Computational Studies of Anti-Tumor Drug Tirapazamine and Reactions and Rearrangements of Nitrenes and Carbenes

Total Page:16

File Type:pdf, Size:1020Kb

Computational Studies of Anti-Tumor Drug Tirapazamine and Reactions and Rearrangements of Nitrenes and Carbenes COMPUTATIONAL STUDIES OF ANTI-TUMOR DRUG TIRAPAZAMINE AND REACTIONS AND REARRANGEMENTS OF NITRENES AND CARBENES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jin Liu, B.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Professor Matthew S. Platz, Advisor Professor Christopher M. Hadad _________________________________ Professor Sherwin J. Singer Advisor Graduate Program in Chemistry Professor Anne B. McCoy ABSTRACT The two possible mechanisms of action of the anti-cancer drug tirapazamine have been investigated using density functional theory (DFT). Tirapazamine is a novel anti- cancer drug which is inactive in oxygen-rich, healthy cells but is active in oxygen-poor, cancerous cells and induces DNA strand scission. We calculate that the mechanism proceeds via a series of electron-transfer/proton-transfer/fragmentation steps to eventually produce hydroxyl radical in a series of energetically favorable reactions. It has been proposed that the generated hydroxyl radical may then react with the sugar residues of the DNA backbone moiety to produce sugar-centered radicals. A direct mechanism involving hydrogen-atom abstraction from the sugar residues by a tirapazamine-centered radical anion or its conjugate acid is not energetically feasible. However, the hydroxyl radical can remove a hydrogen atom from the amino group of tirapazamine to form an iminyl radical. This radical can remove a hydrogen atom of a DNA sugar in an exothermic process. The calculations predict that tirapazamine, acting as a surrogate for molecular oxygen, can then react exothermically with the sugar-centered radical to oxygenate the radical center and thereby induce the DNA strand break. Related reactions of some tirapazamine analogs were studied, and promising new drug candidates were discussed. ii DFT, CCSD(T), and CBS-QB3 calculations were performed to understand the chemical and reactivity differences between acetylnitrene (CH3C(=O)N) and methoxycarbonylnitrene (CH3OC(=O)N) as well as sulfonylnitrenes. Acetyl azide is calculated to decompose by concerted migration of the methyl group along with nitrogen extrusion. Methoxycarbonyl azide, on the other hand, does have a preference for stepwise Curtius rearrangement via the free nitrene. Methanesulfonyl azide prefers to decompose to form singlet methanesulfonylnitrene rather than to extrude nitrogen in concert with sulfurylimine formation (pseudo Curtius Rearrangement). The bimolecular reactions of acetylnitrene, methoxycarbonylnitrene and methanesulfonylnitrene with propane, ethylene and methanol were calculated and found to have enthalpic barriers that are near zero and free energy barriers are controlled by entropy. Similar calculations were performed on diazoketones, diazoesters and diazoalkanes. We find that conformations in which the migrating group and the diazo moiety have an anti disposition extrude nitrogen and undergo concerted Wolff Rearrangement to ketene and avoid the formation of the free carbene. When these groups have a syn disposition, carbenes are formed, and these intermediates subsequently rearrange. Diazoacetone favors a concerted thermal decomposition and methyl diazoacetate prefer stepwise carbene formation. These preferences are explained with the use of isodesmic equations, and upon consideration of the geometries of the transition states and the free carbenes. iii The reactions with oxygen of triplet carbenes and triplet nitrenes were calculated by DFT, CCSD(T) and CASPT2 methods. The