed surface Σg of genus g ą 1, it is well-known that the classifying space BDiffpΣg q is rationally equivalent to Mg , the moduli space of Riemann surfaces of genus g. Therefore, in particular the rational homology groups of BDiffpΣg q vanish above a certain degree and in fact more precisely they vanish above 4g ´5, which is the virtual cohomological dimension of the mapping class group ModpΣg q. And for a surface Σg,k with k ą 0 boundary components, BDiffpΣg,k , rel Bq is in fact homotopy equivalent to Mg,k . Therefore, BDiffpΣg,k , rel Bq has a arXiv:2104.12338v1 [math.GT] 26 Apr 2021 finite dimensional model. For 3-manifolds, one cannot expect a similar statement to hold for closed 3-manifolds but Kontsevich ([Kir95, Problem 3.48]) conjectured for 3-manifolds with non-empty boundary, the classifying space BDiffpM, rel Bq has a finite dimensional model. -
Annual Reports 2002
CENTRE DE RECERCA MATEMÀTICA REPORT OF ACTIVITIES 2002 Apartat 50 E-08193 Bellaterra [email protected] Graphic design: Teresa Sabater Printing: Limpergraf S.L. Legal Deposit: B. 9505-2003 PRESENTATION This year 2002 one must point out two events that have taken place in the Centre de Recerca Matemàtica, that should have immediate and long term consequences: the chan- ge in the legal status of the CRM and the increase of adminis- trative and secretarial personnel. The III Research Plan for Catalonia 2001-2004 con- templates the assignment of the title Centres Homologats de Recerca (Accredited Research Centres), to those centres with proved research excellence in subjects considered of strategic importance. Accordingly, the Catalan Government approved last month of July the constitution of the Consortium Centre de Recerca Matemàtica, with its own legal status, formed by the Institut d’Estudis Catalans (institution to which the CRM belonged since its creation in 1984) and the Catalan Govern- ment, which takes part in the Consortium through its Depart- ment of Universities, Research and the Information Society. With this new legal structure, the Catalan Government acquires a stronger commitment with the CRM. On one hand by setting the main guidelines of the CRM, and on the other hand by ensuring an appropriate and stable financial support that will make possible to carry out the activities planned for the quadrennial period 2003-2006. Among the innovative tools of this new stage, at the 18th anniversary of the creation of the CRM, one must point out the annual call for Research Programmes among the Cata- lan mathematical community. -
Karen Vogtmann
CURRICULUM VITAE -KAREN VOGTMANN Mathematics Institute Office: C2.05 Zeeman Bldg. Phone: +44 (0) 2476 532739 University of Warwick Email: [email protected] Coventry CV4 7AL PRINCIPAL FIELDS OF INTEREST Geometric group theory, Low-dimensional topology, Cohomology of groups EDUCATION B.A. University of California, Berkeley 1971 Ph.D. University of California, Berkeley 1977 ACADEMIC POSITIONS University of Warwick, Professor, 9/13 to present Cornell University – Goldwin Smith Professor of Mathematics Emeritus, 7/15 to present – Goldwin Smith Professor of Mathematics, 7/11 to 7/15 – Professor, 1/94 to 7/11 – Associate Professor, 7/87 to 12/93 – Assistant Professor, 7/85 to 6/87 – Visiting Assistant Professor, 9/84 to 6/85 Columbia University, Assistant Professor, 7/79 to 6/86 Brandeis University, Visiting Assistant Professor, 9/78 to 12/78 University of Michigan, Visiting Assistant Professor, 9/77 to 6/78 and 1/79 to 6/79 RESEARCH AND SABBATICAL POSITIONS MSRI, Berkeley, CA 8/19 to 11/19 Newton Institute, Cambridge, Mass, 3/17 to 5/17 MSRI, Berkeley, CA 8/16 to 12/16 Research Professor, ICERM, Providence, RI, 9/13 to 12/13 Freie Universitat¨ Berlin, Berlin, Germany, 6/12 Mittag-Leffler Institute, Stockholm, Sweden, 3/12 to 5/12 Visiting Researcher, Oxford University, Oxford, England, 2/12 Professeur invite, Marseilles, France, 5/11 Hausdorff Institute for Mathematics, 9/09 to 12/09 and 5/10-8/10 Mathematical Sciences Research Institute, Berkeley, CA, 8/07-12/07 I.H.E.S., Bures-sur-Yvette, France 3/04 Professeur Invite,´ Marseilles, France, 3/00 Mathematical Sciences Research Institute, Berkeley, 1/95 to 7/95 I.H.E.S., Bures-sur-Yvette, France, 1/93-8/93 Chercheur, C.N.R.S., E.N.S. -
Hatcher §1.3
