Theory of Machines and Mechanism Lecture 1

Total Page:16

File Type:pdf, Size:1020Kb

Theory of Machines and Mechanism Lecture 1 Theory of Machines and Mechanism Lecture 1 Łukasz Jedliński, Ph.D., Eng. Basic terms and definitions Theory of Machines and Mechanism may be defined as that branch of engineering science, which deals with the study of relative motion between the various parts of machine, and forces which act on them. The knowledge of this subject is very essential for an engineer in designing the various parts of a machine. Basic terms and definitions Machines and mechanisms have been devised by people since the dawn of history. The ancient Egyptians devised primitive machines to accomplish the building of the pyramids and other monuments. Though the wheel and pulley (on an axle) were not known to the Old Kingdom Egyptians, they made use of the lever, the inclined plane (or wedge), and probably the log roller. The origin of the wheel and axle is not definitively known. Its first appearance seems to have been in Mesopotamia about 3000 to 4000 B.C. A Mesopotamian wheel Pulley systems Basic terms and definitions Theory of Machines and Mechanism may be subdivided into the following four branches: Kinematics - is that branch of theory of machines which is responsible to study the motion of bodies without reference to the forces which are cause this motion, i.e it’s relate the motion variables (displacement, velocity, acceleration) with the time. Dynamics - is that branch of theory of machines which deals with the forces and their effects, while acting upon the machine parts in motion. Kinetics – it deals with inertia forces which occur due to combined effect of mass and motion of machine elements. Statics - is that branch of theory of machines which deals with the forces and their effects, while the machine parts are rest. Basic terms and definitions The role of kinematics is to ensure the functionality of the mechanism, while the role of dynamics is to verify the acceptability of induced forces in parts. The functionality and induced forces are subject to various constraints (specifications) imposed on the design. The objective of kinematics is to develop various means of transforming motion to achieve a specific kind needed in applications. For example, an object is to be moved from point A to point B along some path. The first question in solving this problem is usually: What kind of a mechanism (if any) can be used to perform this function? And the second question is: How does one design such a mechanism? The objective of dynamics is analysis of the behavior of a given machine or mechanism when subjected to dynamic forces. For the above example, when the mechanism is already known, then external forces are applied and its motion is studied. The determination of forces induced in machine components by the motion is part of this analysis. Basic terms and definitions A mechanism is a group of links connected to each other by joints, to form a kinematic chain with one link fixed, to transmit force and motion. It is design to do a specific motion. A kinematic chain is defined as an assemblage of links and joints. Kinematic chains or mechanisms may be either open or closed. Openmechanism Closedmechanism A machine is an assemblage of links that transmits and/or transforms forces, motion and energy in a predetermined manner, to do work. The term machine is usually applied to a complete product. Basic terms and definitions The similarity between machines and mechanisms is that they are both combinations of rigid bodies and the relative motion among the rigid bodies are definite. The difference between machine and mechanism is that machines transform energy to do work, while mechanisms so not necessarily perform this function. Machine - car Mechanism - gearbox Basic terms and definitions Structure – is an assemblage of a number of rigid bodies having no relative motion between them and meant for carrying load having straining action. Vehicle Frame Bridge Basic terms and definitions Kinematic link (or simply link , element ), definitions: 1. A rigid body that provides connections to other rigid bodies by at least two joints. Not always true. (Theoretically, a true rigid body does not change shape during motion. Although a true rigid body does not exist, mechanism links are designed to minimally deform and are considered rigid.) Elastic parts, such as springs, are not rigid and, therefore, are not considered links. They have no effect on the kinematics of a mechanism and are usually ignored during kinematic analysis. They do supply forces and must be included during the dynamic force portion of analysis. Beter definition: 2. It is the individual part or component of the mechanism, most often rigid, indivisible in terms of the function which meets in the mechanism. 