Studying the Ancient Parasitic Cnidarian, Sphaerospora Elegans, Leads to Better Understanding of Oligochaete Diversity and Myxozoan Discovery

Total Page:16

File Type:pdf, Size:1020Kb

Studying the Ancient Parasitic Cnidarian, Sphaerospora Elegans, Leads to Better Understanding of Oligochaete Diversity and Myxozoan Discovery Studying the ancient parasitic cnidarian, Sphaerospora elegans, leads to better understanding of oligochaete diversity and myxozoan discovery. by David Lehrburger A THESIS submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Integrative Biology (Honors Associate) Presented March 12, 2020 Commencement June 2020 2 AN ABSTRACT OF THE THESIS OF David Lehrburger for the degree of Honors Baccalaureate of Science in Integrative Biology presented on March 12, 2020. Title: Studying the ancient parasitic cnidarian, Sphaerospora elegans, leads to better understanding of oligochaete diversity and myxozoan discovery. Abstract approved:_____________________________________________________ Stephen Atkinson Myxozoans are microscopic parasites, related to corals and jellyfish. Most Myxozoa probably have two-host lifecycles that require a vertebrate (typically fish) and invertebrate (annelid or bryozoan). However no life cycle is known from the Sphaerospora lineage. I hypothesized that the life cycle of Sphaerospora elegans, a myxozoan parasite of three-spined stickleback (Gasterosteus aculeatus) requires an alternate annelid host. I sampled fish and annelids from a creek known to have the parasite. PCR and DNA sequencing demonstrated that the fish currently are infected. I quantified annelid diversity in the creek by establishing 18 unique morphological groups and sorting oligochaetes into these groups, then sequencing representatives from each group to test morphological categorization versus DNA identity. DNA resolved the 18 morpho-groups into 16 nominal species, from 10 genera and two families. Using visual and molecular screening, I discovered two (of 674) oligochaetes had myxozoan infections: neither infection was S. elegans. Neither myxozoan could be identified by sequence matches (>98%) to known species: the most similar myxozoans were Myxidium truttae (96%) and Myxoboulus arrabonensis (92%). This method validates the direct examination of annelids to discover myxozoan infections, but could not preclude involvement of a non-annelid hosts in the life cycle of S. elegans. Key Words: Myxozoan, sphaerospora, parasite, annelid, worm Corresponding e-mail address: davidlehrburger@gmail.com 3 ©Copyright by David Lehrburger March 12, 2020 4 Studying the ancient parasitic cnidarian, Sphaerospora elegans, leads to better understanding of oligochaete diversity and myxozoan discovery. by David Lehrburger A THESIS submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Integrative Biology (Honors Associate) Presented March 12, 2020 Commencement June 2020 5 Honors Baccalaureate of Science in Integrative Biology project of David Lehrburger presented on March 12, 2020. APPROVED: _____________________________________________________________________ Stephen Atkinson, Mentor, representing Microbiology _____________________________________________________________________ Jerri Bartholomew, Committee Member, representing Microbiology _____________________________________________________________________ Michael Blouin, Committee Member, representing Integrative Biology _____________________________________________________________________ Toni Doolen, Dean, Oregon State University Honors College I understand that my project will become part of the permanent collection of Oregon State University, Honors College. My signature below authorizes release of my project to any reader upon request. _____________________________________________________________________ David Lehrburger, Author 6 Outline: • Myxozoa are a large group of microscopic, parasitic Cnidaria. • Myxozoans have two-host life cycles that alternate between vertebrate (usually fish) and invertebrate hosts (usually annelids or bryozoans). • Myxozoa are sub-divided into two classes: Malacosporea (in bryozoans; with fewer than 20 species) and Myxosporea (in annelids >2000 species). Myxosporea is further divided into three main lineages: “marine”, “freshwater” and the earliest diverging lineage, Sphaerospora sensu stricto. • Several species of Sphaerospora cause diseases in aquaculture • No life-cycle is known for Sphaerospora (it is unknown exactly how fish become infected) • My goal was to identify the invertebrate host of the type species, Sphaerospora elegans, a common kidney parasite of three-spined sticklebacks. Abstract Myxozoans are microscopic parasites, related to corals and jellyfish. Most Myxozoa probably have two-host lifecycles that require a vertebrate (typically fish) and invertebrate (annelid or bryozoan). However no life cycle is known from the Sphaerospora lineage. I hypothesized that the life cycle of Sphaerospora elegans, a myxozoan parasite of three-spined stickleback (Gasterosteus aculeatus) requires an alternate annelid host. I sampled fish and annelids from a creek known to have the parasite. PCR and DNA sequencing demonstrated that the fish currently are infected. I quantified annelid diversity in the creek by establishing 18 unique morphological groups and sorting oligochaetes into these groups, then sequencing representatives from each group to test morphological categorization versus DNA identity. DNA resolved the 18 morpho-groups into 16 nominal species, from 10 genera and two families. Using visual and molecular screening, I discovered two (of 674) oligochaetes had myxozoan infections: neither infection was S. elegans. Neither myxozoan could be identified by sequence matches (>98%) to known species: the most similar myxozoans were Myxidium truttae (96%) and Myxoboulus arrabonensis (92%). This method validates the direct examination of annelids to discover myxozoan infections, but could not preclude involvement of a non-annelid hosts in the life cycle of S. elegans. 