For a Cup of Water on Mars: Gusev Crater Written by Linda M.V
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mars Express Orbiter Radio Science
MaRS: Mars Express Orbiter Radio Science M. Pätzold1, F.M. Neubauer1, L. Carone1, A. Hagermann1, C. Stanzel1, B. Häusler2, S. Remus2, J. Selle2, D. Hagl2, D.P. Hinson3, R.A. Simpson3, G.L. Tyler3, S.W. Asmar4, W.I. Axford5, T. Hagfors5, J.-P. Barriot6, J.-C. Cerisier7, T. Imamura8, K.-I. Oyama8, P. Janle9, G. Kirchengast10 & V. Dehant11 1Institut für Geophysik und Meteorologie, Universität zu Köln, D-50923 Köln, Germany Email: [email protected] 2Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany 3Space, Telecommunication and Radio Science Laboratory, Dept. of Electrical Engineering, Stanford University, Stanford, CA 95305, USA 4Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91009, USA 5Max-Planck-Instuitut für Aeronomie, D-37189 Katlenburg-Lindau, Germany 6Observatoire Midi Pyrenees, F-31401 Toulouse, France 7Centre d’etude des Environnements Terrestre et Planetaires (CETP), F-94107 Saint-Maur, France 8Institute of Space & Astronautical Science (ISAS), Sagamihara, Japan 9Institut für Geowissenschaften, Abteilung Geophysik, Universität zu Kiel, D-24118 Kiel, Germany 10Institut für Meteorologie und Geophysik, Karl-Franzens-Universität Graz, A-8010 Graz, Austria 11Observatoire Royal de Belgique, B-1180 Bruxelles, Belgium The Mars Express Orbiter Radio Science (MaRS) experiment will employ radio occultation to (i) sound the neutral martian atmosphere to derive vertical density, pressure and temperature profiles as functions of height to resolutions better than 100 m, (ii) sound -
The Reference Mission of the NASA Mars Exploration Study Team
NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor Science Applications International Corporation Houston, Texas David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 This publication is available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934 (301) 621-0390. Foreword Mars has long beckoned to humankind interest in this fellow traveler of the solar from its travels high in the night sky. The system, adding impetus for exploration. ancients assumed this rust-red wanderer was Over the past several years studies the god of war and christened it with the have been conducted on various approaches name we still use today. to exploring Earth’s sister planet Mars. Much Early explorers armed with newly has been learned, and each study brings us invented telescopes discovered that this closer to realizing the goal of sending humans planet exhibited seasonal changes in color, to conduct science on the Red Planet and was subjected to dust storms that encircled explore its mysteries. The approach described the globe, and may have even had channels in this publication represents a culmination of that crisscrossed its surface. these efforts but should not be considered the final solution. It is our intent that this Recent explorers, using robotic document serve as a reference from which we surrogates to extend their reach, have can continuously compare and contrast other discovered that Mars is even more complex new innovative approaches to achieve our and fascinating—a planet peppered with long-term goal. -
Variability of Mars' North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data
Icarus 144, 382–396 (2000) doi:10.1006/icar.1999.6300, available online at http://www.idealibrary.com on Variability of Mars’ North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data Deborah S. Bass Instrumentation and Space Research Division, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510 E-mail: [email protected] Kenneth E. Herkenhoff U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001 and David A. Paige Department of Earth and Space Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1567 Received May 15, 1998; revised November 17, 1999 1. INTRODUCTION Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars’ north residual Like Earth, Mars has perennial ice caps and an active wa- polar