4 – Flexible link 3 – Fluid link Basic terms and definitions A link may consist of several parts, which are rigidly fastened together, so that they do not move relative to one another e.g. piston rod. Piston rod Piston rod – kinematic representation A A Part 4 B Part 1 B Part 3 Part 2 Basic terms and definitions Types of links: Binary link - one with two nodes. Ternary link - one with three nodes. Quaternary link - one with four nodes. Different classification : Simple link Complex link Basic terms and definitions Types of links: Crank – a link that makes a complete revolution and is pivoted to ground. Rocker – a link that has oscillatory (back and forth) rotation and is pivoted to ground. Coupler (or connecting rod) as a link that has complex motion and is not pivoted to ground. Ground (base , frame ) is defined as any link or links that are fixed (non moving) with respect to the reference frame. Note that the reference frame may in fact it self be in motion. Basic terms and definitions Joint (kinematic pair, pair) - connection between links (two or more), which permits relative motion between them and physically adds some constraint(s) to this relative motion. Classification of joints according to the : 1. Type of relative motion between the elements. 2. Type of contact between the elements. 3. Type of closure between the elements. 4. Number of links joined. Basic terms and definitions 1. According to the type of relative motion between the elements a) Revolute (Turning ) pair. When the two elements of a pair are connected in such a way that one can only turn or revolve about a fixed axis of another link. b) Sliding (Prismatic, Prism ) pair. When the two elements of a pair are connected in such a way that one can only slide relative to the other, the pair is known as a sliding pair. c) Cylindrical pair. Permits angular rotation and an independent sliding motion. Thus, the cylindrical pair has two degrees of freedom. d) Rolling pair. When the two elements of a pair are connected in such a way that one rolls over another fixed link, the pair is known as rolling pair. Ball and roller bearings are examples of rolling pair. e) Screw (helical ) pair. When the two elements of a pair are connected in such a way that one element can turn about the other by screw threads, the pair is known as screw pair. The lead screw of a lathe with nut and bolt with a nut are examples of a screw pair. f) Spherical pair. When the two elements of a pair are connected in such a way that one element (with spherical shape) turns or swivels about the other fixed element, the pair formed is called a spherical pair. The ball and socket joint, attachment of a car mirror, pen stand etc., are the examples of a spherical pair. g) Planar pair (flat ). It is seldom found in mechanism in its undisguised form, except at a support point. It has three degrees of freedom, that in, two translations and a rotation. Basic terms and definitions a) Revolute (Turning, Pin ) pair. b) Sliding (Prismatic, Prism ) pair. c) Cylindrical pair Basic terms and definitions d) Rolling pair. e) Screw (helical ) pair f) Spherical pair. g) Planar pair (flat) Basic terms and definitions 2. The kinematic pairs according to the type of contact between the elements may be classified as discussed below (Reuleaux ): a) Lower pair. When the two elements of a pair have a surface contact when relative motion takes place and the surface of one element slides over the surface of the other, the pair formed is known as lower pair. It will be seen that: revolute, sliding, screw, cylindrical, sphere, planar pairs form lower pairs. b) Higher pair. When the two elements of a pair have a line or point contact when relative motion takes place and the motion between the two elements is partly turning and partly sliding, then the pair is known as higher pair. A pair of friction discs, toothed gearing, belt and rope drives, ball and roller bearings and cam and follower are the examples of higher pairs. Cam and follower Spur gear Belt drive Basic terms and definitions 3. The kinematic pairs according to the type of closure between the elements may be classified as discussed below : a) Self closed pair. When the two elements of a pair are connected together mechanically in such a way that only required kind of relative motion occurs, it is then known as self closed pair. The lower pairs are self closed pair. b) Force – closed pair. When the two elements of a pair are not connected mechanically but are kept in contact by the action of external forces, the pair is said to be a force-closed pair. The cam and follower in an example of force closed pair, as it is kept in contact by the force exerted by spring and gravity.