fact that triplet carbenes react faster with oxygen than do triplet nitrenes has been explained on the basis of the strength of the bonds being formed. iv To my parents and Peng v ACKNOWLEDGMENTS Standing at a new milestone of my life, I look back to my journey on the road of science. I can see so many people leading me, supporting me, and encouraging me on this road. I would first thank two of my advisors, Dr. Matthew S. Platz and Dr. Christopher M. Hadad. It is their intellectual support and patient guidance that made this dissertation possible. They set a lifetime’s worth of example for me to follow, as a scientist and as a person. I appreciate that many faculty members in physical division gave me a tremendous education. They led me into the world of physical chemistry through their classes and personal discussions. I would give my special thanks to Dr. Singer and Dr. McCoy as my committee members. I would like to mention all group members in Platz and Hadad group, for their friendship, encouragement, and discussions. I will cherish the wonderful moments we shared. I also would like to thank The Ohio Supercomputer Center for technical support and NSF-funded Environmental Molecular Science Institute at OSU for partial financial support. vi My parents, Qiaoyun Liu and Binyan Liu, know nothing about chemistry. What they know is, love. Their love from my mother land, the other side of the Earth, support me to be a strong person during my five years studies in this foreign country. They are not only my parents, but also my mentors and best friends. I love you both, mom and dad, with all my heart. Finally, I would thank the most important person in my life, Peng Tao. As a lab colleague, your intelligent insight helped me tremendously during my completion of this dissertation; as a friend, you are always with me during my countless tough time; as a life partner, your love and support are incredible. I think I am ready to accept your request and to become the luckiest person in the world, spending the rest of my journey with you. Yes, I do. vii VITA May 19, 1978. Born – Xi’an, China 1996 - 2000. B. S. Chemistry Beijing University, China 2000 – 2005. Graduate Teaching and Research Associate, The Ohio State University. PUBLICATIONS Research Publications 1. Liu, J.; Mandel, S.; Hadad, C. M.; Platz, M. S. “A Comparison of Acetyl and Methoxycarbonylnitrenes by Computational methods and a Laser Flash Photolysis Study of Benzoylnitrene.” J. Org. Chem. 2004, 69, 8583-8593. 2. Liu, J.; Hadad, C. M.; Platz, M. S. “The Reaction of Triplet Nitrene with Oxygen: A Computational Study.” Org. Lett. 2005, 7, 549-552. 3. Mandel, S.; Liu, J.; Hadad, C. M.; Platz, M. S. “A Study of Singlet and Triplet 2,6 – Difluorophenylnitrene by Time Resolved Infrared Spectroscopy” J. Phys. Chem. A 2005, 109, 2816-2821. FIELDS OF STUDY Major Field: Chemistry viii TABLE OF CONTENTS P a g e Abstract. ii Dedication. .iv Acknowledgments . .v Vita . .viii List of Tables. xii List of Figures . xv Chapters: 1. Introduction………………………………………………………………………1 2. Mechanism of action of Tirapazamine…………………………………….…….15 2.1 Introduction………………………………………………………………….15 2.2 Computational methods……………………………………………………...20 2.3 Results………………………………………………………………………..23 2.3.1 Protonation of the triapazamine radical anion…………………...23 2.3.2 Hydrogen atom transfer reactions of TO·⎯, TOH·, TOH·’ with Amino Ribose……………………………………………………28 2.3.3 N-O bond cleavage reactions…………………………………….32 2.3.4 Oxygen transfer from tirapazamine to the desoxyribose ring…....34 2.4 Conclusions…………………………………………………………………..36 2.5 References for Chapter 2…………………………………………………….46 3. Analogs of tirapazamine…………………………………………………………48 3.1 Introduction…………………………………………………………………..48 3.2 Computational