Precession-Driven Climate Cycles and Time Scale Prior to the Hirnantian Glacial Maximum M

Total Page:16

File Type:pdf, Size:1020Kb

Precession-Driven Climate Cycles and Time Scale Prior to the Hirnantian Glacial Maximum M https://doi.org/10.1130/G49083.1 Manuscript received 19 October 2020 Revised manuscript received 23 March 2021 Manuscript accepted 12 May 2021 © 2021 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Precession-driven climate cycles and time scale prior to the Hirnantian glacial maximum M. Sinnesael1,2,3, P.I. McLaughlin4, A. Desrochers5, A. Mauviel5, J. De Weirdt2, P. Claeys1 and T.R.A. Vandenbroucke2 1 Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium 2 Department of Geology, Ghent University, Krijgslaan 281/S9, 9000 Ghent, Belgium 3 Department of Earth Sciences, Durham University, South Road, Durham DH1 3LE, UK 4 Indiana Geological and Water Survey, Indiana University, Bloomington, Indiana 47405, USA 5 Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada ABSTRACT costi Island and explores several astrochronolog- Paleozoic astrochronologies are limited by uncertainties in past astronomical configurations ical scenarios within the available stratigraphic and the availability of complete stratigraphic sections with precise, independent age control. constraints. Pre-Hirnantian glacial buildup is We show it is possible to reconstruct a robust Paleozoic ∼104-yr-resolution astrochronology in well established (Vandenbroucke et al., 2010; the well-preserved and thick Upper Ordovician reference record of Anticosti Island (Canada). Pohl et al., 2016), and correctly documenting The clear imprint of astronomical cycles, including ∼18 k.y. precession, potential obliquity, Late Ordovician astronomical cycles is crucial and short and long eccentricity, constrains the entire Vauréal Formation (∼1 km thick) to only for constructing high-resolution time scales and ∼3 m.y. in total, representing ∼10 times higher accumulation rates than previously suggested. studying dynamic changes in climate and bio- This ∼104 yr resolution represents an order of magnitude increase in the current standard diversity (Saupe et al., 2020). In general, reli- temporal resolution for the Katian and even allows for the detection of sub-Milankovitch able identification of high-frequency Paleozoic climate-scale variability. The loss of a clear precession signal in the uppermost Vauréal astronomical cycles can pave the way toward Formation might be related to contemporaneous global cooling prior to the Hirnantian glacial a greatly enhanced understanding of the inter- maximum as indicated by the δ18O record. Complementary to the study of cyclostratigraphy play between biotic evolution and environmental of longer and often simplified records, it is important to recognize stratigraphic hiatuses change. and complexities on the ∼104 yr scale to achieve robust sub-eccentricity-scale Paleozoic astrochronologies. GEOLOGICAL SETTING AND STRATIGRAPHY INTRODUCTION explain because most of the insolation power The lower Paleozoic mixed siliciclastic-car- The theory of astronomical climate forcing lies in the obliquity and precession bands—not bonate succession of Anticosti Island contains has revolutionized our understanding of Ceno- in the eccentricity. some of the thickest, most fossiliferous, well- zoic climate systems and is the basis for unprec- Several researchers have interpreted the exposed, and little-altered Upper Ordovician edented continuous time scales (astrochronolo- record of eccentricity (∼100 and ∼405 k.y.) sections preserved on Earth (Fig. 1; Desrochers gies) with precision down to ∼104 yr (Zachos and long obliquity (∼1.2 m.y.) cycles in the et al., 2010; Finnegan et al., 2011). The succes- et al., 2001). Pre-Cenozoic astrochronologies Upper Ordovician reference outcrop sections of sion was deposited within a structural embay- face several challenges relating to (1) uncer- Anticosti Island, Québec, Canada (Fig. 1; Long, ment along the eastern margin of Laurentia on tainties in the deep-time astronomical solu- 2007; Elrick et al., 2013; Ghienne et al., 2014; the distal portion of a Taconic-Acadian foreland tions and parameters (Berger and Loutre, Mauviel et al., 2020). However, extrapolating located in the paleo(sub-)tropics (10°S–25°S; 1994; Waltham, 2015); (2) less-complete and these interpreted accumulation rates for the Fig. 1B; Blakey, 2013). Our study focuses on the less-well-preserved strata; and (3) the sparsity relatively homogeneous