cap as evidence of interannual variability of ice deposition on ter cycle. The Viking Orbiter determined that the surface of the the cap. However,these investigators did not consider the possibility northern residual cap is water ice (Kieffer et al. 1976, Farmer that there could be significant changes in the ice coverage within et al. 1976). At the south residual polar cap, both Mariner 9 the northern residual cap over the course of the summer season. and Viking Orbiter observed carbon dioxide ice throughout the Our more comprehensive analysis of Mariner 9 and Viking Orbiter summer. Many have related observed atmospheric water vapor imaging data shows that the appearance of the residual cap does not abundances to seasonal exchange between reservoirs such as show large-scale variance on an interannual basis. -
Columbus Crater HLS2 Hangout: Exploration Zone Briefing
Columbus Crater HLS2 Hangout: Exploration Zone Briefing Kennda Lynch1,2, Angela Dapremont2, Lauren Kimbrough2, Alex Sessa2, and James Wray2 1Lunar and Planetary Institute/Universities Space Research Association 2Georgia Institute of Technology Columbus Crater: An Overview • Groundwater-fed paleolake located in northwest region of Terra Sirenum • ~110 km in diameter • Diversity of Noachian & Hesperian aged deposits and outcrops • High diversity of aqueous mineral deposits • Estimated 1.5 km depth of sedimentary and/or volcanic infill • High Habitability and Biosignature Preservation Potential LZ & Field Station Latitude: 194.0194 E Longitude: 29.2058 S Altitude: +910 m SROI #1 RROI #1 LZ/HZ SROI #4 SROI #2 SROI #5 22 KM HiRISE Digital Terrain Model (DTM) • HiRISE DTMs are made from two images of the same area on the ground, taken from different look angles (known as a stereo-pair) • DTM’s are powerful research tools that allow researchers to take terrain measurements and model geological processes • For our traversability analysis of Columbus: • The HiRISE DTM was processed and completed by the University of Arizona HiRISE Operations Center. • DTM data were imported into ArcMap 10.5 software and traverses were acquired and analyzed using the 3D analyst tool. • A slope map was created in ArcMap to assess slope values along traverses as a supplement to topography observations. Slope should be ≤30°to meet human mission requirements. Conclusions Traversability • 9 out of the 17 traverses analyzed met the slope criteria for human missions. • This region of Columbus Crater is traversable and allows access to regions of astrobiological interest. It is also a possible access point to other regions of Terra Sirenum. -
Origin of Fluvial Channels in the Walls of Juventae Chasma: Evidences of Groundwater Sapping? P
47th Lunar and Planetary Science Conference (2016) 1878.pdf ORIGIN OF FLUVIAL CHANNELS IN THE WALLS OF JUVENTAE CHASMA: EVIDENCES OF GROUNDWATER SAPPING? P. Singh1, R. Sarkar1, I. Ganesh1 and A. Porwal1, 1Geology and Mineral Resources Group, CSRE, Indian Institute of Technology, Bombay, India ([email protected]) Introduction: Juventae Chasma is a deep box- Type IV: This type includes channels emanating from canyon located to the north of Valles Marineris. The gullies between the spurs on the chasma wall (Fig. 1d). main geological units of the chasma are chaotic terrain, They are mainly found in the southern wall of the four mounds of interior layered deposits (ILDs) and an chasma. These channels have shorter lengths ranging outflow channel. The presence of the outflow channel from 1-6 km and at places converge into a single chan- indicates that water played an important role in the nel. geological and geomorphological evolution of the Age determination: We estimated the ages of the chasma. In this paper, we report ground-water sapping geological units containing Type 1 and Type III chan- features from the wall of Juventae Chasma. We also delineate and characterize fluvial channels originating nels using crater size-frequency distributions. The re- from the chasma wall. This study was carried out using sults indicate that Type 1 channels are younger than panchromatic data from the CTX and digital terrain 790+- 200 Ma and Type III channels are younger than models from the HRSC onboard the MRO and MEX 620+-300 Ma. Type II and IV were left out because of respectively. -
