Sodium Iodidecatalyzed Direct Alkoxylation of Ketones With

Total Page:16

File Type:pdf, Size:1020Kb

Sodium Iodidecatalyzed Direct Alkoxylation of Ketones With COMMUNICATIONS DOI: 10.1002/adsc.201500006 Sodium Iodide-Catalyzed Direct a-Alkoxylation of Ketones with Alcohols via Oxidation of a-Iodo Ketone Intermediates Cuiju Zhu,a Yuanfei Zhang,a Huaiqing Zhao,a Shijun Huang,a Min Zhang,a,* and Weiping Sua,* a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian 350002, Peoples Republic of China E-mail: [email protected] or [email protected] Received: January 5, 2015; Published online: February 4, 2015 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201500006. Abstract: The direct a-alkoxylation of ketones with for the a-alkoxylation of carbonyl compounds is alcohols via a sodium iodide-catalyzed oxidative highly desirable. cross-coupling has been developed. This protocol Herein, we described an efficient method for the enables a range of alkyl aryl ketones to cross- construction of a-alkoxy ketones via direct oxidative couple with an array of alcohols in synthetically coupling of ketones with a broad range of alkyl and useful yields. The mechanistic studies provided solid benzyl alcohols as coupling partners using low-cost evidence supporting that an a-iodo ketone was sodium iodide as the catalyst. In principle, two cou- a key reaction intermediate, being converted into pling partners of the direct a-alkoxylation of ketones, an a-alkoxylated ketone via further oxidation to namely, the enol and the alcohol, are both nucleo- a hypervalent iodine species rather than a common philes and therefore electronically mismatched. This nucleophilic substitution, and was generated from kind of cross-coupling between two nucleophiles is the ketone starting material via a radical intermedi- conventionally realized through umpolung of one ate. These new mechanism insights should have an coupling component.[6] In this regard, MacMillan and effect on the design of iodide-catalyzed oxidative co-workers[6a] have recently achieved the Cu-catalyzed cross-coupling reactions between nucleophiles. direct a-amination of carbonyl compounds, and Loh [6b] et al. have discovered the I2-catalyzed a-amination Keywords: alcohols; a-alkoxylation; CÀO coupling; of aldehydes. These two reactions were proposed to hypervalent iodine; ketones proceed via a-halogenation of the carbonyl and sub- sequent nucleophilic substitution of the halide func- tionality by an amine. Metal-catalyzed oxidative cross-coupling has evolved into a powerful tool for Carbonyl compounds with a-alkoxy substituents have found numerous applications either as building blocks or synthetic intermediates,[1] and are present in many pharmaceuticals and biologically active compounds (Scheme 1).[2] Their prevalence has promoted synthet- ic organic chemists to seek efficient methods for the construction of this kind of molecular framework. Traditionally, the installation of alkoxy substituents at the carbonyl a-position can be accomplished through multistep processes via synthetic intermediates such as silyl enol ethers,[3] enol acetates[4] or a-diazo ke- tones.[5] These methods suffer from the inconvenient Scheme 1. Three examples illustrating the importance of a- multiple oxidation procedures or rigorous control of alkoxy ketones: a) (+)-(aR)-a-methoxy-2’,4’-dihydroxydihy- the reaction conditions. Moreover, the substrate scope drochalcone, a natural product;[2a] b) 2-(benzyloxy)-1,2-di- of these methods is limited as the introduction of phenylethanone, a small molecule that can inhibit apolipo- a long-chain alkoxy group remains underdeveloped. protein E production;[2b] c) 2-methoxy-1,2-diphenyletha- Accordingly, a general and straightforward method none, a photopolymerization initiator.[2c] Adv. Synth. Catal. 