methods……………………………………………………...49 ix 3.3 Results………………………………………………………………………..49 3.3.1 Effects of phenyl ring substitution and benzannulation………….49 3.3.2 Lumiflavin N-oxide……………………………………………...61 3.3.3 The action of T and T’…………………………………………………...62 3.4 Conclusions…………………………………………………………………..70 3.5 References for Chapter 3…………………………………………………….71 4. Radical additions to aromatic N-oxides………………………………………….72 4.1 Introduction…………………………………………………………………..72 4.2 Computational methods……………………………………………………...72 4.3 Results………………………………………………………………………..73 4.3.1 Reactions of methyl radical with benzene or pyridine…………...73 4.3.2 Reaction of methyl radical with pyridine N-oxide………………74 4.3.3 Oxygen transfer from pyrazine, 1,4-dioxide to methyl radical…..78 4.3.4 Effect of phenyl ring……………………………………………..81 4.3.5 Effect of substitution……………………………………………..82 4.3.6 Silicon centered radicals…………………………………………84 4.4 Conclusions…………………………………………………………………..85 4.5 References for Chapter 4…………………………………………………….86 5. A comparison of acetyl and methoxycarbonylnitrenes…………………………..87 5.1 Introduction………………………………………………………………87 5.2 Computational methods………………………………………………….90 5.3 Results……………………………………………………………………92 5.3.1 Singlet-triplet energy splittings…………………………………..92 5.3.2 Curtius rearrangement……………………………………………98 5.3.3 Intramolecular C-H insertion…………………………………...107 5.3.4 Bimolecular reactions…………………………………………..108 5.4 Conclusions……………………………………………………………..114 5.5 References for Chapter 5……………………………………………….115 6. Sulfonylnitrenes and azides…………………………………………………….118 6.1 Introduction…………………………………………………………….118 6.2 Computational methods………………………………………………...120 6.3 Results…………………………………………………………………..121 6.3.1 Methylsulfonylnitrene singlet-triplet energy separation………..121 6.3.2 Intramolecular C-H insertion reactions of singlet alkylsulfonylnitrenes……………………………………………124 6.3.3 Pseudo-Curtius rearrangements………………………………...126 x 6.3.4 Bimolecular reactions of singlet methylsulfonylnitrene………..129 6.3.5 Bimolecular reactions of triplet methylsulfonylnitrene………...131 6.3.6 Is thermal rearrangement concerted with nitrogen extrusion…..132 6.3.7 Other modes of thermal decomposition of methanesulfonyl azide…………………………………………………………….134
Recommended publications
  • High-Resolution Infrared Spectroscopy: Jet-Cooled Halogenated Methyl Radicals and Reactive Scattering Dynamics in an Atom + Polyatom System
    HIGH-RESOLUTION INFRARED SPECTROSCOPY: JET-COOLED HALOGENATED METHYL RADICALS AND REACTIVE SCATTERING DYNAMICS IN AN ATOM + POLYATOM SYSTEM by ERIN SUE WHITNEY B.A., Williams College, 1996 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry 2006 UMI Number: 3207681 Copyright 2006 by Whitney, Erin Sue All rights reserved. UMI Microform 3207681 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 This thesis for the Doctor of Philosophy degree entitled: High resolution infrared spectroscopy: Jet cooled halogenated methyl radicals and reactive scattering dynamics in an atom + polyatom system written by Erin Sue Whitney has been approved for the Department of Chemistry and Biochemistry by David J. Nesbitt Veronica M. Bierbaum Date ii Whitney, Erin S. (Ph.D., Chemistry) High-Resolution Infrared Spectroscopy: Jet-cooled halogenated methyl radicals and reactive scattering dynamics in an atom + polyatomic system Thesis directed by Professor David J. Nesbitt. This thesis describes a series of projects whose common theme comprises the structure and internal energy distribution of gas-phase radicals. In the first two projects, shot noise-limited direct absorption spectroscopy is combined with long path-length slit supersonic discharges to obtain first high-resolution infrared spectra for jet-cooled CH2F and CH2Cl in the symmetric and antisymmetric CH2 stretching modes.