Hatcher §1.3 Ex 1.3.7 The quasi-circle W ⊂ R2 is a compactification of R with remainder W − R = [−1, 1]. There is a quotient map q : W → S1 to the one-point compactification S1 of R obtained by collapsing [−1, 1] to a point. This map is manifestly continuous (but there is also a general reason [2]). We first show that any map from a locally path-connected compact space to W factors through a contractible subspace of W . Let X be any locally path-connected compact space and f : X → W a continuous map. There is an open set V ⊂ W containing [−1, 1] with two path-components, V+ ⊃ [−1, 1] and V−. If x is a point of X such that f(x) ∈ [−1, 1] then there is a path-connected neighborhood of x that is being −1 mapped into V+. Thus f [−1, 1] is contained in an open set U such that f(U) ⊂ V+. Now X − U is a compact subspace of X that is being mapped into the remainder R ⊂ W . By compactness, f(X − U) ⊂ [a, b] for some closed interval [a, b] ⊂ R. Thus the f(X) = f(U) ∪ f(X − U) is contained in U+ ∪ [a, b] which again is contained in a compact subspace of W homeomorphic to [−1, 1] ∨ [0, 1]. In particular, π1(W ) = 0 (and, actually, πn(W ) = 0 for all n ≥ 1). Suppose that f is a lift R > f | || p || || | 1 W q / S of the quotient map q. Then f([−1, 1]) ⊂ Z and we may as well assume that f([−1, 1]) = {0}. -
Licensed to Univ of Rochester. Prepared on Tue Jan 12 07:38:01 EST 2021For Download from IP 128.151.13.58
Licensed to Univ of Rochester. Prepared on Tue Jan 12 07:38:01 EST 2021for download from IP 128.151.13.58. License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms MEMOIRS of the American Mathematical Society This journal is designed particularly for long research papers (and groups of cognate papers) in pure and applied mathematics. It includes, in general, longer papers than those in the TRANSACTIONS. Mathematical papers intended for publication in the Memoirs should be addressed to one of the editors. Subjects, and the editors associated with them, follow: Real analysis (excluding harmonic analysis) and applied mathematics to ROBERT T. SEELEY, Department of Mathematics, University of Massachusetts-Boston, Harbor Campus, Boston, MA 02125. Harmonic and complex analysis to R. O. WELLS, Jr., School of Mathematics, Institute for Advanced Study, Princeton, N. J. 08540 Abstract analysis to W.A.J. LUXEMBURG, Department of Mathematics 253 -37, California Institute of Technology, Pasadena, CA 91125. Algebra and number theory (excluding universal algebras) to MICHAEL ARTIN, Department of Mathematics, Room 2—239, Massachusetts Institute of Technology, Cambridge, MA 02139. Logic, foundations, universal algebras and combinatorics to SOLOMON FEFERMAN, Department of Mathematics, Stanford University, Stanford, CA 94305. Topology to JAMES D. STASHEFF, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27514. Global analysis and differential geometry to ALAN D. WEINSTEIN, Department of Mathematics, California Institute of Technology, Pasadena, CA 91125. Probability and statistics to STEVEN OREY, School of Mathematics, University of Minnesota, Minneapolis, MN 55455. All other communications to the editors should be addressed to the Managing Editor, JAMES D. -
Homology Equivalences Inducing an Epimorphism on the Fundamental Group and Quillen’S Plus Construction
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 3, Pages 891{898 S 0002-9939(03)07221-6 Article electronically published on October 21, 2003 HOMOLOGY EQUIVALENCES INDUCING AN EPIMORPHISM ON THE FUNDAMENTAL GROUP AND QUILLEN'S PLUS CONSTRUCTION JOSEL.RODR´ ´IGUEZ AND DIRK SCEVENELS (Communicated by Paul Goerss) Abstract. Quillen's plus construction is a topological construction that kills the maximal perfect subgroup of the fundamental group of a space without changing the integral homology of the space. In this paper we show that there is a topological construction that, while leaving the integral homology of a space unaltered, kills even the intersection of the transfinite lower central series of its fundamental group. Moreover, we show that this is the maximal subgroup that can be factored out of the fundamental group without changing the integral homology of a space. 0. Introduction As explained in [8], [9], Bousfield's HZ-localization XHZ of a space X ([2]) is homotopy equivalent to its localization with respect to a map of classifying spaces Bf : BF1 ! BF2 induced by a certain homomorphism f : F1 !F2 between free groups. This means that a space X is HZ-local if and only if the induced ∗ map Bf :map(BF2;X) ! map(BF1;X) is a weak homotopy equivalence. More- over, the effect of Bf-localization on the fundamental group produces precisely the group-theoretical HZ-localization (i.e., f-localization) of the fundamental group, ∼ ∼ i.e., π1LBf X = Lf (π1X) = (π1X)HZ for all spaces X. A universal acyclic space for HZ-localization (i.e., Bf-localization), in the sense of Bousfield ([4]), was studied by Berrick and Casacuberta in [1].