Recommended publications
  • On the Configurations of Closed Kinematic Chains in Three
    On the Configurations of Closed Kinematic Chains in three-dimensional Space Gerhard Zangerl Department of Mathematics, University of Innsbruck Technikestraße 13, 6020 Innsbruck, Austria E-mail: [email protected] Alexander Steinicke Department of Applied Mathematics and Information Technology, Montanuniversitaet Leoben Peter Tunner-Straße 25/I, 8700 Leoben, Austria E-mail: [email protected] Abstract A kinematic chain in three-dimensional Euclidean space consists of n links that are connected by spherical joints. Such a chain is said to be within a closed configuration when its link lengths form a closed polygonal chain in three dimensions. We investigate the space of configurations, described in terms of joint angles of its spherical joints, that satisfy the the loop closure constraint, meaning that the kinematic chain is closed. In special cases, we can find a new set of parameters that describe the diagonal lengths (the distance of the joints from the origin) of the configuration space by a simple domain, namely a cube of dimension n − 3. We expect that the new findings can be applied to various problems such as motion planning for closed kinematic chains or singularity analysis of their configuration spaces. To demonstrate the practical feasibility of the new method, we present numerical examples. 1 Introduction This study is the natural further development of [32] in which closed configurations of a two-dimensional kine- matic chain (KC) in terms of its joint angles were considered. As a generalization, we study the configuration spaces of a three-dimensional closed kinematic chain (CKC) with n links in terms of the joint angles of its spherical joints.
    [Show full text]
  • Department of Mechanical Engineering ME 8492 – Kinematics of Machinery Unit I – Introduction to Mechanism - MCQ Bank 1
    ChettinadTech Dept. of MECH Department of Mechanical Engineering ME 8492 – Kinematics of Machinery Unit I – Introduction to Mechanism - MCQ Bank 1. In a reciprocating steam engine, which of the following forms a kinematic link ? (a) cylinder and piston (b) piston rod and connecting rod (c) crank shaft and flywheel (d) flywheel and engine frame Answer: (c) 2. The motion of a piston in the cylinder of a steam engine is an example of (a) completely constrained motion (b) incompletely constrained motion (c) successfully constrained motion (d) none of these Answer: (a) 3. The motion transmitted between the teeth of gears in mesh is (a) sliding (b) rolling (c) may be rolling or sliding depending upon the shape of teeth (d) partly sliding and partly rolling Answer: (d) 4. The cam and follower without a spring forms a (a) lower pair (b) higher pair (c) self closed pair (d) force closed pair Answer: (c) 5. A ball and a socket joint forms a (a) turning pair (b) rolling pair (c) sliding pair (d) spherical pair Answer: (d) 6. The lead screw of a lathe with nut forms a (a) sliding pair (b) rolling pair (c) screw pair (d) turning pair ME 8692 – Finite Element Analysis Page 1 ChettinadTech Dept. of MECH Answer: (c) 7. When the elements of the pair are kept in contact by the action of external forces, the pair is said to be a (a) lower pair (b) higher pair (c) self closed pair (d) force closed pair Answer: (d) 8. Which of the following is a turning pair ? (a) Piston and cylinder of a reciprocating steam engine (b) Shaft with collars at both ends fitted in a circular hole (c) Lead screw of a lathe with nut (d) Ball and socket joint Answer: (b) 9.