    [Show full text]
  • Bimolecular Reaction Dynamics in the Phenyl - Silane System
    Bimolecular Reaction Dynamics in the Phenyl - Silane System: Exploring the Prototype of a Radical Substitution Mechanism 1 1 1 1 2 Michael Lucas , Aaron M. Thomas , Tao Yang , Ralf I. Kaiser *, Alexander M. Mebel , Diptarka Hait3, Martin Head-Gordon3,4* 1 Department of Chemistry, University of Hawai’i at Manoa, Honolulu, HI 96822 2 Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 3 Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA 94720 4 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 *Email: [email protected] *Email: [email protected] Abstract We present a combined experimental and theoretical investigation of the bimolecular gas phase reaction of the phenyl radical (C6H5) with silane (SiH4) under single collision conditions to investigate the chemical dynamics of forming phenylsilane (C6H5SiH3) via a bimolecular radical substitution mechanism at a tetra-coordinated silicon atom. Verified by electronic structure and quasiclassical trajectory calculations, the replacement of a single carbon atom in methane by silicon lowers the barrier to substitution thus defying conventional wisdom that tetra-coordinated hydrides undergo preferentially hydrogen abstraction. This reaction mechanism provides funda- mental insights into the hitherto unexplored gas phase chemical dynamics of radical substitution reactions of mononuclear main group hydrides under single collision conditions and highlights
    [Show full text]
  • Thermochemical Properties of Methyl and Chloro-Methyl Hyplochlorites and Ethers and Reaction of Methyl Radical with CLO
    New Jersey Institute of Technology Digital Commons @ NJIT Theses Electronic Theses and Dissertations Spring 5-31-2000 Thermochemical properties of methyl and chloro-methyl hyplochlorites and ethers and reaction of methyl radical with CLO Dawoon Jung New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/theses Part of the Chemistry Commons Recommended Citation Jung, Dawoon, "Thermochemical properties of methyl and chloro-methyl hyplochlorites and ethers and reaction of methyl radical with CLO" (2000). Theses. 778. https://digitalcommons.njit.edu/theses/778 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves
    [Show full text]
  • Carbon Kinetic Isotope Effect in the Oxidation of Methane by The
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. D13, PAGES 22,455-22,462, DECEMBER 20, 1990 CarbonKinetic IsotopeEffect in the Oxidationof Methaneby the Hydroxyl Radical CttRISTOPHERA. CANTRELL,RICHARD E. SHE•, ANTHONY H. MCDANmL, JACK G. CALVERT, JAMESA. DAVIDSON,DAVID C. LOWEl, STANLEYC. TYLER,RALPH J. CICERONE2, AND JAMES P. GREENBERG AtmosphericKinetics and PhotochemistryGroup, AtmosphericChemistry Division, National Centerfor AtmosphericResearch, Boulder, Colorado The reactionof the hydroxylradical (HO) with the stablecafix)n isotopes of methanehas been studied as a functionof temperaturefrom 273 to 353 K. The measuredratio of the rate coefficientsfor reaction with•ZCHn relative to •3CH•(kn•/kn3) was 1.0054 (20.0009 at the95% confidence interval), independent of temperaturewithin the precisionof the measurement,over the rangestudied. The precisionof the present valueis muchimproved over that of previousstudies, and this resultprovides important constraints on the currentunderstanding of the cyclingof methanethrough the atmospherethrough the useof carbonisotope measurements. INTRODUCTION weightedaverage of the sourceratios must equal the atmospher- Methane (CH•) is an importanttrace gas in the atmosphere ic ratio, after correctionfor fractionationin any lossprocesses. [Wofsy,1976]. It is a key sink for the tropospherichydroxyl The primaryloss of CI-I4in the troposphereis the reactionwith radical. Methane contributesto greenhousewarming [Donner the hydroxylradical: and Ramanathan,1980]; its potentialwarming effects follow only CO2 and H20. Methaneis a primary sink for chlorine (R1) CHn + HO ---)CH3 + HzO atomsin the stratosphereand a majorsource of watervapor in the upper stratosphere. The concentrationof CI-I4 in the The rate coefficient for this reaction has been studied extensive- tropospherehas been increasing at a rateof approximately1% ly (seereview by Ravishankara[1988]), but dataindicating the per year, at leastover the pastdecade [Rasmussen and Khalil, effect of isotopesubstitution in methaneare scarce.
    [Show full text]
  • Gas-Phase Chemistry of Methyl-Substituted Silanes in a Hot-Wire Chemical Vapour Deposition Process
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-08-27 Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process Toukabri, Rim Toukabri, R. (2013). Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26257 http://hdl.handle.net/11023/891 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process by Rim Toukabri A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY CALGARY, ALBERTA August, 2013 © Rim Toukabri 2013 Abstract The primary decomposition and secondary gas-phase reactions of methyl- substituted silane molecules, including monomethylsilane (MMS), dimethylsilane (DMS), trimethylsilane (TriMS) and tetramethylsilane (TMS), in hot-wire chemical vapour deposition (HWCVD) processes have been studied using laser ionization methods in combination with time of flight mass spectrometry (TOF-MS). For all four molecules, methyl radical formation and hydrogen molecule formation have been found to be the common decomposition steps on both tungsten (W) and tantalum (Ta) filaments.