7 Introduction Myxozoa is an ancient, obligately parasitic clade of cnidarians. Globally, myxozoans cause several severe diseases with economic impacts both in wild and aquaculture fisheries, and in at least one report, environmental effects (Okamura et al., 2015). They account for some of the most devastating diseases of salmonids, including whirling disease, proliferative kidney disease and enteronecrosis (gut rot) (Okamura et al., 2015). Myxozoans were first described in the eighteenth century. Since then, more than 2200 species have been identified globally, in both marine and freshwater environments (Patra, 2017). Based on species diversity in fish hosts, and the extensive distribution of Myxozoa across the Earth, it is estimated that there could be as many as 40,000 different species (Atkinson et al., 2018). Despite this large number of species, very few complete life cycles of myxozoans are known. As of 2017, from 2200 myxozoan species only 52 life cycles have been described, with 38 of these inferred from molecular data only (Patra, 2017). These life cycles all involve alternate hosts, most commonly a vertebrate (fish) and an annelid (oligochaete or “polychaete” worms), or in a few cases a bryozoan. This lack of knowledge makes life cycle discovery a continued area of interest within myxozoan research. For almost all myxozoans, infection cannot spread from vertebrate to vertebrate host, but instead must go through the annelid. The lifecycle includes two different spore stages: myxospores which are released from the vertebrate host, and the actinospores which are released from the invertebrate host. Upon release from either host, the spores must enter and infect the next host in the cycle, where replication and development of the new spore type occurs. These life cycles can last months or years, with long gaps of time in between hosts. Myxozoans belong to the phylum Cnidaria, which includes corals, jellyfish, and sea anemones (Patra, 2017). There are two myxozoan Classes: Malacosporea (in fish & bryozoans) and Myxosporea (in vertebrates & annelids) (Okamura et al., 2015). Myxosporea are further divided into three lineages, the Sphaerospora, “marine” myxosporea, and “freshwater” myxosporea, based on their host types, predominant environment, and ribosomal DNA sequence relationships (Fiala and Bartoŝová, 2010). Phylogenetic analyses suggests Sphaerospora emerged after Malacosporea, but before the freshwater and marine lineages (Holzer et al., 2018). Within each lineage, subclades of myxozoan species can be defined by commonalities of myxospore shape, DNA sequence features, and tissue and host specificity (Wolf and Markiw, 1984). 8 “Sphaerospora” aptly describes parasites in that lineage because the myxospores, which form within the vertebrate host, have a spherical morphology (Fig. 1) (Lom & Dyková 2006). Species within Sphaerospora most often infect the tubules within the kidney of their freshwater and marine hosts (Okamura et al., 2015). Sphaerospora species share the unusual genetic characteristic of having extraordinarily long small subunit ribosomal RNA (SSU): >3000 base pairs. This feature sets Sphaerospora apart because it is significantly longer than that of other myxozoan species and one of the longest among all eukaryotes (Okamura et al., 2015; Bartošová et al., 2013). This extremely long SSU makes laboratory amplification of Sphaerospora DNA difficult and, and is one reason why only 19 Sphaerospora species have SSU sequences deposited to GenBank, despite there being 103 different Sphaerospora species described (Patra, 2017). Figure 1. Myxospores of Sphaerospora elegans. The spores are approximately 15 µm
Recommended publications
  • A New Species of Myxidium (Myxosporea: Myxidiidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 6-2006 A New Species of Myxidium (Myxosporea: Myxidiidae), from the Western Chorus Frog, Pseudacris triseriata triseriata, and Blanchard's Cricket Frog, Acris crepitans blanchardi (Hylidae), from Eastern Nebraska: Morphology, Phylogeny, and Critical Comments on Amphibian Myxidium Taxonomy Miloslav Jirků University of Veterinary and Pharmaceutical Sciences, Palackého, miloslav.jirku@seznam.cz Matthew G. Bolek Oklahoma State University, bolek@okstate.edu Christopher M. Whipps Oregon State University John J. Janovy Jr. University of Nebraska - Lincoln, jjanovy1@unl.edu Mike L. Kent OrFollowegon this State and Univ additionalersity works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons See next page for additional authors Jirků, Miloslav; Bolek, Matthew G.; Whipps, Christopher M.; Janovy, John J. Jr.; Kent, Mike L.; and Modrý, David, "A New Species of Myxidium (Myxosporea: Myxidiidae), from the Western Chorus Frog, Pseudacris triseriata triseriata, and Blanchard's Cricket Frog, Acris crepitans blanchardi (Hylidae), from Eastern Nebraska: Morphology, Phylogeny, and Critical Comments on Amphibian Myxidium Taxonomy" (2006). John Janovy Publications. 60. https://digitalcommons.unl.edu/bioscijanovy/60 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Miloslav Jirků, Matthew G. Bolek, Christopher M. Whipps, John J. Janovy Jr., Mike L. Kent, and David Modrý This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ bioscijanovy/60 J.
