Upper and Lower Case Letters to Be Used

Total Page:16

File Type:pdf, Size:1020Kb

Upper and Lower Case Letters to Be Used Community phylogenetics: methodological approaches and patterns in subarctic freshwater insect systems by Elizabeth E. Boyle A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Integrative Biology Guelph, Ontario, Canada © Elizabeth E. Boyle, September, 2012 ABSRTACT Community phylogenetics: methodological approaches and patterns in subarctic freshwater insect systems Elizabeth E. Boyle Advisor: University of Guelph, 2012 Dr. Sarah J. Adamowicz I aimed to expand our understanding of community assembly and species co-existence by examining the implications of phylogenetic robustness on metrics describing phylogenetic community structure, as well as the phylogenetic patterns of co-occurring insect species in Churchill, MB. Using a variety of tree reconstruction methods, I found that cytochrome c oxidase subunit I (COI) was able to accurately estimate phylogenetic community structure metrics calculated from a multi-gene phylogeny when using more biologically realistic approaches. This included incorporating known phylogenetic relationships among families, and methods that employ best-fit models of molecular evolution (i.e. Bayesian inference). My second study examined the phylogenetic community patterns of freshwater insects. Overall communities were phylogenetically clustered suggesting environmental filtering, but community structure varied with time, habitat, taxonomic group, and water chemistry (particularly pH and turbidity). My thesis has suggested more robust techniques for calculating phylogenetic community structure, and described patterns of phylogenetic community composition in subarctic freshwater insects. Acknowledgements First and foremost, I would like to thank my advisor Dr. Sarah Adamowicz. I am exceedingly grateful for the attention and time that you always gave me and my project. Your guidance, support, enthusiasm, insight, and inquisitiveness kept me motivated and improved my research. Thank you for giving me this opportunity, and all the help along the way. There are also numerous agencies that I am grateful for providing funding for my thesis work. I would like to thank Natural Sciences and Engineering Research Council of Canada (NSERC), International Barcode of Life (iBOL), Genome Canada, Ontario Genomics Institute, Canadian Foundation for Innovation, Ontario Ministry of Research and Innovation for providing funding for my molecular work. In addition, I am grateful for the support of the staff at the Canadian Centre for DNA Barcoding (CCDB) who helped me produce my sequences. I would also like to thank NSERC, the Churchill Northern Studies Centre, and Aboriginal Affairs and Northern Development Canada for their financial support for my field work. I am also very grateful to Dr. Karl Cottenie and Dr. Jinzhong Fu for their input into this project, and helping out with ‘cans of worms’. I would also like to thank Dr. Xin Zhou, Dr. David Ruiter, Dr. Jeffrey M. Webb, and Dr. Thomas S. Woodcock for their taxonomic expertise and their enthusiasm. A special thanks also needs to be given to my fellow graduate students. First, I would like to thank Amanda Winegardner for her assistance with the water chemistry readings and her help in the field. Thank you to my field mates that not only helped with collecting, but made sure I wasn’t eaten by a polar bear while I had my head in a bucket looking for insects. I am also grateful to Christina Carr and Claudia Bertrand for their molecular expertise and patience answering all of my questions. I would like to thank all of the members of the Adamowicz, Hebert, Gregory, Crease, Hajibabaei, and Smith labs for the laughs and good times. Finally, I would like to thank my family for all of their support and love throughout this entire process. iii Table of Contents Abstract .......................................................................................................................................... ii Acknowledgements ...................................................................................................................... iii List of Tables ............................................................................................................................... vii List of Figures ............................................................................................................................... ix Chapter 1: General introduction to phylogenetic community assembly ..................................1 Community assembly ...................................................................................................................1 Phylogenetic community approaches ...........................................................................................2 The utility of DNA barcoding ......................................................................................................5 Freshwater insects of Churchill, MB, Canada ..............................................................................6 Objectives of my thesis ................................................................................................................8 Chapter 2: Assessing the impact of phylogenetic reconstruction method upon measures of phylogenetic community structure .............................................................................................11 Abstract ......................................................................................................................................11 Introduction ................................................................................................................................11 Methods ......................................................................................................................................17 