CO11CH22_Ganguli ARjats.cls February 13, 2020 10:27 Annual Review of Condensed Matter Physics Statistical Mechanics of Deep Learning Yasaman Bahri,1 Jonathan Kadmon,2 Jeffrey Pennington,1 Sam S. Schoenholz,1 Jascha Sohl-Dickstein,1 and Surya Ganguli1,2 1Google Brain, Google Inc., Mountain View, California 94043, USA 2Department of Applied Physics, Stanford University, Stanford, California 94035, USA; email:
[email protected] Annu. Rev. Condens. Matter Phys. 2020. 11:501–28 Keywords First published as a Review in Advance on neural networks, machine learning, dynamical phase transitions, chaos, spin December 9, 2019 glasses, jamming, random matrix theory, interacting particle systems, The Annual Review of Condensed Matter Physics is nonequilibrium statistical mechanics online at conmatphys.annualreviews.org https://doi.org/10.1146/annurev-conmatphys- Abstract 031119-050745 The recent striking success of deep neural networks in machine learning Copyright © 2020 by Annual Reviews. raises profound questions about the theoretical principles underlying their All rights reserved success. For example, what can such deep networks compute? How can we train them? How does information propagate through them? Why can they generalize? And how can we teach them to imagine? We review recent work Annu. Rev. Condens. Matter Phys. 2020.11:501-528. Downloaded from www.annualreviews.org in which methods of physical analysis rooted in statistical mechanics have begun to provide conceptual insights into these questions. These insights yield connections between deep learning and diverse physical and mathe- Access provided by Stanford University - Main Campus Robert Crown Law Library on 06/23/20. For personal use only. matical topics, including random landscapes, spin glasses, jamming, dynam- ical phase transitions, chaos, Riemannian geometry, random matrix theory, free probability, and nonequilibrium statistical mechanics.