upper Katian subsur- subsurface part of the upper Katian Vauréal For- of geochronologic anchor points. Consequently, face lithology results in total time spans of tens mation, consisting of predominantly gray, inter- Paleozoic astrochronologies are typically based of millions of years, which is inconsistent with bedded micrite, calcarenite, and marl deposited on identification of the stable 405 k.y. eccentric- integrated stratigraphic constraints indicating an in a mid- to outer-shelf environment (Fig. S1 ity cycle instead of shorter astronomical cycles, estimated duration of only 4–5 m.y. (Cooper and in the Supplemental Material1; Long, 2007). which have the potential to provide an order- Sadler, 2012; McLaughlin et al., 2016). While The lithological variations of interest in this of-magnitude increase in temporal resolution. acknowledging challenges to pre-Cenozoic study are multimeter bed bundles, and not the However, the prevalence of eccentricity-based astrochronologies, our study makes use of new centimeter- to decimeter-thick limestone-marl astrochronologies is mechanistically difficult to subsurface records from recent drilling on Anti- couplets that are potentially early diagenetic 1Supplemental Material. Time-series analyses scripts and data. Please visit https://doi .org/10.1130/GEOL.S.14810550 to access the supplemental material, and contact [email protected] with any questions. CITATION: Sinnesael, M., et al., 2021, Precession-driven climate cycles and time scale prior to the Hirnantian glacial maximum: Geology, v. 49, p. XXX–XXX, https://doi.org/10.1130/G49083.1 Geological Society of America | GEOLOGY | Volume XX | Number XX | www.gsapubs.org 1 Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/doi/10.1130/G49083.1/5361418/g49083.pdf by guest on 25 September 2021 A D B C Figure 1. (A) Map of the bedrock geology of Anticosti Island, Québec, Canada (after Mauviel et al., 2020). (B) Map of the Late Ordovician paleogeographic reconstruction for southern Laurentia (modified from Blakey, 2013). (C) Photo of differential weathering profile between more carbonate versus shale intervals of the upper Vauréal Formation in Vauréal Canyon representing precession (P) cycles bundled in short eccentricity (SE) cycles (person next to red bar for scale). (D) Stratigraphic column of carbonate-dominated Anticosti Island subsurface (modified from McLaughlin et al., 2016). in origin (Fig. 1C; Nohl et al., 2019). Previ- Paper (NACP) core (49°37′20′′N, 63°26′18′′W; the record (see the Supplemental Material). The ous outcrop studies suggested that eccentric- Fig. 1A; McLaughlin et al., 2016). The two LL1 potassium (40K perent) record as measured ity is the dominant astronomical signal in the cores were correlated using the informal lith- by natural gamma-ray (NGR) logging was used Vauréal Formation (Long, 2007; Elrick et al., ological units V2–V5 defined by McLaughlin as proxy for time-series analyses. This proxy 2013; Mauviel et al., 2020). Updated biostra- et al. (2016) (see also Figs. 1A and 2; Fig. S2; reflects the multimeter cycles of carbonate ver- tigraphy together with new chemostratigraphy see the Supplemental Material). The greater sus clay lithology of interest and is continuously indicate that the Vauréal Formation belongs to thickness of lithological units in the LLI core recorded with the highest available resolution Ka4, a stage slice estimated at a total duration of is attributed to separation by ~10 km along the (10 cm). Evolutive harmonic analysis (EHA) 4–5 m.y. (Fig. 1D; see the Supplemental Mate- south-directed depositional dip of the Anti- (Thomson, 1982) and TimeOpt, eTimeOpt, rial; McLaughlin et al., 2016). costi Basin. The NACP core and the western and timeOptTemplate (Meyers, 2015, 2019) outcrop sections were correlated based on analyses were done with “Astrochron” (https:// 13 METHODS their bulk δ Ccarb (carb—carbonate) records cran.r-project.org/web/packages/astrochron/ The La Loutre #1 core (LL1; 49°35′18′′N, (Figs. 1A and 2; Mauviel and Desrochers, index.html; Meyers, 2014) in R (R Core Team, 63°38′14′′W) was drilled by Consortium 2016; McLaughlin et al., 2016). Additionally, 2017). TimeOpt is a statistical optimization Hydrocarbures Anticosti ∼10 km southwest of 472 new NACP samples were measured for bulk method that can simultaneously consider power 13 18 the well-studied New Associated Consolidated δ Ccarb and δ Ocarb to increase the resolution of spectra distributions and amplitude modulation 2 www.gsapubs.org | Volume XX | Number XX | GEOLOGY | Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/doi/10.1130/G49083.1/5361418/g49083.pdf by guest on 25 September 2021 Figure 2. Compiled stratigraphy and proxy data for the Upper Ordovician section of Anticosti Island, Québec, Canada. Dashed lines repre- sent boundaries between informal lithological units as defined by McLaughlin et al. (2016). The V4–V5 boundary is mainly characterized by a decrease in clay content with more pure limestones in unit V5 (thinner dashed line). Red rectangle (880–403 m) indicates the interval selected