    [Show full text]
  • Kinematic Singularities of Mechanisms Revisited
    IMA Conference on Mathematics of Robotics 9 – 11 September 2015, St Anne’s College, University of Oxford 1 Kinematic Singularities of Mechanisms Revisited By Andreas M¨uller1, Dimiter Zlatanov2 1Johannes Kepler University, Linz, Austria; 2University of Genoa, Genoa, Italy Abstract The paper revisits the definition and the identification of the singularities of kinematic chains and mechanisms. The degeneracy of the kinematics of an articulated system of rigid bodies cannot always be identified with the singularities of the configuration space. Local analysis can help identify kinematic chain singularities and better understand the way the motion characteristics change at such configurations. An example is shown that exhibits a kinematic singularity although its configuration space is a smooth manifold. 1. Introduction Kinematic singularities of a mechanism are critical configurations that can lead to a loss of structural stability or controllability. This has been a central topic in mechanism theory and still is a field of active research. A systematic approach to the study of singular configurations involves a mathematical model for the kinematic chain and its interaction with the environment via inputs and outputs. Thereupon critical configurations can be identified for the kinematic chain itself and for the input and output relations. A kinematic chain is a system of rigid bodies (links), some pairs of which are connected with joints. It is defined by specifying exactly which links are jointed (by a connectiv- ity graph [Wittenburg (1994)]), the type of each joint, and the joint's locations in the adjacent links. Mathematically, a kinematic chain is modeled by specifying its possible motions as a subset of the smooth curves on an ambient manifold, usually assumed to have a global parametrization, Vn.
    [Show full text]
  • 1700 Animated Linkages
    Nguyen Duc Thang 1700 ANIMATED MECHANICAL MECHANISMS With Images, Brief explanations and Youtube links. Part 1 Transmission of continuous rotation Renewed on 31 December 2014 1 This document is divided into 3 parts. Part 1: Transmission of continuous rotation Part 2: Other kinds of motion transmission Part 3: Mechanisms of specific purposes Autodesk Inventor is used to create all videos in this document. They are available on Youtube channel “thang010146”. To bring as many as possible existing mechanical mechanisms into this document is author’s desire. However it is obstructed by author’s ability and Inventor’s capacity. Therefore from this document may be absent such mechanisms that are of complicated structure or include flexible and fluid links. This document is periodically renewed because the video building is continuous as long as possible. The renewed time is shown on the first page. This document may be helpful for people, who - have to deal with mechanical mechanisms everyday - see mechanical mechanisms as a hobby Any criticism or suggestion is highly appreciated with the author’s hope to make this document more useful. Author’s information: Name: Nguyen Duc Thang Birth year: 1946 Birth place: Hue city, Vietnam Residence place: Hanoi, Vietnam Education: - Mechanical engineer, 1969, Hanoi University of Technology, Vietnam - Doctor of Engineering, 1984, Kosice University of Technology, Slovakia Job history: - Designer of small mechanical engineering enterprises in Hanoi. - Retirement in 2002. Contact Email: [email protected] 2 Table of Contents 1. Continuous rotation transmission .................................................................................4 1.1. Couplings ....................................................................................................................4 1.2. Clutches ....................................................................................................................13 1.2.1. Two way clutches...............................................................................................13 1.2.1.
    [Show full text]
  • Integrated Circuit Design Macmillan New Electronics Series Series Editor: Paul A