Peculiarities of the Chemical Abundance Distribution in Galaxies NGC 3963 and NGC 7292
MNRAS 505, 2009–2019 (2021) https://doi.org/10.1093/mnras/stab1414 Advance Access publication 2021 May 19 Peculiarities of the chemical abundance distribution in galaxies NGC 3963 and NGC 7292 A. S. Gusev ‹ and A. V. Dodin Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky pr. 13, 119234 Moscow, Russia Downloaded from https://academic.oup.com/mnras/article/505/2/2009/6278202 by Lomonosov Moscow State University user on 09 June 2021 Accepted 2021 May 11. in original form 2021 April 27 ABSTRACT Spectroscopic observations of 32 H II regions in the spiral galaxy NGC 3963 and the barred irregular galaxy NGC 7292 were carried out with the 2.5-m telescope of the Caucasus Mountain Observatory of the Sternberg Astronomical Institute using the Transient Double-beam Spectrograph with a dispersion of ≈1Åpixel−1 and a spectral resolution of ≈3 Å. These observations were used to estimate the oxygen and nitrogen abundances and the electron temperatures in H II regions through modern strong- line methods. In general, the galaxies have oxygen and nitrogen abundances typical of stellar systems with similar luminosities, sizes, and morphology. However, we have found some peculiarities in chemical abundance distributions in both galaxies. The distorted outer segment of the southern arm of NGC 3963 shows an excess oxygen and nitrogen abundances. Chemical elements abundances in NGC 7292 are constant and do not depend on the galactocentric distance. These peculiarities can be explained in terms of external gas accretion in the case of NGC 3963 and major merging for NGC 7292. Key words: ISM: abundances – H II regions – galaxies: abundances – galaxies: individual: NGC 3963, NGC 7292. -
Propagation Dynamics of Spatio-Temporal Wave Packets
PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Electro-Optics By Qian Cao UNIVERSITY OF DAYTON Dayton, Ohio August, 2014 PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS Name: Cao, Qian APPROVED BY: Andy Chong, Ph.D. Joseph Haus, Ph.D. Advisor Committee Chairman Committee Member Assistant Professor, Department of Professor, Electro-Optics Graduate Physics Engineering Program Partha Banerjee, Ph.D. Committee Member Professor, Electro-Optics Graduate Engineering Program John G. Weber, Ph.D. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean Dean, School of Engineering School of Engineering ii c Copyright by Qian Cao All rights reserved 2014 ABSTRACT PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS Name: Cao, Qian University of Dayton Advisor: Dr. Andy Chong We measured the three-dimensional (3D) propagation dynamics of the Airy-Bessel wave packet, inculding its intensity and phase evolution. Its non-diffraction and non-dispersive features were verified. Meanwhile, we built a spatial light modulator (SLM) based wave packet shaping system to generate other types of wave packets such as Airy-Airy-Airy and dual-Airy-Airy-rings. These wave packets were also measured in 3D. The abrupt 3D autofocusing effect was observed on dual-Airy- Airy-rings. iii To my family, my advisor and committee members and the time in University of Dayton. iv ACKNOWLEDGMENTS First of all, I want to express my thank to my advisor, Prof. Andy Chong. Although the time when I became his student it was the second year of his professor career, he taught and guided me in the world of science in such an experienced way. -
Mineralogy of the Martian Surface