2015, 357, 331 – 338 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 331 Cuiju Zhu et al. COMMUNICATIONS forging new chemical bonds linking two nucleophilic Table 1. Optimization studies for the catalytic a-alkoxylation components.[7] For example, the amine-assisted Cu- of ketones.[a] catalyzed oxidative cross-coupling of aldehydes with alkenylboronic acids has been established for the enantioselective a-alkenylation of aldehydes.[8] On the other hand, hypervalent iodine compounds have proved to be versatile reagents for diverse oxi- dative transformations[9] including a-functionaliza- [10] Entry [I] Oxidant Additive Yield tions of carbonyl compounds. On the basis of the [b] advances in using hypervalent iodine reagents for or- (mol%) (equiv.) [%] ganic syntheses, aryl iodide- or iodide salt-catalyzed 1Bu4NI (20) TBHP TsOH (0.4) 0 oxidative transformations have recently been devel- 2Bu4NI (20) K2S2O8 TsOH (0.4) 0 oped, in which hypervalent iodine intermediates are 3Bu4NI (20) H2O2 TsOH (0.4) 0 [11] in-situ generated in catalytic processes. For in- 4Bu4NI (20) m-CPBA TsOH (0.4) 0 stance, Ochiai and Ishihara independently reported 5Bu4NI (20) m-CPBA BF3·Et2O (0.4) 0 aryl iodide- and Bu NI-catalyzed a-oxyacetylations of 6Bu4NI (20) m-CPBA NsOH (0.4) 36 4 7BuNI (20) m-CPBA NsOH (1.0) 70 ketones, respectively.[11c,f] Although a number of 4 8BuNI (20) m-CPBA NsOH (1.5) 85 methods have been established for the a-hydroxyl- 4 [12] 9 NaI (20) m-CPBA NsOH (1.5) 90 (86) ation of carbonyl compounds, the catalytic direct a- 10 KI (20) m-CPBA NsOH (1.5) 83 alkoxylation of carbonyl compounds with alcohols re- 11 LiI (20) m-CPBA NsOH (1.5) 70 mains a great challenge because of the undesired 12 PhI (20) m-CPBA NsOH (1.5) 60 Baeyer–Villiger oxidation of ketones to esters,[13] the 13 – m-CPBA NsOH (1.5) 0 oxidative consumption of alcohols,[14] the weak nucle- 14 NaI (100) – NsOH (1.5) 0 ophilicity of alcohols and the 1, 2-addition of alcohols [a] Reaction conditions: 1a (0.2 mmol), 2a (0.5 mL), iodide to the carbonyl C=O bond. An illustrative example catalyst, oxidant (2.5 equiv.), additive, CH3CN (2.0 mL), reported by Cheng and co-workers is the Bu4NI-cata- 808C, 24 h. TBHP =tert-butyl hydroperoxide, NsOH= lyzed reaction of ketones with benzylic alcohols using para-nitrobenzenesulfonic acid. TBHP as the oxidant that produced a-acyloxy ke- [b] GC yield using dodecane as an internal standard (values tones rather than a-alkoxy ketones.[15] Very recently, in parentheses refers to the isolated yield). Jiao and co-workers described the Cu-catalyzed aero- bic oxidative esterification of ketones with alcohols, further highlighting the complications of oxidative cross-coupling between ketones and alcohols.[16] To of 1a and activate 1a towards oxidation at the a-posi- date, the only example closely related to the direct a- tion with varyious oxidants such as TBHP, K2S2O8, alkoxylation of carbonyl compounds was reported by H2O2, m-CPBA, but the reaction did not give any de- Ishihara who achieved a quaternary ammonium sired product (entries 1–5). To our delight, employing iodide-catalyzed intramolecular a-phenolation of ke- 2.5 equiv. of m-CPBA as the oxidant, in combination tones.[17] To the best of our knowledge, our findings with 40 mol% para-nitrobenzenesulfonic acid represent the first example of a catalytic direct a-al- (NsOH) as the additive, led to formation of the de- koxylation of carbonyl compounds. Importantly, the sired product 3a in 36% yield (entry 6). We speculat- mechanistic studies provide evidence supporting ed that increasing the amount of acid would push for- a new reaction pathway for iodide-catalyzed oxidative ward the enolization of the ketones, thus favoring ac- cross-couplings between nucleophiles that involves an tivation of the ketones. As expected, an 85% yield a-iodo ketone as intermediate. The coupling of an a- was obtained after adding 1.5 equiv. of NsOH to the iodo ketone with a weak nucleophile such as alcohol reaction system (entry 8). Inorganic iodide salts