    Integrated Circuit Design Macmillan New Electronics Series Series Editor: Paul A. Lynn Paul A. Lynn, Radar Systems A. F. Murray and H. M. Reekie, Integrated Circuit Design Integrated Circuit Design Alan F. Murray and H. Martin Reekie Department of' Electrical Engineering Edinhurgh Unit·ersity Macmillan New Electronics Introductions to Advanced Topics M MACMILLAN EDUCATION ©Alan F. Murray and H. Martin Reekie 1987 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No paragraph of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright Act 1956 (as amended), or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 7 Ridgmount Street, London WC1E 7AE. Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages. First published 1987 Published by MACMILLAN EDUCATION LTD Houndmills, Basingstoke, Hampshire RG21 2XS and London Companies and representatives throughout the world British Library Cataloguing in Publication Data Murray, A. F. Integrated circuit design.-(Macmillan new electronics series). 1. Integrated circuits-Design and construction I. Title II. Reekie, H. M. 621.381'73 TK7874 ISBN 978-0-333-43799-5 ISBN 978-1-349-18758-4 (eBook) DOI 10.1007/978-1-349-18758-4 To Glynis and Christa Contents Series Editor's Foreword xi Preface xii Section I 1 General Introduction
    [Show full text]
  • Planar Kinematics
    Introduction to Robotics, H. Harry Asada 1 Chapter 4 Planar Kinematics Kinematics is Geometry of Motion. It is one of the most fundamental disciplines in robotics, providing tools for describing the structure and behavior of robot mechanisms. In this chapter, we will discuss how the motion of a robot mechanism is described, how it responds to actuator movements, and how the individual actuators should be coordinated to obtain desired motion at the robot end-effecter. These are questions central to the design and control of robot mechanisms. To begin with, we will restrict ourselves to a class of robot mechanisms that work within a plane, i.e. Planar Kinematics. Planar kinematics is much more tractable mathematically, compared to general three-dimensional kinematics. Nonetheless, most of the robot mechanisms of practical importance can be treated as planar mechanisms, or can be reduced to planar problems. General three-dimensional kinematics, on the other hand, needs special mathematical tools, which will be discussed in later chapters. 4.1 Planar Kinematics of Serial Link Mechanisms Example 4.1 Consider the three degree-of-freedom planar robot arm shown in Figure 4.1.1. The arm consists of one fixed link and three movable links that move within the plane. All the links are connected by revolute joints whose joint axes are all perpendicular to the plane of the links. There is no closed-loop kinematic chain; hence, it is a serial link mechanism. y A 3 E End Effecter ⎛ xe ⎞ Link 3 ⎜ ⎟ ⎝ ye ⎠ A 2 θ3 φ B e A1 Link 2 Joint 3 θ 2 Link 1 A Joint 2 Joint 1 θ O 1 x Link 0 Figure 4.1.1 Three dof planar robot with three revolute joints To describe this robot arm, a few geometric parameters are needed.
    [Show full text]
  • Four-Bar Linkage Synthesis for a Combination of Motion and Path-Point Generation
    FOUR-BAR LINKAGE SYNTHESIS FOR A COMBINATION OF MOTION AND PATH-POINT GENERATION Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Mechanical Engineering By Yuxuan Tong UNIVERSITY OF DAYTON Dayton, Ohio May, 2013 FOUR-BAR LINKAGE SYNTHESIS FOR A COMBINATION OF MOTION AND PATH-POINT GENERATION Name: Tong, Yuxuan APPROVED BY: Andrew P. Murray, Ph.D. David Myszka, Ph.D. Advisor Committee Chairman Committee Member Professor, Dept. of Mechanical and Associate Professor, Dept. of Aerospace Engineering Mechanical and Aerospace Engineering A. Reza Kashani, Ph.D. Committee Member Professor, Dept. of Mechanical and Aerospace Engineering John Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii c Copyright by Yuxuan Tong All rights reserved 2013 ABSTRACT FOUR-BAR LINKAGE SYNTHESIS FOR A COMBINATION OF MOTION AND PATH-POINT GENERATION Name: Tong, Yuxuan University of Dayton Advisor: Dr. Andrew P. Murray This thesis develops techniques that address the design of planar four-bar linkages for tasks common to pick-and-place devices, used in assembly and manufacturing operations. The analysis approaches relate to two common kinematic synthesis tasks, motion generation and path-point gen- eration. Motion generation is a task that guides a rigid body through prescribed task positions which include position and orientation. Path-point generation is a task that requires guiding a reference point on a rigid body to move along a prescribed trajectory. Pick-and-place tasks often require the exact position and orientation of an object (motion generation) at the end points of the task.