EA42CH14-Ehlmann ARI 30 April 2014 7:21 Mineralogy of the Martian Surface Bethany L. Ehlmann1,2 and Christopher S. Edwards1 1Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California 91125; email: [email protected], [email protected] 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 Annu. Rev. Earth Planet. Sci. 2014. 42:291–315 Keywords First published online as a Review in Advance on Mars, composition, mineralogy, infrared spectroscopy, igneous processes, February 21, 2014 aqueous alteration The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The past fifteen years of orbital infrared spectroscopy and in situ exploration 10.1146/annurev-earth-060313-055024 have led to a new understanding of the composition and history of Mars. Copyright c 2014 by Annual Reviews. Globally, Mars has a basaltic upper crust with regionally variable quanti- by California Institute of Technology on 06/09/14. For personal use only. All rights reserved ties of plagioclase, pyroxene, and olivine associated with distinctive terrains. Enrichments in olivine (>20%) are found around the largest basins and Annu. Rev. Earth Planet. Sci. 2014.42:291-315. Downloaded from www.annualreviews.org within late Noachian–early Hesperian lavas. Alkali volcanics are also locally present, pointing to regional differences in igneous processes. Many ma- terials from ancient Mars bear the mineralogic fingerprints of interaction with water. Clay minerals, found in exposures of Noachian crust across the globe, preserve widespread evidence for early weathering, hydrothermal, and diagenetic aqueous environments. Noachian and Hesperian sediments include paleolake deposits with clays, carbonates, sulfates, and chlorides that are more localized in extent. -
Open Research Online Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs Habitability of hydrothermal systems at Jezero and Gusev Craters as constrained by hydrothermal alteration of a terrestrial mafic dike Journal Item How to cite: Costello, Lacey J.; Filiberto, Justin; Crandall, Jake R.; Potter-McIntyre, Sally L.; Schwenzer, Susanne P.; Miller, Michael A.; Hummer, Daniel R.; Olsson-Francis, Karen and Perl, Scott (2020). Habitability of hydrothermal systems at Jezero and Gusev Craters as constrained by hydrothermal alteration of a terrestrial mafic dike. Geochemistry (Early access). For guidance on citations see FAQs. c 2020 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.chemer.2020.125613 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Geochemistry xxx (xxxx) xxxx Contents lists available at ScienceDirect Geochemistry journal homepage: www.elsevier.com/locate/chemer Habitability of hydrothermal systems at Jezero and Gusev Craters as constrained by hydrothermal alteration of a terrestrial mafic dike Lacey J. Costelloa,1, Justin Filibertob,*, Jake R. Crandallc, Sally L. Potter-McIntyrea, Susanne P. Schwenzerd, Michael A. Millere, Daniel R. Hummera, Karen Olsson-Francisd, Scott Perlf a -
Evolution of Mars As a Planet, Possible Life on Mars
EVOLUTION OF MARS LECTURE 18 NEEP 533 HARRISON H. SCHMITT NASA HST IMAGE N THARSIS HELLAS S ANDESITE OR WEATHERED SOIL DUST DUST DUST BASALT ~100 KM A C B THEMIS THERMAL IMAGING OF SPIRIT LANDING AREA IN GUSEV CRATER A. SPIRIT LANDING ELLIPSE B. CLOSER VIEW OF SPIRIT LANDING ELLIPSE C. NIGHT IR IMAGE: BRIGHT AREAS ARE MORE ROCKY. ARROW POINTS TO ROCKY SLOPE SPIRIT MOVED TO GUSEV CRATER POSSIBLE LAKE BED IN LARGE BASIN A C B THEMIS THERMAL IMAGING OF OPPORTUNITYLANDING AREA IN MERIDIANI PLANUM A. LANDING ELLIPSE ~120 KM LONG) B. CLOSER VIEW OF LANDING ELLIPSE C. NIGHT IR IMAGE: BRIGHT AREAS ARE MORE ROCKY. ARROW POINTS TO ROCKY SLOPE MAJOR STAGES OF MARS’ EVOLUTION 1 BEGINNING 2 MAGMA OCEAN / CONVECTIVE OVERTURN 3A ? ? CRATERED UPLANDS / VERY LARGE BASINS 3B ? CORE FORMATION/GLOBAL MAGNETIC FIELD 3C 4.5 - 1.3 GLOBAL MAFIC VOLCANISM DENSE WATER / CO2 ATMOSPHERE E ? G 3D EROSION / LAKES / NORTHERN OCEAN A T ? ? S 4 LARGE BASINS CATACLYSM ? THARSIS UPLIFT AND VOLCANISM ? 5 NORTHERN HEMISPHERE BASALTIC / ANDESITIC VOLCANISM ? 1.3 - 0.2 SUBSURFACE HYDROSPHERE / CRYOSPHERE 6 ? PRESENT SURFACE CONDITIONS LUNAR 4.6 4.2? 3.8 ? 5.0 4.0 3.0 2.0 1.0 BILLIONS OF YEARS BEFORE PRESENT ITALICS = SNC DATES RED = MAJOR UNCERTAINTY OLYMPUS TOPOGRAPHY OF MONS THARSIS REGION VALLES MARINERIS THARSIS REGION SHADED RELIEF DETAIL MARS GLOBAL SURVEYOR MOLA OLYMPUS MONS VALLES MARINERIS APOLLO MODEL OF MARS EVOLUTION ELYSIUM MONS ANDESITIC THARSIS EVENTS EXTRUSIONS <3.8 B.Y. THARSIS THICKENING ATMOSPHERE: MAFIC UPPER MANTLE WITH CO2, H20 CRYOSPHERE / INCREASING HYDROSPHERE SI AND FE UPWARDS OLIVINE/ NA- PYROXENE ? ANDESITIC CUMULATE INTRUSIONS? OLIVINE ? CUMULATE RELIC PROTO- GARNET / NA-CPX/ CORE ? NA-BIOTITE?/NA- HORNBLENDE/ ? FExNIySz “RUTILE” (TRANSITION? CORE CUMULATES ? ZONE) RELIC MAGNETIC STRIPING THICKENED SOUTHERN ©Harrison H. -