Field collection .......................................................................................................................17 Molecular analysis .................................................................................................................18 Phylogeny construction ..........................................................................................................19 Congruence of distance matrices ...........................................................................................20 Phylogenetic signal metrics ....................................................................................................21 Phylogenetic community structure metrics ............................................................................22 Results ........................................................................................................................................22 Phylogeny support ..................................................................................................................23 Distance matrix similarity ......................................................................................................23 Presence of phylogenetic signal .............................................................................................24 iv Estimation of phylogenetic community structure metrics ......................................................24 Discussion ..................................................................................................................................25 Discrepancy of metrics measuring phylogenetic signal .........................................................25 Best approaches for estimating phylogenetic community structure .......................................26 Utility of COI ..........................................................................................................................27 Conclusions ............................................................................................................................28 Chapter 3: Variation with habitat and time of phylogenetic structure in freshwater invertebrate communities of Churchill, MB, Canada ..............................................................39 Abstract ......................................................................................................................................39 Introduction ................................................................................................................................39 Methods ......................................................................................................................................43 Field collection .......................................................................................................................43 Molecular analysis .................................................................................................................43 Phylogeny construction ..........................................................................................................44 Phylogenetic signal in morphological traits ..........................................................................46 Phylogenetic community structure metrics ............................................................................46 Statistical analysis ..................................................................................................................46 Results ........................................................................................................................................47 Phylogenies.............................................................................................................................48
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Appendix A: Common and Scientific Names for Fish and Wildlife Species Found in Idaho
    APPENDIX A: COMMON AND SCIENTIFIC NAMES FOR FISH AND WILDLIFE SPECIES FOUND IN IDAHO. How to Read the Lists. Within these lists, species are listed phylogenetically by class. In cases where phylogeny is incompletely understood, taxonomic units are arranged alphabetically. Listed below are definitions for interpreting NatureServe conservation status ranks (GRanks and SRanks). These ranks reflect an assessment of the condition of the species rangewide (GRank) and statewide (SRank). Rangewide ranks are assigned by NatureServe and statewide ranks are assigned by the Idaho Conservation Data Center. GX or SX Presumed extinct or extirpated: not located despite intensive searches and virtually no likelihood of rediscovery. GH or SH Possibly extinct or extirpated (historical): historically occurred, but may be rediscovered. Its presence may not have been verified in the past 20–40 years. A species could become SH without such a 20–40 year delay if the only known occurrences in the state were destroyed or if it had been extensively and unsuccessfully looked for. The SH rank is reserved for species for which some effort has been made to relocate occurrences, rather than simply using this status for all elements not known from verified extant occurrences. G1 or S1 Critically imperiled: at high risk because of extreme rarity (often 5 or fewer occurrences), rapidly declining numbers, or other factors that make it particularly vulnerable to rangewide extinction or extirpation. G2 or S2 Imperiled: at risk because of restricted range, few populations (often 20 or fewer), rapidly declining numbers, or other factors that make it vulnerable to rangewide extinction or extirpation. G3 or S3 Vulnerable: at moderate risk because of restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors that make it vulnerable to rangewide extinction or extirpation.