    [Show full text]
  • A Photoionization Reflectron Time‐Of‐Flight Mass Spectrometric
    Articles ChemPhysChem doi.org/10.1002/cphc.202100064 A Photoionization Reflectron Time-of-Flight Mass Spectrometric Study on the Detection of Ethynamine (HCCNH2) and 2H-Azirine (c-H2CCHN) Andrew M. Turner,[a, b] Sankhabrata Chandra,[a, b] Ryan C. Fortenberry,*[c] and Ralf I. Kaiser*[a, b] Ices of acetylene (C2H2) and ammonia (NH3) were irradiated with 9.80 eV, and 10.49 eV were utilized to discriminate isomers energetic electrons to simulate interstellar ices processed by based on their known ionization energies. Results indicate the galactic cosmic rays in order to investigate the formation of formation of ethynamine (HCCNH2) and 2H-azirine (c-H2CCHN) C2H3N isomers. Supported by quantum chemical calculations, in the irradiated C2H2:NH3 ices, and the energetics of their experiments detected product molecules as they sublime from formation mechanisms are discussed. These findings suggest the ices using photoionization reflectron time-of-flight mass that these two isomers can form in interstellar ices and, upon spectrometry (PI-ReTOF-MS). Isotopically-labeled ices confirmed sublimation during the hot core phase, could be detected using the C2H3N assignments while photon energies of 8.81 eV, radio astronomy. 1. Introduction acetonitrile (CH3CN; 1) and methyl isocyanide (CH3NC; 2) ‘isomer doublet’ (Figure 2) – the methyl-substituted counterparts of For the last decade, the elucidation of the fundamental reaction hydrogen cyanide (HCN) and hydrogen isocyanide (HNC) – has pathways leading to structural isomers – molecules with the been detected toward the star-forming region SgrB2.[4,8–9] same molecular formula, but distinct connectivities of atoms – However, none of their higher energy isomers has ever been of complex organic molecules (COMs) in the interstellar identified in any astronomical environment: 2H-azirine (c- [10–14] [15–19] medium (ISM) has received considerable interest from the NCHCH2; 3), ethynamine (HCCNH2; 4), ketenimine [1–3] [20] [21] astrochemistry and physical chemistry communities.
    [Show full text]
  • The Distribution of the Hydroxyl Radical in the Troposphere Jack
    The Distribution of the Hydroxyl Radical in the Troposphere By Jack Fishman Paul J. Crutzen Department of Atmospheric Science Colorado State University Fort Collins, Colorado THE DISTRIBUTION OF THE HYDROXYL RADICAL IN THE TROPOSPHERE by Jack Fishman and Paul J. Crutzen Preparation of this report has been financially supported by Environmental Protection Agency Grant No. R80492l-0l Department of Atmospheric Science Colorado State University Fort Collins, Colorado January, 1978 Atmospheric Science Paper No. 284 Abstract A quasi-steady state photochemical numerical model is developed to calculate a two-dimensional distribution of the hydroxyl (OH) radical in the troposphere. The diurnally, seasonally averaged globaJ 5 3 value of OH derived by this model is 3 x 10 cm- which is several times lower than the number computed previously by other models, but is in good agreement with the value inferred from the analysis of the tropospheric distribution of methyl chloroform. Likewise, the effects of the computed OH distribution on the tropospheric budgets of ozone and carbon monoxide are not inconsistent with this lower computed value. One important result of this research is the detailed analysis of the distribution of tropospheric ozone in the Southern Hemisphere. Our work shows that there is a considerable difference in the tropospheric ozone patterns of the two hemispheres and that through the analysis of the likely photochemistry occurring in the troposphere, a significant source of tropospheric ozone may exist in the Northern Hemisphere due to carbon monoxide oxidation. Future research efforts will be devoted to the meteorological dynamics of the two hemispheres to try to distinguish if these physical processes are similarly able to explain the interhemispheric differences in tropospheric ozone.