Recommended publications
  • Climate Change and the Selective Signature of the Late Ordovician Mass Extinction
    Climate change and the selective signature of the Late Ordovician mass extinction Seth Finnegana,b,1, Noel A. Heimc, Shanan E. Petersc, and Woodward W. Fischera aDivision of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125; bDepartment of Integrative Biology, University of California, 1005 Valley Life Sciences Bldg #3140, Berkeley, CA 94720; and cDepartment of Geoscience, University of Wisconsin-Madison, 1215 West Dayton Street, Madison, WI 53706 Edited by Richard K. Bambach, Smithsonian Institution, National Museum of Natural History, Washington, D.C., and accepted by the Editorial Board March 6, 2012 (received for review October 14, 2011) Selectivity patterns provide insights into the causes of ancient ex- sedimentary record (common cause hypothesis) (14). For the tinction events. The Late Ordovician mass extinction was related LOME, it is useful to split common cause into two hypotheses. to Gondwanan glaciation; however, it is still unclear whether ele- The eustatic common cause hypothesis postulates that Gondwa- vated extinction rates were attributable to record failure, habitat nan glaciation drove the extinction by lowering eustatic sea level, loss, or climatic cooling. We examined Middle Ordovician-Early thereby reducing the overall area of shallow marine habitats, Silurian North American fossil occurrences within a spatiotempo- reorganizing habitat mosaics, and disrupting larval dispersal cor- rally explicit stratigraphic framework that allowed us to quantify ridors (16–18). The climatic common cause hypothesis postulates rock record effects on a per-taxon basis and assay the interplay of that climate cooling, in addition to being ultimately responsible macrostratigraphic and macroecological variables in determining for sea-level drawdown and attendant habitat losses, had a direct extinction risk.
    [Show full text]
  • (Silurian) Anoxic Palaeo-Depressions at the Western Margin of the Murzuq Basin (Southwest Libya), Based on Gamma-Ray Spectrometry in Surface Exposures
    GeoArabia, Vol. 11, No. 3, 2006 Gulf PetroLink, Bahrain Identification of early Llandovery (Silurian) anoxic palaeo-depressions at the western margin of the Murzuq Basin (southwest Libya), based on gamma-ray spectrometry in surface exposures Nuri Fello, Sebastian Lüning, Petr Štorch and Jonathan Redfern ABSTRACT Following the melting of the Gondwanan icecap and the resulting postglacial sea- level rise, organic-rich shales were deposited in shelfal palaeo-depressions across North Africa and Arabia during the latest Ordovician to earliest Silurian. The unit is absent on palaeohighs that were flooded only later when the anoxic event had already ended. The regional distribution of the Silurian black shale is now well-known for the subsurface of the central parts of the Murzuq Basin, in Libya, where many exploration wells have been drilled and where the shale represents the main hydrocarbon source rock. On well logs, the Silurian black shale is easily recognisable due to increased uranium concentrations and, therefore, elevated gamma-ray values. The uranium in the shales “precipitated” under oxygen- reduced conditions and generally a linear relationship between uranium and organic content is developed. The distribution of the Silurian organic-rich shales in the outcrop belts surrounding the Murzuq Basin has been long unknown because Saharan surface weathering has commonly destroyed the organic matter and black colour of the shales, making it complicated to identify the previously organic-rich unit in the field. In an attempt to distinguish (previously) organic-rich from organically lean shales at outcrop, seven sections that straddle the Ordovician-Silurian boundary were measured by portable gamma-ray spectrometer along the outcrops of the western margin of the Murzuq Basin.