    [Show full text]
  • Late Neogene Insect and Other Invertebrate Fossils from Alaska and Arctic/Subarctic Canada
    Invertebrate Zoology, 2019, 16(2): 126–153 © INVERTEBRATE ZOOLOGY, 2019 Late Neogene insect and other invertebrate fossils from Alaska and Arctic/Subarctic Canada J.V. Matthews, Jr.1, A. Telka2, S.A. Kuzmina3* 1 Terrain Sciences Branch, Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, Canada K1A 0E8. Present address: 1 Red Maple Lane, Hubley, N.S., Canada B3Z 1A5. 2 PALEOTEC Services – Quaternary and late Tertiary plant macrofossil and insect fossil analyses, 1-574 Somerset St. West, Ottawa, Ontario K1R 5K2, Canada. 3 Laboratory of Arthropods, Borissiak Paleontological Institute, RAS, Profsoyuznaya 123, Moscow, 117868, Russia. E-mails: [email protected]; [email protected]; [email protected] * corresponding author ABSTRACT: This report concerns macro-remains of arthropods from Neogene sites in Alaska and northern Canada. New data from known or recently investigated localities are presented and comparisons made with faunas from equivalent latitudes in Asia and Greenland. Many of the Canadian sites belong to the Beaufort Formation, a prime source of late Tertiary plant and insect fossils. But new sites are continually being discovered and studied and among the most informative of these are several from the high terrace gravel on Ellesmere Island. One Ellesmere Island locality, known informally as the “Beaver Peat” contains spectacularly well preserved plant and arthropod fossils, and is the only Pliocene site in Arctic North America to yield a variety of vertebrate fossils. Like some of the other “keystone” localities discussed here, it promises to be important for dating and correlation as well as for documenting high Arctic climatic and environmental conditions during the Pliocene.
    [Show full text]
  • Diversity and Ecosystem Services of Trichoptera
    Review Diversity and Ecosystem Services of Trichoptera John C. Morse 1,*, Paul B. Frandsen 2,3, Wolfram Graf 4 and Jessica A. Thomas 5 1 Department of Plant & Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC 29634-0310, USA; [email protected] 2 Department of Plant & Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA; [email protected] 3 Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C. 20024, USA 4 BOKU, Institute of Hydrobiology and Aquatic Ecology Management, University of Natural Resources and Life Sciences, Gregor Mendelstr. 33, A-1180 Vienna, Austria; [email protected] 5 Department of Biology, University of York, Wentworth Way, York Y010 5DD, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-864-656-5049 Received: 2 February 2019; Accepted: 12 April 2019; Published: 1 May 2019 Abstract: The holometabolous insect order Trichoptera (caddisflies) includes more known species than all of the other primarily aquatic orders of insects combined. They are distributed unevenly; with the greatest number and density occurring in the Oriental Biogeographic Region and the smallest in the East Palearctic. Ecosystem services provided by Trichoptera are also very diverse and include their essential roles in food webs, in biological monitoring of water quality, as food for fish and other predators (many of which are of human concern), and as engineers that stabilize gravel bed sediment. They are especially important in capturing and using a wide variety of nutrients in many forms, transforming them for use by other organisms in freshwaters and surrounding riparian areas.
    [Show full text]
  • Nemotaulius Hostilis (Trichoptera: Limnephilidae), a Boreal Caddisfly New to the Virginia Fauna
    Banisteria 18: 35-37 © 2001 by the Virginia Natural History Society Nemotaulius hostilis (Trichoptera: Limnephilidae), a Boreal Caddisfly New to the Virginia Fauna Steven M. Roble Virginia Department of Conservation and Recreation Division of Natural Heritage 217 Governor Street Richmond, Virginia 23219 Oliver S. Flint, Jr. Section of Entomology National Museum of Natural History Smithsonian Institution Washington, DC 20560 The biota of Virginia includes numerous boreal 1996). The larvae are typically associated with the species, some of which range southward along the emergent macrophyte genus Sparganium (Berté & highest peaks of the Blue Ridge and Alleghany Pritchard, 1986; Stout & Stout, 1989). Mountains to North Carolina and Tennessee, whereas Hoffman (1987) regarded the Laurel Fork region of others reach their southern range limits in Virginia the George Washington National Forest in extreme (Hoffman, 1969; Woodward & Hoffman, 1991). northwestern Highland County near the West Virginia Nemotaulius hostilis (Hagen) is the lone Nearctic border as one of the most interesting biological areas in representative of a small Holarctic genus of limnephilid Virginia because of the presence of various boreal caddisflies (Wiggins, 1977, 1996). Wiggins (1977) plants and animals. These include such species as red cited the known range of N. hostilis as transcontinental spruce (Picea rubens), northern flying squirrel from British Columbia and Oregon to Newfoundland, (Glaucomys sabrinus), water shrew (Sorex palustris), and south to New England and Michigan. The species and Saw-whet Owl (Aegolius acadicus) (Bailey & was subsequently reported from Pennsylvania Ware, 1990; Pagels et al., 1990, 1998; Pagels & Baker, (Masteller & Flint, 1979, 1992) and West Virginia, 1997). A series of beaver ponds at the headwaters of including five sites (Fig.