    [Show full text]
  • A Variationally Computed IR Line List for the Methyl Radical CH3 Arxiv
    A Variationally Computed IR Line List for the Methyl Radical CH3 Ahmad Y. Adam,y Andrey Yachmenev,z Sergei N. Yurchenko,{ and Per Jensen∗,y yFakult¨atf¨urMathematik und Naturwissenschaften, Physikalische und Theoretische Chemie, Bergische Universit¨atWuppertal, D{42097 Wuppertal, Germany zCenter for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany, The Hamburg Center for Ultrafast Imaging, Universit¨atHamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany {Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom E-mail: [email protected] arXiv:1905.05504v1 [physics.chem-ph] 14 May 2019 1 Abstract We present the first variational calculation of a hot temperature ab initio line list for the CH3 radical. It is based on a high level ab initio potential energy surface and dipole moment surface of CH3 in the ground electronic state. The ro-vibrational energy lev- els and Einstein A coefficients were calculated using the general-molecule variational approach implemented in the computer program TROVE. Vibrational energies and vibrational intensities are found to be in very good agreement with the available ex- perimental data. The line list comprises 9,127,123 ro-vibrational states (J ≤ 40) and 2,058,655,166 transitions covering the wavenumber range up to 10000 cm−1 and should be suitable for temperatures up to T = 1500 K. Introduction The methyl radical CH3 is a free radical of major importance in many areas of science such as hydrocarbon combustion processes,1 atmospheric chemistry,2 the chemistry of semiconductor production,3 the chemical vapor deposition of diamond,4 and many chemical processes of current industrial and environmental interest.
    [Show full text]
  • United States Patent Office Patented Nov
    3,702,769 United States Patent Office Patented Nov. 14, 1972 1. 2 turpentine, kerosine, mineral spirits, VM & P Naphtha METHOD of PoLIS.iiNGifeATHER3,702,769 wiTH COM and various of the aliphatic petroleum solvents such as POSITIONS CONTAINING REACTION PRODUCT those sold under the trademarks of Varsol and Skelly L. OF HYDROXY ENDBLOCKED SILOXANES AND solvent. When the term solvent is used herein, it should AMNOFUNCTIONAL SILANES be recognized by those skilled in the art that it is meant James R. Vaughn, Greensboro, N.C., assignor to Dow to include not only a single solvent but mixtures thereof. Corning Corporation, Midland, Mich. For example, in the preferred embodiment of the instant No Drawing. Continuation of abandoned application Ser. invention, it is preferred that the solvent be a mixture No. 703,533, Feb. 7, 1968. This application Jan. 4, of turpentine and Varsol in an approximate weight ratio 1971, Ser. No. 103,835 of 2.5:1. From 25 to 100 parts of solvent per 100 parts Int. C. C08h 9/06; C09f; CO9g 1/08 of water is employed. Preferably the amount of solvent U.S. C. 106-10 1. Claims is in the range of 45 to 65 parts. Various of the commercially available and commonly ABSTRACT OF THE DISCLOSURE used polish waxes can be employed in the instant compo 5 sition. Illustrative examples of suitable waxes include A leather polish is disclosed which not only polishes carnauba, beeswax, ozokerite and paraffin. Carnauba wax but cleans and preserves the leather. In addition, the polish is preferred at this time.
    [Show full text]
  • Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wellesley College Wellesley College Wellesley College Digital Scholarship and Archive Faculty Research and Scholarship 6-27-2018 Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin Pierce van Mulbregt Jeniffer Perea Muhammad Kasule Jean Huang See next page for additional authors Follow this and additional works at: https://repository.wellesley.edu/scholarship Version: Post-print Recommended Citation E. Mullikin, P. van Mulbregt, J. Perea, M. Kasule, J. Huang, C. Buffo, J. Campbell, L. Gates, H. M. Cumberbatch, Z. Peeler, H. Schneider, J. Lukens, S. T. Bao, R. Tano-Menka, S. Baniya, K. Cui, M. Thompson, A. Hay, L. Widdup, A. Caldwell-Overdier, J. Huang, M. C. Boyer, M. Rajappan, G. Echebiri and C. R. Arumainayagam, ACS Earth and Space Chemistry, 2018, DOI: 10.1021/ acsearthspacechem.8b00027. This Article is brought to you for free and open access by Wellesley College Digital Scholarship and Archive. It has been accepted for inclusion in Faculty Research and Scholarship by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information, please contact [email protected]. Authors Ella Mullikin, Pierce van Mulbregt, Jeniffer Perea, Muhammad Kasule, Jean Huang, Christina Buffo, Jyoti Campbell, Leslie Gates, Helen M. Cumberbatch, Zoe Peeler, Hope Schneider, Julia Lukens, Si Tong Bao, Rhoda Tano-Menka, Subha Baniya, Kendra Cui, Mayla Thompson, Aury Hay, Lily Widdup, Anna Caldwell- Overier, Justine Huang, Michael C. Boyer, Mahesh Rajappan, Geraldine Echebiri, and Christopher R. Arumainayagam This article is available at Wellesley College Digital Scholarship and Archive: https://repository.wellesley.edu/scholarship/183 Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin,1 Pierce van Mulbregt,2 Jeniffer Perea,1 Muhammad Kasule,3 Jean Huang,1 Christina Buffo,1 Jyoti Campbell,1 Leslie Gates,1 Helen M.