such proceeds via further oxidation to a hypervalent iodine as NaI, KI and LiI also proved to be effective cata- intermediate rather than the usual nucleophilic substi- lysts and led to comparable conversions, among which tution. This mechanistic insight should be helpful for NaI gave the best result (entries 9–11). Notably, the design of iodide-catalyzed oxidative cross-cou- Baeyer–Villiger oxidation of ketones was not ob- pling reactions. served under the optimized conditions, probably be- Initially, we screened a variety of reaction parame- cause the a-position of the enol from the acid-pro- ters using the reaction of propiophenone 1a with an moted ketone tautomerization is much more reactive excess amount of methanol 2a as a model system than other positions. However, accompanying product (Table 1). To the model reaction carried out in 3a, a small amount of a-iodo ketone (e.g., 2-iodo-1- CH3CN at 808C in the presence of 20 mol% Bu4NI as phenylpropan-1-one 5) was always formed in the a catalyst, a variety of Lewis acids[18] such as TsOH, model reaction. When PhI was used as the catalyst in BF3·Et2O were introduced to promote the enolization place of NaI, the yield of 3a dropped to 60% 332 asc.wiley-vch.de 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Adv. Synth. Catal. 2015, 357, 331 – 338 COMMUNICATIONS Sodium Iodide-Catalyzed Direct a-Alkoxylation of Ketones with Alcohols Scheme 2. Scope of the ketone coupling partner. Reaction conditons: 1 (0.2 mmol), 2a (0.5 mL), NaI (20 mol%), NsOH (1.5 equiv.), m-CPBA (2.5 equiv.), CH3CN (2 mL); isolated yields. (entry 12). Control experiments confirmed that both cohols and benzyl alcohols could be directly synthe- iodide salt and oxidant were necessary for the reac- sized by this method (4c–4k), which are not readily tion to occur (entries 13 and 14). accessible using conventional methods because of the With the optimized conditions in hand, we first ex- complicated reactivity of the long-chain alcohols.
Recommended publications
  • Photoionization Studies of Reactive Intermediates Using Synchrotron
    Photoionization Studies of Reactive Intermediates using Synchrotron Radiation by John M.Dyke* School of Chemistry University of Southampton SO17 1BJ UK *e-mail: [email protected] 1 Abstract Photoionization of reactive intermediates with synchrotron radiation has reached a sufficiently advanced stage of development that it can now contribute to a number of areas in gas-phase chemistry and physics. These include the detection and spectroscopic study of reactive intermediates produced by bimolecular reactions, photolysis, pyrolysis or discharge sources, and the monitoring of reactive intermediates in situ in environments such as flames. This review summarises advances in the study of reactive intermediates with synchrotron radiation using photoelectron spectroscopy (PES) and constant-ionic-state (CIS) methods with angular resolution, and threshold photoelectron spectroscopy (TPES), taking examples mainly from the recent work of the Southampton group. The aim is to focus on the main information to be obtained from the examples considered. As future research in this area also involves photoelectron-photoion coincidence (PEPICO) and threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy, these methods are also described and previous related work on reactive intermediates with these techniques is summarised. The advantages of using PEPICO and TPEPICO to complement and extend TPES and angularly resolved PES and CIS studies on reactive intermediates are highlighted. 2 1.Introduction This review is organised as follows. After an Introduction to the study of reactive intermediates by photoionization with fixed energy photon sources and synchrotron radiation, a number of Case Studies are presented of the study of reactive intermediates with synchrotron radiation using angle resolved PES and CIS, and TPE spectroscopy.