    [Show full text]
  • Bibliographia Trichopterorum
    Entry numbers checked/adjusted: 23/10/12 Bibliographia Trichopterorum Volume 4 1991-2000 (Preliminary) ©Andrew P.Nimmo 106-29 Ave NW, EDMONTON, Alberta, Canada T6J 4H6 e-mail: [email protected] [As at 25/3/14] 2 LITERATURE CITATIONS [*indicates that I have a copy of the paper in question] 0001 Anon. 1993. Studies on the structure and function of river ecosystems of the Far East, 2. Rep. on work supported by Japan Soc. Promot. Sci. 1992. 82 pp. TN. 0002 * . 1994. Gunter Brückerman. 19.12.1960 12.2.1994. Braueria 21:7. [Photo only]. 0003 . 1994. New kind of fly discovered in Man.[itoba]. Eco Briefs, Edmonton Journal. Sept. 4. 0004 . 1997. Caddis biodiversity. Weta 20:40-41. ZRan 134-03000625 & 00002404. 0005 . 1997. Rote Liste gefahrdeter Tiere und Pflanzen des Burgenlandes. BFB-Ber. 87: 1-33. ZRan 135-02001470. 0006 1998. Floods have their benefits. Current Sci., Weekly Reader Corp. 84(1):12. 0007 . 1999. Short reports. Taxa new to Finland, new provincial records and deletions from the fauna of Finland. Ent. Fenn. 10:1-5. ZRan 136-02000496. 0008 . 2000. Entomology report. Sandnats 22(3):10-12, 20. ZRan 137-09000211. 0009 . 2000. Short reports. Ent. Fenn. 11:1-4. ZRan 136-03000823. 0010 * . 2000. Nattsländor - Trichoptera. pp 285-296. In: Rödlistade arter i Sverige 2000. The 2000 Red List of Swedish species. ed. U.Gärdenfors. ArtDatabanken, SLU, Uppsala. ISBN 91 88506 23 1 0011 Aagaard, K., J.O.Solem, T.Nost, & O.Hanssen. 1997. The macrobenthos of the pristine stre- am, Skiftesaa, Haeylandet, Norway. Hydrobiologia 348:81-94.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • DNA Barcoding Facilitates Associations and Diagnoses For
    Ruiter et al. BMC Ecology 2013, 13:5 http://www.biomedcentral.com/1472-6785/13/5 RESEARCH ARTICLE Open Access DNA barcoding facilitates associations and diagnoses for Trichoptera larvae of the Churchill (Manitoba, Canada) area David E Ruiter1, Elizabeth E Boyle2 and Xin Zhou3* Abstract Background: The North American Trichoptera larvae are poorly known at the species level, despite their importance in the understanding of freshwater fauna and critical use in biomonitoring. This study focused on morphological diagnoses for larvae occurring in the Churchill, Manitoba area, representing the largest larval association effort for the caddisflies at any given locality thus far. The current DNA barcode reference library of Trichoptera (available on the Barcode of Life Data Systems) was utilized to provide larval-adult associations. Results: The present study collected an additional 23 new species records for the Churchill area, increasing the total Trichoptera richness to 91 species. We were able to associate 62 larval taxa, comprising 68.1% of the Churchill area Trichoptera taxa. This endeavor to identify immature life stage for the caddisflies enabled the development of morphological diagnoses, production of photographs and an appropriate taxonomic key to facilitate larval species analyses in the area. Conclusions: The use of DNA for associations of unknown larvae with known adults proved rapid and successful. This method should accelerate the state-of-knowledge for North American Trichoptera larvae as well as other taxonomic lineages. The morphological analysis should be useful for determination of material from the Churchill area. Keywords: Caddisfly, Freshwater, Life history, Ecology, Biomonitoring, DNA taxonomy, DNA barcoding, Barcoding biotas Background habitats as general indicators of water quality and Trichoptera (caddisflies) are a diverse group of insects habitat.