Human Exploration of Mars Design Reference Architecture 5.0
July 2009 “We are all . children of this universe. Not just Earth, or Mars, or this System, but the whole grand fireworks. And if we are interested in Mars at all, it is only because we wonder over our past and worry terribly about our possible future.” — Ray Bradbury, 'Mars and the Mind of Man,' 1973 Cover Art: An artist’s concept depicting one of many potential Mars exploration strategies. In this approach, the strengths of combining a central habitat with small pressurized rovers that could extend the exploration range of the crew from the outpost are assessed. Rawlings 2007. NASA/SP–2009–566 Human Exploration of Mars Design Reference Architecture 5.0 Mars Architecture Steering Group NASA Headquarters Bret G. Drake, editor NASA Johnson Space Center, Houston, Texas July 2009 ACKNOWLEDGEMENTS The individuals listed in the appendix assisted in the generation of the concepts as well as the descriptions, images, and data described in this report. Specific contributions to this document were provided by Dave Beaty, Stan Borowski, Bob Cataldo, John Charles, Cassie Conley, Doug Craig, Bret Drake, John Elliot, Chad Edwards, Walt Engelund, Dean Eppler, Stewart Feldman, Jim Garvin, Steve Hoffman, Jeff Jones, Frank Jordan, Sheri Klug, Joel Levine, Jack Mulqueen, Gary Noreen, Hoppy Price, Shawn Quinn, Jerry Sanders, Jim Schier, Lisa Simonsen, George Tahu, and Abhi Tripathi. Available from: NASA Center for AeroSpace Information National Technical Information Service 7115 Standard Drive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 Phone: 301-621-0390 or 703-605-6000 Fax: 301-621-0134 This report is also available in electronic form at http://ston.jsc.nasa.gov/collections/TRS/ CONTENTS 1 Introduction ...................................................................................................................... -
Are We Martians? Looking for Indicators of Past Life on Mars with the Missions of the European Space Agency
CESAR Scientific Challenge Are we Martians? Looking for indicators of past life on Mars with the missions of the European Space Agency Teacher's Guide 1 Are we Martians? CESAR Scientific Challenge Table of contents: Didactics 5 Phase 0 18 Phase 1 20 Activity 1: Refresh concepts 21 Activity 2: Getting familiar with coordinates 21 Activity 2.1: Identify coordinates on an Earth map 21 Activity 2.2: The Martian zero meridian 24 Activity 2.3: Identify coordinates on a Martian map 25 Activity 2.4: A model of Mars 27 Activity 3: The origin of life 28 Activity 3.1: What is life? 28 Activity 3.2: Traces of extraterrestrial life 29 Activity 3.2.1: Read the following article 30 Activity 3.2.2: Read about Rosalind Franklin and ExoMars 2022 30 Activity 3.3: Experiment for DNA extraction 31 Activity 4: Habitable zones 31 Activity 4.1: Habitable zone of our star 31 Activity 4.2: Study the habitable zones of different stars 34 Activity 4.3: Past, present and future of water on Mars 37 Activity 4.4: Extremophiles 39 Activity 5: What do you know about Mars? 40 Activity 6: Scientific knowledge from Mars’ surface 41 Activity 6.1: Geology of Mars 41 Activity 6.2: Atmosphere of Mars 44 Activity 7: Mars exploration by European Space Agency 45 Activity 7.1: Major Milestones of the European Space Agency on Mars 50 Activity 8: Check what you have learnt so far 52 2 Are we Martians? CESAR Scientific Challenge Phase 2 53 Activity 9: Ask for a videocall with the CESAR Team if needed 54 Phase 3 56 Activity 10: Prepare the Mars landing 57 Activity 10.1: Get used to Google Mars.