    [Show full text]
  • Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, South-West Libya
    This is a repository copy of Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, south-west Libya. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/125997/ Version: Accepted Version Article: Abuhmida, F.H. and Wellman, C.H. (2017) Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, south-west Libya. Palynology, 41. pp. 31-56. ISSN 0191-6122 https://doi.org/10.1080/01916122.2017.1356393 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, southwest Libya Faisal H. Abuhmidaa*, Charles H. Wellmanb aLibyan Petroleum Institute, Tripoli, Libya P.O. Box 6431, bUniversity of Sheffield, Department of Animal and Plant Sciences, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK Twenty nine core and seven cuttings samples were collected from two boreholes penetrating the Middle Ordovician Hawaz Formation in the Murzuq Basin, southwest Libya.
    [Show full text]
  • Polar Front Shift and Atmospheric CO During the Glacial Maximum of the Early Paleozoic Icehouse
    Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse Thijs R. A. Vandenbrouckea,b,c,1,2, Howard A. Armstronga,1, Mark Williamsd,e,1, Florentin Parisf, Jan A. Zalasiewiczd, Koen Sabbeg, Jaak Nõlvakh, Thomas J. Challandsa,i, Jacques Verniersb, and Thomas Servaisc aPalaeoClimate Group, Department of Earth Sciences, Durham University, Science Labs, Durham, DH1 3LE, United Kingdom; bResearch Unit Palaeontology, Department of Geology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium; cGéosystèmes, Université Lille 1, Formation de Recherche en Evolution 3298 du Centre National de la Recherche Scientifique, Avenue Paul Langevin, bâtiment SN5, 59655 Villeneuve d’Ascq Cedex, France; dDepartment of Geology, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom; eBritish Geological Survey, Kingsley Dunham Centre, Keyworth, NG12 5GG, United Kingdom; fGéosciences, Université de Rennes I, Unité Mixte de Recherche 6118 du Centre National de la Recherche Scientifique, Campus de Beaulieu, 35042 Rennes-cedex, France; gProtistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium; hInstitute of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; and iTotal E&P UK Limited, Geoscience Research Centre, Crawpeel Road, Aberdeen AB12 3FG, United Kingdom Edited by Jeffrey Kiehl, National Center for Atmospheric Research, Boulder, CO, and accepted by the Editorial Board July 1, 2010 (received for review March 16, 2010) Our new data address the paradox of Late Ordovician glaciation PAL (5). A GCM experiment parameterized with the same p × under supposedly high CO2 (8 to 22 PAL: preindustrial atmo- pCO2 value, high relative sea level, and a modern equator-to-pole spheric level).
    [Show full text]
  • Reconstruction of the Hirnantian (Late Ordovician) Palaeotopography in the Upper Yangtze Region Linna Zhang University of Chinese Academy of Sciences
    University of Dayton eCommons Geology Faculty Publications Department of Geology 2014 Reconstruction of the Hirnantian (Late Ordovician) Palaeotopography in the Upper Yangtze Region Linna Zhang University of Chinese Academy of Sciences Junxuan Fan Chinese Academy of Sciences Qing Chen Chinese Academy of Sciences Shuang-Ye Wu University of Dayton, [email protected] Follow this and additional works at: https://ecommons.udayton.edu/geo_fac_pub Part of the Geology Commons, Geomorphology Commons, Geophysics and Seismology Commons, Glaciology Commons, Hydrology Commons, Other Environmental Sciences Commons, Paleontology Commons, Sedimentology Commons, Soil Science Commons, Stratigraphy Commons, and the Tectonics and Structure Commons eCommons Citation Zhang, Linna; Fan, Junxuan; Chen, Qing; and Wu, Shuang-Ye, "Reconstruction of the Hirnantian (Late Ordovician) Palaeotopography in the Upper Yangtze Region" (2014). Geology Faculty Publications. 42. https://ecommons.udayton.edu/geo_fac_pub/42 This Article is brought to you for free and open access by the Department of Geology at eCommons. It has been accepted for inclusion in Geology Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Estonian Journal of Earth Sciences, 2014, 63, 4, 329–334 doi: 10.3176/earth.2014.39 Reconstruction of the mid-Hirnantian palaeotopography in the Upper Yangtze region, South China Linna Zhanga,b, Junxuan Fanb, Qing Chenc and Shuang-Ye Wub,d a University of Chinese Academy
    [Show full text]
  • A Sulfidic Driver for the End-Ordovician Mass Extinction
    Earth and Planetary Science Letters 331–332 (2012) 128–139 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl A sulfidic driver for the end-Ordovician mass extinction Emma U. Hammarlund a,b,c,⁎, Tais W. Dahl b, David A.T. Harper d,f, David P.G. Bond e, Arne T. Nielsen f, Christian J. Bjerrum g, Niels H. Schovsbo h, Hans P. Schönlaub i, Jan A. Zalasiewicz j, Donald E. Canfield b a Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden b Nordic Center for Earth Evolution (NordCEE) and Institute of Biology, University of Southern Denmark, DK-5230 Odense C, Denmark c Department of Geological Sciences, Stockholm University, SE-106 91 Stockholm, Sweden d Department of Earth Sciences, Durham University, Durham DH1 3LE, UK e School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK f Natural History Museum of Denmark (Geological Museum), University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K, Denmark g Nordic Center for Earth Evolution (NordCEE) and Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark h Geological Survey of Denmark and Greenland, DK-1350 Copenhagen K, Denmark i Austrian Academy of Science, Center for Geosciences, Vienna, Austria j Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK article info abstract Article history: The end-Ordovician extinction consisted of two discrete pulses, both linked, in various ways, to glaciation at Received 26 December 2011 the South Pole.