    [Show full text]
  • An Annotated Checklist of the Irish Hemiptera and Small Orders
    AN ANNOTATED CHECKLIST OF THE IRISH HEMIPTERA AND SMALL ORDERS compiled by James P. O'Connor and Brian Nelson The Irish Biogeographical Society OTHER PUBLICATIONS AVAILABLE FROM THE IRISH BIOGEOGRAPHICAL SOCIETY OCCASIONAL PUBLICATIONS OF THE IRISH BIOGEOGRAPHICAL SOCIETY (A5 FORMAT) Number 1. Proceedings of The Postglacial Colonization Conference. D. P. Sleeman, R. J. Devoy and P. C. Woodman (editors). Published 1986. 88pp. Price €4 (Please add €4 for postage outside Ireland for each publication); Number 2. Biogeography of Ireland: past, present and future. M. J. Costello and K. S. Kelly (editors). Published 1993. 149pp. Price €15; Number 3. A checklist of Irish aquatic insects. P. Ashe, J. P. O’Connor and D. A. Murray. Published 1998. 80pp. Price €7; Number 4. A catalogue of the Irish Braconidae (Hymenoptera: Ichneumonoidea). J. P. O’Connor, R. Nash and C. van Achterberg. Published 1999. 123pp. Price €6; Number 5. The distribution of the Ephemeroptera in Ireland. M. Kelly-Quinn and J. J. Bracken. Published 2000. 223pp. Price €12; Number 6. A catalogue of the Irish Chalcidoidea (Hymenoptera). J. P. O’Connor, R. Nash and Z. Bouček. Published 2000. 135pp. Price €10; Number 7. A catalogue of the Irish Platygastroidea and Proctotrupoidea (Hymenoptera). J. P. O’Connor, R. Nash, D. G. Notton and N. D. M. Fergusson. Published 2004. 110pp. Price €10; Number 8. A catalogue and index of the publications of the Irish Biogeographical Society (1977-2004). J. P. O’Connor. Published 2005. 74pp. Price €10; Number 9. Fauna and flora of Atlantic islands. Proceedings of the 5th international symposium on the fauna and flora of the Atlantic islands, Dublin 24 -27 August 2004.
    [Show full text]
  • New Collection Records and Range Extension for the Caddisfly Arctopora Salmon (Smith, 1969) (Trichoptera: Limnephilidae) Author(S) :Blake R
    New collection records and range extension for the caddisfly Arctopora salmon (Smith, 1969) (Trichoptera: Limnephilidae) Author(s) :Blake R. Hossack, Robert L. Newell, and David E. Ruiter Source: The Pan-Pacific Entomologist, 87(3):206-208. 2011. Published By: Pacific Coast Entomological Society DOI: URL: http://www.bioone.org/doi/full/10.3956/2011-34.1 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. THE PAN-PACIFIC ENTOMOLOGIST 87(3):206–208, (2011) Scientific Note New collection records and range extension for the caddisfly Arctopora salmon (Smith, 1969) (Trichoptera: Limnephilidae) The type specimen of the limnephilid caddisfly Arctopora salmon (Smith 1969) was collected on 22 July 1965 from a meadow near Johnson Creek, 6 miles south of Landmark in Valley County, Idaho. Smith (1969) originally described the species as Lenarchulus salmon, but Fisher (1969) designated Lenarchulus as a junior synonym of Arctopora.