    [Show full text]
  • Fundamentals of Theoretical Organic Chemistry Lecture 9
    Fund. Theor. Org. Chem 1 SE Fundamentals of Theoretical Organic Chemistry Lecture 9 1 Fund. Theor. Org. Chem 2 SE 2.2.2 Electrophilic substitution The reaction which takes place between a reactant with an electronegative carbon and an electropositive reagent forming a polarized covalent bond is called electrophilic. In addition, if substitution occurs (i.e. there is a similar polarized covalent bond on the electronegative carbon, which breaks up during the reaction, so the reagent „substitutes” the „old” group or the leaving group) then this specific reaction is called electrophilic substitution. The electronegative carbon is called the reaction centre. In general, the good reactant are molecules having electronegative carbons like aromatic compounds, alkenes and other compounds containing electron-rich double bonds. These are called Lewis bases. On the contrary, good electrophilic reagents are electron poor compounds/molecule groups like acid-halides, which easily form covalent bond with an electronegative centre, thus creating a new molecule. These are often referred to as Lewis acids. According to molecular orbital (MO) theory the driving force for the electrophilic substitution (SE) is a Lewis complex formation involving the LUMO of the Lewis Acid Reagent and the HOMO of the Lewis Base Reactant. Reactant Reagent LUMO LUMO HOMO Lewis base Lewis acid Lewis complex Types of reactions: There are four types of reactions as illustrated below: 2 Fund. Theor. Org. Chem 3 SE Table. 2.2.2-1. Saturated Aromatic SE1 SE1 (Ar) SE2 SE2 (Ar) SE reaction on saturated atom: (1)Unimolecular electrophilic substitution (SE1): The reaction proceeds in two steps. After the departure of the leaving group, the negatively charged reaction intermediate will combine with the reagent.
    [Show full text]
  • Bsc Chemistry
    Subject Chemistry Paper No and Title 05, ORGANIC CHEMISTRY-II (REACTION MECHANISM-I) Module No and Title 15, The Neighbouring Mechanism, Neighbouring Group Participation by π and σ Bonds Module Tag CHE_P5_M15 CHEMISTRY PAPER :5, ORGANIC CHEMISTRY-II (REACTION MECHANISM-I) MODULE: 15 , The Neighbouring Mechanism, Neighbouring Group Participation by π and σ Bonds TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. NGP Participation 3.1 NGP by Heteroatom Lone Pairs 3.2 NGP by alkene 3.3 NGP by Cyclopropane, Cyclobutane or a Homoallyl group 3.4 NGP by an Aromatic Ring 4. Neighbouring Group Participation on SN2 Reactions 5. Neighbouring Group Participation on SN1 Reactions 6. Neighbouring Group and Rearrangement 7. Examples 8. Summary CHEMISTRY PAPER :5, ORGANIC CHEMISTRY-II (REACTION MECHANISM-I) MODULE: 15 , The Neighbouring Mechanism, Neighbouring Group Participation by π and σ Bonds 1. Learning Outcomes After studying this module, you shall be able to Know about NGP reaction Learn reaction mechanism of NGP reaction Identify stereochemistry of NGP reaction Evaluate the factors affecting the NGP reaction Analyse Phenonium ion, NGP by alkene, and NGP by heteroatom. 2. Introduction The reaction centre (carbenium centre) has direct interaction with a lone pair of electrons of an atom or with the electrons of s- or p-bond present within the parent molecule but these are not in conjugation with the reaction centre. A distinction is sometimes made between n, s and p- participation. An increase in rate due to Neighbouring Group Participation (NGP) is known as "anchimeric assistance". "Synartetic acceleration" happens to be the special case of anchimeric assistance and applies to participation by electrons binding a substituent to a carbon atom in a β- position relative to the leaving group attached to the α-carbon atom.
    [Show full text]
  • Linking Chemical Reaction Intermediates of the Click Reaction to Their Molecular Diffusivity
    1 Linking chemical reaction intermediates of the click reaction to their molecular diffusivity Tian Huang,a Bo Li,a Huan Wang,b* and Steve Granicka,c* a Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea b College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China c Departments of Chemistry and Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea Abstract Bipolar reactions have been provoked by reports of boosted diffusion during chemical and enzymatic reactions. To some, it is intuitively reasonable that relaxation to truly Brownian motion after passing an activation barrier can be slow, but to others the notion is so intuitively unphysical that they suspect the supporting experiments to be artifact. Here we study a chemical reaction according to whose mechanism some intermediate species should speed up while others slow down in predictable ways, if the boosted diffusion interpretation holds. Experimental artifacts would do not know organic chemistry mechanism, however. Accordingly, we scrutinize the absolute diffusion coefficient (D) during intermediate stages of the CuAAC reaction (copper- catalyzed azide-alkyne cycloaddition click reaction), using proton pulsed field-gradient nuclear magnetic resonance (PFG-NMR) to discriminate between the diffusion of various reaction intermediates. For the azide reactant, its D increases during reaction, peaks at the same time as peak reaction rate, then returns to its initial value. For the alkyne reagent, its D decreases consistent with presence of the intermediate large complexes formed from copper catalyst and its ligand, except for the 2Cu-alk complex whose more rapid D may signify that this species is the 2 real reactive complex.