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2014/02 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age Erathem / Era System / Period GSSP GSSP age (Ma) GSSP GSSA EonothemErathem / Eon System / Era / Period EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon GSSP age (Ma) present ~ 145.0 358.9 ± 0.4 ~ 541.0 ±1.0 Holocene Ediacaran 0.0117 Tithonian Upper 152.1 ±0.9 Famennian ~ 635 0.126 Upper Kimmeridgian Neo- Cryogenian Middle 157.3 ±1.0 Upper proterozoic Pleistocene 0.781 372.2 ±1.6 850 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian 166.1 ±1.2 Quaternary Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.62 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Langhian Sinemurian Proterozoic Neogene 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Hettangian 2050 Burdigalian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 28.1 Gorstian Oligocene Upper Norian 427.4 ±0.5 2500 Rupelian Wenlock Homerian
    [Show full text]
  • Estimating Dispersal and Evolutionary Dynamics in Diploporan Blastozoans (Echinodermata) Across the Great Ordovician Biodiversification Ve Ent
    University of South Florida Scholar Commons School of Geosciences Faculty and Staff Publications School of Geosciences 2020 Estimating Dispersal and Evolutionary Dynamics in Diploporan Blastozoans (Echinodermata) Across the Great Ordovician Biodiversification vE ent Adriane R. Lam University of Massachusetts Sarah L. Sheffield University of South Florida, [email protected] Nicholas J. Matzke University of Auckland Follow this and additional works at: https://scholarcommons.usf.edu/geo_facpub Part of the Earth Sciences Commons Scholar Commons Citation Lam, Adriane R.; Sheffield, Sarah L.; and Matzke, Nicholas J., "Estimating Dispersal and Evolutionary Dynamics in Diploporan Blastozoans (Echinodermata) Across the Great Ordovician Biodiversification Event" (2020). School of Geosciences Faculty and Staff Publications. 2291. https://scholarcommons.usf.edu/geo_facpub/2291 This Article is brought to you for free and open access by the School of Geosciences at Scholar Commons. It has been accepted for inclusion in School of Geosciences Faculty and Staff Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Paleobiology, 2020, pp. 1–23 DOI: 10.1017/pab.2020.24 Article Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the great Ordovician biodiversification event Adriane R. Lam†, Sarah L. Sheffield† , and Nicholas J. Matzke Abstract.—Echinoderms make up a substantial component of Ordovician marine invertebrates, yet their speciation and dispersal history as inferred within a rigorous phylogenetic and statistical framework is lacking. We use biogeographic stochastic mapping (BSM; implemented in the R package BioGeoBEARS) to infer ancestral area relationships and the number and type of dispersal events through the Ordovician for diploporan blastozoans and related species.