    [Show full text]
  • Seasonal Progression of Aquatic Organisms in a Temporary Wetland in Northern California
    Western North American Naturalist Volume 77 Number 2 Article 4 6-30-2017 Seasonal progression of aquatic organisms in a temporary wetland in northern California Michael G. Peterson University of California, Berkeley, CA, [email protected] Kevin B. Lunde San Francisco Bay Regional Water Quality Control Board, Oakland, CA Ming-Chih Chiu University of California, Berkeley, CA Vincent H. Resh University of California, Berkeley, CA Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Peterson, Michael G.; Lunde, Kevin B.; Chiu, Ming-Chih; and Resh, Vincent H. (2017) "Seasonal progression of aquatic organisms in a temporary wetland in northern California," Western North American Naturalist: Vol. 77 : No. 2 , Article 4. Available at: https://scholarsarchive.byu.edu/wnan/vol77/iss2/4 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 77(2), © 2017, pp. 176–188 SEASONAL PROGRESSION OF AQUATIC ORGANISMS IN A TEMPORARY WETLAND IN NORTHERN CALIFORNIA Michael G. Peterson1,3, Kevin B. Lunde2, Ming-Chih Chiu1, and Vincent H. Resh1 ABSTRACT.—SeaSonal wetlandS aRe impoRtant habitatS foR biodiveRSity of both inveRtebRate and veRtebRate fauna. Many aquatic species have life history traits adapted to colonizing and developing in temporary aquatic habitats, and these traits influence the annual succession of the macroinvertebrate community. The chronology of taxon appearance and the variation in relative abundances during the hydroperiod are important for understanding population dynamics, trophic interactions, and responses to drought.
    [Show full text]
  • (2001) Notes on the Taxonomy of Rhadicoleptus, Ptilocolepus And
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Braueria Jahr/Year: 2001 Band/Volume: 28 Autor(en)/Author(s): Malicky Hans Artikel/Article: Notes on the taxonomy of Rhadicoleptus, Ptilocolepus and Pseudoneureclipsis. 19-20 © Hans Malicky/Austria; download unter www.biologiezentrum.at 19 BRAUERIA (Lunz am See, Austria) 28:19-20 (2001) similar. Using this method, I suppose that Rucenorum belongs to Stenophylacini, and should be placed somewhere near Anisogamus and Platyphylax. For Ralpestris, I could not find an appropriate Notes on the taxonomy of Rhadicoleptus, relationship. Ptilocolepus and Pseudoneureclipsis. Hans MALICKY Abstract. Ptilocolepinae is raised to family rank Ptilocolepidae. The placement of Pseudoneureclipsis in Dipseudopsidae is considered to be incorrect. The female of Rhadicoleptus ucenorum is figured, and it is suggested that the species belongs to Stenophylacini rather than to Limnephilini. I. Rhadicoleptus In his revision of the Limnephilidae, SCHMID (1955) placed the genus Rhadicoleptus, with the species alpestris, spinifer and ucenorum, in his newly created tribe Limnephilini. Rspinifer is now considered a subspecies of Ralpestris; Rucenorum remained relatively unknown. MCLACHLAN (1874-80) who described Rucenorum had collected it himself in the French Alps on 8 July 1876 "at a small land-spring at the highest point of the mule-path leading from Bourg d'Oisans to Villard Reymond (about 4800 feet). A few days later it was abundant at land-springs on the treeless flowery slopes of the Col du Lautaret (about 5500 feet)..." On 10 July 2001 I went to Villard Reymond but failed to find this insect there.
    [Show full text]