    [Show full text]
  • Use Stable Isotopes to Investigate Microbial H2 and N2o Production
    USE STABLE ISOTOPES TO INVESTIGATE MICROBIAL H2 AND N2O PRODUCTION By Hui Yang A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Biochemistry and Molecular Biology - Doctor of Philosophy 2015 ABSTRACT USE STABLE ISOTOPES TO INVESTIGATE MICROBIAL H2 AND N2O PRODUCTION By Hui Yang Stable isotopes can be a useful tool in studying the basic processes involved in enzymatic catalysis. Isotope effects are quantifiable values related to the substitution of isotopes. It derives from the difference in zero-point energies. In contrast to non-catalyzed reactions, enzyme- catalyzed reactions involve multiple steps, the overall isotope effects are the sum of the isotope effects in each step. There are two major kinds of isotope effects, equilibrium isotope effects (EIEs) and kinetic isotope effects (KIEs). Each of them can provide us insights into different states in the reaction. This thesis describes several researches related to using the stable isotopes to study microbial metabolism. It is demonstrated in Chapter 2 that a method is developed for the measurement of H isotope fractionation patterns in hydrogenases. After the development of the method, a detailed study of the H2 metabolism catalyzed by different hydrogenases is presented in Chapter 3. The methods developed in hydrogenase studies were deployed in nitric oxide reductase-catalyzed N2O production studies, which is described in Chapter 4. TABLE OF CONTENTS LIST OF TABLES………………………………………………………………………………..vi LIST OF FIGURES……………………………………………………………………………...vii
    [Show full text]
  • Catalytic Β-Functionalization of Carbonyl Compounds Enabled by Α
    pubs.acs.org/acscatalysis Perspective Catalytic β‑Functionalization of Carbonyl Compounds Enabled by α,β-Desaturation Chengpeng Wang and Guangbin Dong* Cite This: ACS Catal. 2020, 10, 6058−6070 Read Online ACCESS Metrics & More Article Recommendations ABSTRACT: Capitalizing on versatile catalytic α,β-desaturation methods, strategies that directly functionalize carbonyl compounds at their less-reactive β-positions have emerged over the past decade. Depending on the reaction mechanism, general approaches include merging with conjugate addition, migratory coupling, and redox cascade. This perspective provides a summary of transition-metal-catalyzed α,β-desaturation methods and in-depth discussions of each β- functionalization strategy with their advantages, challenges, and future directions. KEYWORDS: β-functionalization, α,β-desaturation, carbonyl compound, conjugate addition, migratory coupling, redox cascade I. INTRODUCTION Scheme 1. Direct β-Functionalization of Carbonyl Compounds Preparation and derivatization of carbonyl compounds are cornerstones in organic synthesis. To date, rich chemistry has been developed to functionalize the ipso and α-positions of carbonyl compounds via nucleophilic addition to carbonyl carbons and enolate couplings with electrophiles.1 In contrast, direct functionalization at the β position has undoubtedly been a more challenging task, because the β-C−H bonds are significantly less acidic. To access β-functionalized carbonyl compounds, conventional methods mainly rely on conjugate addition of a nucleophile to an α,β-unsaturated carbonyl compound.2 In many cases, the α,β-unsaturated carbonyl compounds must be synthesized in one or a few steps from the 3 Downloaded via UNIV OF CHICAGO on May 19, 2021 at 13:46:31 (UTC). corresponding saturated ones via an oxidation process.
    [Show full text]
  • Reactions of Alkenes and Alkynes
    05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each.