    [Show full text]
  • Terminal Ordovician Carbon Isotope Stratigraphy and Glacioeustatic Sea-Level Change Across Anticosti Island (Québec, Canada)
    Terminal Ordovician carbon isotope stratigraphy and glacioeustatic sea-level change across Anticosti Island (Québec, Canada) David S. Jones1,†, David A. Fike1, Seth Finnegan2, Woodward W. Fischer2, Daniel P. Schrag3, and Dwight McCay1 1Department of Earth and Planetary Sciences, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA 2Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, MC 100-23, Pasadena, California 91125, USA 3Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA ABSTRACT approach provides evidence for the diachro- picture (Runkel et al., 2010). The biological crisis neity of the oncolite bed and Becscie lime- that accompanied the glaciation was the second Globally documented carbon isotope ex- stones; the former transgresses from west greatest mass extinction in the marine fossil cursions provide time-varying signals that to east, and the latter progrades from east rec ord (Sheehan, 2001; Bambach et al., 2004), can be used for high-resolution stratigraphic to west. The sea-level curve consistent with depleting the enormous diversity of marine or- correlation. We report detailed inorganic and our sequence-stratigraphic model indicates ganisms that had evolved during the Ordovician organic carbon isotope curves from carbonate that glacioeustatic sea-level changes and the Radiation (Webby et al., 2004). Marine carbon- rocks of the Ellis Bay and Becscie Formations positive carbon isotope excursion were not ate rocks deposited at the time preserve records spanning the Ordovician-Silurian boundary perfectly coupled. Although the start of the of a global disturbance to the carbon cycle rep- 13 on Anticosti Island, Québec, Canada.
    [Show full text]
  • 2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
    2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN
    [Show full text]
  • Ordovician Stratigraphy and Benthic Community Replacements in the Eastern Anti-Atlas, Morocco J
    Ordovician stratigraphy and benthic community replacements in the eastern Anti-Atlas, Morocco J. Javier Alvaro, Mohammed Benharref, Jacques Destombes, Juan Carlos Gutiérrez-Marco, Aaron Hunter, Bertrand Lefebvre, Peter van Roy, Samuel Zamora To cite this version: J. Javier Alvaro, Mohammed Benharref, Jacques Destombes, Juan Carlos Gutiérrez-Marco, Aaron Hunter, et al.. Ordovician stratigraphy and benthic community replacements in the eastern Anti- Atlas, Morocco. The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco, 485, The Geological Society of London, pp.SP485.20, In press, Geological Society, London, Special Publication, 10.1144/SP485.20. hal-02405970 HAL Id: hal-02405970 https://hal.archives-ouvertes.fr/hal-02405970 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Geological Society Special Publications Ordovician stratigraphy and benthic community replacements in the eastern Anti-Atlas, Morocco --Manuscript Draft-- Manuscript Number: GSLSpecPub2019-17R1 Article Type: Research article Full Title: Ordovician stratigraphy and benthic community replacements in the eastern Anti-Atlas, Morocco Short Title: Ordovician stratigraphy of the Anti-Atlas Corresponding Author: Javier Alvaro Instituto de Geociencias SPAIN Corresponding Author E-Mail: [email protected] Other Authors: MOHAMMED BENHARREF JACQUES DESTOMBES JUAN CARLOS GUTIÉRREZ-MARCO AARON W.
    [Show full text]
  • Type of the Paper (Article
    life Article Dynamics of Silurian Plants as Response to Climate Changes Josef Pšeniˇcka 1,* , Jiˇrí Bek 2, Jiˇrí Frýda 3,4, Viktor Žárský 2,5,6, Monika Uhlíˇrová 1,7 and Petr Štorch 2 1 Centre of Palaeobiodiversity, West Bohemian Museum in Pilsen, Kopeckého sady 2, 301 00 Plzeˇn,Czech Republic; [email protected] 2 Laboratory of Palaeobiology and Palaeoecology, Geological Institute of the Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00 Prague 6, Czech Republic; [email protected] (J.B.); [email protected] (V.Ž.); [email protected] (P.Š.) 3 Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic; [email protected] 4 Czech Geological Survey, Klárov 3/131, 118 21 Prague 1, Czech Republic 5 Department of Experimental Plant Biology, Faculty of Science, Charles University, Viniˇcná 5, 128 43 Prague 2, Czech Republic 6 Institute of Experimental Botany of the Czech Academy of Sciences, v. v. i., Rozvojová 263, 165 00 Prague 6, Czech Republic 7 Institute of Geology and Palaeontology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic * Correspondence: [email protected]; Tel.: +420-733-133-042 Abstract: The most ancient macroscopic plants fossils are Early Silurian cooksonioid sporophytes from the volcanic islands of the peri-Gondwanan palaeoregion (the Barrandian area, Prague Basin, Czech Republic). However, available palynological, phylogenetic and geological evidence indicates that the history of plant terrestrialization is much longer and it is recently accepted that land floras, producing different types of spores, already were established in the Ordovician Period.
    [Show full text]