    [Show full text]
  • Glossary Definitions
    TC 9-524 GLOSSARY ACRONYMS AND ABBREVIATIONS TC - Training Circular sd - small diameter TM - Technical Manual Id - large diameter AR - Army Regulation ID - inside diameter DA - Department of the Army TOS- Intentional Organization for Standardization RPM - revolutions per minute LH - left hand SAE - Society of Automotive Engineers NC - National Coarse SFPM - surface feet per minute NF - National Fine tpf -taper per foot OD - outside diameter tpi taper per inch RH - right hand UNC - Unified National Coarse CS - cutting speed UNF - Unified National Fine AA - aluminum alloys SF -standard form IPM - feed rate in inches per minute Med - medical FPM - feet per minute of workpiece WRPM - revolutions per minute of workpiece pd - pitch diameter FF - fraction of finish tan L - tangent angle formula WW - width of wheel It - length of taper TT - table travel in feet per minute DEFINITIONS abrasive - natural - (sandstone, emery, corundum. accurate - Conforms to a standard or tolerance. diamonds) or artificial (silicon carbide, aluminum oxide) material used for making grinding wheels, Acme thread - A screw thread having a 29 degree sandpaper, abrasive cloth, and lapping compounds. included angle. Used largely for feed and adjusting screws on machine tools. abrasive wheels - Wheels of a hard abrasive, such as Carborundum used for grinding. acute angle - An angle that is less than 90 degrees. Glossary - 1 TC 9-524 adapter - A tool holding device for fitting together automatic stop - A device which may be attached to various types or sizes of cutting tools to make them any of several parts of a machine tool to stop the interchangeable on different machines.
    [Show full text]
  • A New Method for Teaching the Fourbar Linkage and Its Application to Other Linkages
    Paper ID #24648 A New Method for Teaching The Fourbar Linkage and its Application to Other Linkages Dr. Eric Constans, Rose-Hulman Institute of Technology Eric Constans is a Professor in Mechanical Engineering at the Rose-Hulman Institute of Technology. His research interests include engineering education, mechanical design and acoustics and vibration. Mr. Karl Dyer, Rowan University Dr. Shraddha Sangelkar, Rose-Hulman Institute of Technology Shraddha Sangelkar is an Assistant Professor in Mechanical Engineering at Rose-Hulman Institute of Technology. She received her M.S. (2010) and Ph.D. (2013) in Mechanical Engineering from Texas A&M University. She completed the B. Tech (2008) in Mechanical Engineering from Veermata Jijabai Technological Institute (V.J.T.I.), Mumbai, India. She taught for 5 years at Penn State Behrend prior to joining Rose-Hulman. c American Society for Engineering Education, 2019 A New Method for Teaching the Fourbar Linkage to Engineering Students Abstract The fourbar linkage is one of the first mechanisms that a student encounters in a machine kinematics or mechanism design course and teaching the position analysis of the fourbar has always presented a challenge to instructors. Position analysis of the fourbar linkage has a long history, dating from the 1800s to the present day. Here position analysis is taken to mean 1) finding the two remaining unknown angles on the linkage with an input angle given and 2) finding the path of a point on the linkage once all angles are known. The efficiency of position analysis has taken on increasing importance in recent years with the widespread use of path optimization software for robotic and mechanism design applications.
    [Show full text]
  • Theory of Machines
    Theory of Machines Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering . © 2012 1 Syllabus and Course Outline Faculty of Engineering Department of Mechanical Engineering EMEC 3302, Theory of Machines Instructor: Dr. Anwar Abu-Zarifa Office: IT Building, Room: I413 Tel: 2821 eMail: [email protected] Website: http://site.iugaza.edu.ps/abuzarifa Office Hrs: see my website SAT 09:30 – 11:00 Q412 MON 09:30 – 11:00 Q412 Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering . © 2012 2 Text Book: R. L. Norton, Design of Machinery “An Introduction to the Synthesis and Analysis of Mechanisms and Machines”, McGraw Hill Higher Education; 3rd edition Reference Books: . John J. Uicker, Gordon R. Pennock, Joseph E. Shigley, Theory of Machines and Mechanisms . R.S. Khurmi, J.K. Gupta,Theory of Machines . Thomas Bevan, The Theory of Machines . The Theory of Machines by Robert Ferrier McKay . Engineering Drawing And Design, Jensen ect., McGraw-Hill Science, 7th Edition, 2007 . Mechanical Design of Machine Elements and Machines, Collins ect., Wiley, 2 Edition, 2009 Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering . © 2012 3 Grading: Attendance 5% Design Project 25% Midterm 30% Final exam 40% Course Description: The course provides students with instruction in the fundamentals of theory of machines. The Theory of Machines and Mechanisms provides the foundation for the study of displacements, velocities, accelerations, and static and dynamic forces required for the proper design of mechanical linkages, cams, and geared systems. Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering .
    [Show full text]
  • 1.0 Simple Mechanism 1.1 Link ,Kinematic Chain
    SYLLABUS 1.0 Simple mechanism 1.1 Link ,kinematic chain, mechanism, machine 1.2 Inversion, four bar link mechanism and its inversion 1.3 Lower pair and higher pair 1.4 Cam and followers 2.0 Friction 2.1 Friction between nut and screw for square thread, screw jack 2.2 Bearing and its classification, Description of roller, needle roller& ball bearings. 2.3 Torque transmission in flat pivot& conical pivot bearings. 2.4 Flat collar bearing of single and multiple types. 2.5 Torque transmission for single and multiple clutches 2.6 Working of simple frictional brakes.2.7 Working of Absorption type of dynamometer 3.0 Power Transmission 3.1 Concept of power transmission 3.2 Type of drives, belt, gear and chain drive. 3.3 Computation of velocity ratio, length of belts (open and cross)with and without slip. 3.4 Ratio of belt tensions, centrifugal tension and initial tension. 3.5 Power transmitted by the belt. 3.6 Determine belt thickness and width for given permissible stress for open and crossed belt considering centrifugal tension. 3.7 V-belts and V-belts pulleys. 3.8 Concept of crowning of pulleys. 3.9 Gear drives and its terminology. 3.10 Gear trains, working principle of simple, compound, reverted and epicyclic gear trains. 4.0 Governors and Flywheel 4.1 Function of governor 4.2 Classification of governor 4.3 Working of Watt, Porter, Proel and Hartnell governors. 4.4 Conceptual explanation of sensitivity, stability and isochronisms. 4.5 Function of flywheel. 4.6 Comparison between flywheel &governor.
    [Show full text]
  • Mechatronic Mechanism Design and Implementation Process Applied in Se- Nior Mechanical Engineering Capstone Design
    Paper ID #26215 Mechatronic Mechanism Design and Implementation Process Applied in Se- nior Mechanical Engineering Capstone Design Dr. Edward H. Currie, Hofstra University Edward H. Currie holds a BSEE, Masters and Ph.D. in Physics from the University of Miami and is an Associate Professor in the Fred DeMatteis School of Engineering and Applied Science where and teaches Electrical Engineering and Computer Science and serves as a Co-Director of Hofstra’s Center for Innovation. Research interests include Additive manufacturing plastic and magnetic technology, robotic systems, color night-vision, autonomous wound closure systems, microchannel plate applications, thermal imaging, programmable systems on a chip (PSoC) and spatial laser measurement systems. His current research is focused on the development of autonomous wound closure systems based on recent advances in magnetic technology. Dr. Kevin C. Craig, Hofstra University Kevin Craig attended the United States Military Academy at West Point, NY, earned varsity letters in football and baseball, and graduated with a B.S. degree and a commission as an officer in the U.S. Army. After honing his leadership and administrative skills serving in the military, he attended Columbia Uni- versity and received the M.S., M.Phil., and Ph.D. degrees. While in graduate school, he worked in the mechanical-nuclear design department of Ebasco Services, Inc., a major engineering firm in NYC, and taught and received tenure at both the U.S. Merchant Marine Academy and Hofstra University. While at Hofstra, he worked as a research engineer at the U.S. Army Armament Research, Development, and Engineering Center (ARDEC) Automation and Robotics Laboratory.
    [Show full text]