    [Show full text]
  • CHEMICAL KINETICS Pt 2 Reaction Mechanisms Reaction Mechanism
    Reaction Mechanism (continued) CHEMICAL The reaction KINETICS 2 C H O +→5O + 6CO 4H O Pt 2 3 4 3 2 2 2 • has many steps in the reaction mechanism. Objectives ! Be able to describe the collision and Reaction Mechanisms transition-state theories • Even though a balanced chemical equation ! Be able to use the Arrhenius theory to may give the ultimate result of a reaction, determine the activation energy for a reaction and to predict rate constants what actually happens in the reaction may take place in several steps. ! Be able to relate the molecularity of the reaction and the reaction rate and • This “pathway” the reaction takes is referred to describle the concept of the “rate- as the reaction mechanism. determining” step • The individual steps in the larger overall reaction are referred to as elementary ! Be able to describe the role of a catalyst and homogeneous, heterogeneous and reactions. enzyme catalysis Reaction Mechanisms Often Used Terms •Intermediate: formed in one step and used up in a subsequent step and so is never seen as a product. The series of steps by which a chemical reaction occurs. •Molecularity: the number of species that must collide to produce the reaction indicated by that A chemical equation does not tell us how step. reactants become products - it is a summary of the overall process. •Elementary Step: A reaction whose rate law can be written from its molecularity. •uni, bi and termolecular 1 Elementary Reactions Elementary Reactions • Consider the reaction of nitrogen dioxide with • Each step is a singular molecular event carbon monoxide.
    [Show full text]
  • Introduction to Theory of Chemical Reactions
    INTRODUCTION TO THEORY OF CHEMICAL REACTIONS BACKGROUND The introductory part of the organic chemistry course has three major modules: Molecular architecture (structure), molecular dynamics (conformational analysis), and molecular transformations (chemical reactions). An understanding of the first two is crucial to an understanding of the third one. The rest of the organic chemistry course will be largely spent on studying different kinds of reactions and mechanisms. A summary of key concepts follows. 1. MOLECULAR ARCHITECTURE - Basic principles of molecular structure. a) Atomic structure b) Orbitals and hybridization c) Covalent bonding d) Lewis structures and resonance forms e) Isomerism, structural and geometric isomers f) Polarity, functional groups, nomenclature systems g) Three-dimensional structures, stereochemistry, stereoisomers. 2. MOLECULAR DYNAMICS - Basic principles of molecular motion involving rotation around single bonds and no bond breakage. The focus is on conformations and their energy relationships, especially in reference to alkanes and cycloalkanes (conformational analysis). a) Steric interactions b) Torsional strain and Newman projections c) Angle strain in cycloalkanes d) Conformations of cyclohexane and terminology associated with it. 3. MOLECULAR TRANSFORMATIONS - This is the part that comprises the bulk of organic chemistry courses. It is the study of chemical reactions and the principles that rule transformations. There are three major aspects of this module. In organic chemistry I we will focus largely on the first two, and leave the study of synthetic strategy for later. a) Reaction mechanisms - Step by step accounts of how electron movement takes place when bonds are broken and formed, and the conditions that favor these processes (driving forces). An understanding of the basic concepts of thermodynamics and kinetics is important here.
    [Show full text]
  • An Operando Raman, IR, and TPSR Spectroscopic Investigation of The
    J. Phys. Chem. C 2008, 112, 11363–11372 11363 An Operando Raman, IR, and TPSR Spectroscopic Investigation of the Selective Oxidation of Propylene to Acrolein over a Model Supported Vanadium Oxide Monolayer Catalyst Chunli Zhao and Israel E. Wachs* Operando Molecular Spectroscopy and Catalysis Laboratory, Departments of Chemistry and Chemical Engineering, 7 Asa DriVe, Sinclair Laboratory, Lehigh UniVersity, Bethlehem, PennsylVania 18015 ReceiVed: February 21, 2008; ReVised Manuscript ReceiVed: May 9, 2008 The selective oxidation of propylene to acrolein was investigated over a well-defined supported V2O5/Nb2O5 catalyst, containing a surface vanadia monolayer, with combined operando Raman/IR/MS, temperature 18 programmed surface reaction (TPSR) spectroscopy and isotopically labeled reactants ( O2 and C3D6). The dissociative chemisorption of propylene on the catalyst forms the surface allyl (H2CdCHCH2*) intermediate, the most abundant reaction intermediate. The presence of gas phase molecular O2 is required to oxidize the surface H* to H2O and prevent the hydrogenation of the surface allyl intermediate back to gaseous propylene 18 16 (Langmuir-Hinshelwood reaction mechanism). The O2 labeled studies demonstrate that only lattice Ois incorporated into the acrolein reaction product (Mars-van Krevelen reaction mechanism). This is the first time that a combined Langmuir-Hinshelwood-Mars-van Krevelen reaction mechanism has been found for a selective oxidation reaction. Comparative studies with allyl alcohol (H2CdCHCH2OH) and propylene (H2CdCHCH3) reveal that the oxygen insertion step does not precede the breaking of the surface allyl C-H bond. The deuterium labeled propylene studies show that the second C-H bond breaking of the surface allyl intermediate is the rate-determining step.