    [Show full text]
  • Reactivity of the Solvated Electron, the Hydroxyl Radical and Its Precursor in Deuterated Water Studied by Picosecond Pulse Radiolysis Furong Wang
    Reactivity of the Solvated Electron, the Hydroxyl Radical and its Precursor in Deuterated Water Studied by Picosecond Pulse Radiolysis Furong Wang To cite this version: Furong Wang. Reactivity of the Solvated Electron, the Hydroxyl Radical and its Precursor in Deuter- ated Water Studied by Picosecond Pulse Radiolysis. Theoretical and/or physical chemistry. Université Paris Saclay (COmUE), 2018. English. NNT : 2018SACLS399. tel-02057515 HAL Id: tel-02057515 https://tel.archives-ouvertes.fr/tel-02057515 Submitted on 5 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reactivity of the Solvated Electron, the Hydroxyl Radical and its Precursor in Deuterated Water 2018SACLS399 : Studied by Picosecond Pulse NNT Radiolysis Thèse de doctorat de l'Université Paris-Saclay préparée à l'Université Paris-Sud École doctorale n°571 : sciences chimiques : molécules, matériaux instrumentation et biosystèmes (2MIB) Spécialité de doctorat : Chimie Thèse présentée et soutenue, le 22 Octobre, 2018, par Mme Furong WANG Composition du Jury : Mme Isabelle Lampre Professeur, Université Paris-Sud (– LCP) Présidente M. Jean-Marc Jung Professeur, Université de Strasbourg (– IPHC) Rapporteur M. Philippe Moisy Directeur de recherche, CEA Marcoule Rapporteur Mme Sophie Le Caer Directrice de recherche, CEA (– LIONS) Examinateur M.
    [Show full text]
  • Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases
    International Journal of Molecular Sciences Review Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases Fabrice Collin Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France; [email protected] Received: 26 April 2019; Accepted: 13 May 2019; Published: 15 May 2019 Abstract: Increasing numbers of individuals suffer from neurodegenerative diseases, which are characterized by progressive loss of neurons. Oxidative stress, in particular, the overproduction of Reactive Oxygen Species (ROS), play an important role in the development of these diseases, as evidenced by the detection of products of lipid, protein and DNA oxidation in vivo. Even if they participate in cell signaling and metabolism regulation, ROS are also formidable weapons against most of the biological materials because of their intrinsic nature. By nature too, neurons are particularly sensitive to oxidation because of their high polyunsaturated fatty acid content, weak antioxidant defense and high oxygen consumption. Thus, the overproduction of ROS in neurons appears as particularly deleterious and the mechanisms involved in oxidative degradation of biomolecules are numerous and complexes. This review highlights the production and regulation of ROS, their chemical properties, both from kinetic and thermodynamic points of view, the links between them, and their implication in neurodegenerative diseases. Keywords: reactive oxygen species; superoxide anion; hydroxyl radical; hydrogen peroxide; hydroperoxides; neurodegenerative diseases; NADPH oxidase; superoxide dismutase 1. Introduction Reactive Oxygen Species (ROS) are radical or molecular species whose physical-chemical properties are well-known both on thermodynamic and kinetic points of view.
    [Show full text]