    [Show full text]
  • Theoretical Study of Chlorination Reaction Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KHALSA PUBLICATIONS ISSN 2321-807X THEORETICAL STUDY OF CHLORINATION REACTION OF NITROBENZENE FROM DFT CALCULATIONS 1* 1 2 3 Ibrahim Mbouombouo Ndassa , Gouet Bebga , Martin Signé , François Volatron and 3 Bernard Silvi 1Department of Chemistry, High Teacher Training College, University of Yaounde 1, P. O. Box 47 Yaoundé, Cameroon, 2Department of Inorganic Chemistry, Faculty of Science, University of Yaounde I, P. O. Box 812 Yaounde, Cameroon 3Laboratoire de Chimie Théorique (UMR-CNRS 7616),Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France. * Corresponding author (Dr Ibrahim Mbouombouo Ndassa; E-mail: [email protected]) Abstract The geometric parameters of stationary points on the potential surface energy of the chlorination reaction of nitrobenzene in the presence of Aluminium chloride as catalyst were investigated theoretically by hybrid DFT (Density Functional Theory) calculations in order to determine his general reaction mechanism in gas phase and in solution. The results obtained by DFT have been compared with CCSD(T) method which is the most powerful post-Hartree Fock method in terms of inclusion of dynamic correlation. Although the electrophilic substitution reaction is widely taught in most courses in organic chemistry, the mechanism has been very few studied theoretically. The results obtained in gas phase are consistent with the traditional description of these reactions: the orientation of this substitution in meta position depends on the stability of a reaction intermediate (Wheland said). Without taking in consideration the reactants and products, six stationary points are found on the potential surface energy of this reaction.
    [Show full text]
  • PDF (Chapter 5
    ~---=---5 __ Heterogeneous Catalysis 5.1 I Introduction Catalysis is a term coined by Baron J. J. Berzelius in 1835 to describe the property of substances that facilitate chemical reactions without being consumed in them. A broad definition of catalysis also allows for materials that slow the rate of a reac­ tion. Whereas catalysts can greatly affect the rate of a reaction, the equilibrium com­ position of reactants and products is still determined solely by thermodynamics. Heterogeneous catalysts are distinguished from homogeneous catalysts by the dif­ ferent phases present during reaction. Homogeneous catalysts are present in the same phase as reactants and products, usually liquid, while heterogeneous catalysts are present in a different phase, usually solid. The main advantage of using a hetero­ geneous catalyst is the relative ease of catalyst separation from the product stream that aids in the creation of continuous chemical processes. Additionally, heteroge­ neous catalysts are typically more tolerant ofextreme operating conditions than their homogeneous analogues. A heterogeneous catalytic reaction involves adsorption of reactants from a fluid phase onto a solid surface, surface reaction of adsorbed species, and desorption of products into the fluid phase. Clearly, the presence of a catalyst provides an alter­ native sequence of elementary steps to accomplish the desired chemical reaction from that in its absence. If the energy barriers of the catalytic path are much lower than the barrier(s) of the noncatalytic path, significant enhancements in the reaction rate can be realized by use of a catalyst. This concept has already been introduced in the previous chapter with regard to the CI catalyzed decomposition of ozone (Figure 4.1.2) and enzyme-catalyzed conversion of substrate (Figure 4.2.4).
    [Show full text]