    [Show full text]
  • Cooccurrence of Schistosoma Haematobium, Other Trematode
    Turkish Journal of Zoology Turk J Zool (2017) 41: 196-202 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Short Communication doi:10.3906/zoo-1512-33 Cooccurrence of Schistosoma haematobium, other trematode parasites, an annelid (Chaetogaster limnaei limnaei), and a nematode parasite (Daubaylia potomaca) in Bulinus globosus 1, 1,2 Ogochukwu Caroline OKEKE *, Patience Obiageli UBACHUKWU 1 Department of Biology/Microbiology/Biotechnology, Faculty of Science and Technology, Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria 2 Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria Received: 12.12.2015 Accepted/Published Online: 25.04.2016 Final Version: 25.01.2017 Abstract: Cooccurrence of Schistosoma haematobium, other trematodes, Chaetogaster limnaei limnaei, and Daubaylia potomaca was investigated in Bulinus globosus collected at Nike Lake from October 2011 to September 2012. The snail sizes as well as the numbers of these organisms were recorded. Single infections of S. haematobium, other trematodes, C. limnaei limnaei, and D. potomaca were 0.3%, 46.38%, 1.03%, and 2.66%. Coinfection of S. haematobium-C. limnaei limnaei was 0.3% while that of S. haematobium-other trematodes was 0.15%. Coinfections of C. limnaei limnaei-other trematodes and D. potomaca-other trematodes were 2.16% each. There was no cooccurrence of C. limnaei limnaei-D. potomaca or S. haematobium-D. potomaca. The mean intensity of C. limnaei limnaei-S. haematobium was significantly higher than C. limnaei limnaei single infection. The mean intensity of single C. limnaei limnaei infection and C. limnaei limnaei-other trematodes coinfection was comparable. Mean intensity of D.
    [Show full text]
  • Unesco-Eolss Sample Chapters
    FISHERIES AND AQUACULTURE - Myxozoan Biology And Ecology - Dr. Ariadna Sitjà-Bobadilla and Oswaldo Palenzuela MYXOZOAN BIOLOGY AND ECOLOGY Ariadna Sitjà-Bobadilla and Oswaldo Palenzuela Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain Keywords: Myxozoa, Myxosporea, Actinosporea, Malacosporea, Metazoa, Parasites, Fish Pathology, Invertebrates, Taxonomy, Phylogeny, Cell Biology, Life Cycle Contents 1. Introduction 2. Phylogeny 3. Morphology and Taxonomy 3.1. Spore Morphology 3.2. Taxonomy 4. Life Cycle 4.1. Life Cycle of Myxosporea 4.2. Life Cycle of Malacosporea 5. Cell Biology and Development 6. Ecological Aspects 6.1. Hosts 6.2. Habitats 6.3. Environmental Cues 7. Pathology 7.1. General Remarks 7.2. Pathogenic Effects of Myxozoans 7.2.1. Effects on Invertebrates 7.2.2. Effects on Fish 7.2.3. Effects on non-fish Vertebrates Acknowledgements Glossary Bibliography Biographical Sketches Summary UNESCO-EOLSS The phylum Myxozoa is a group of microscopic metazoans with an obligate endoparasitic lifestyle.SAMPLE Traditionally regarded CHAPTERS as protists, research findings during the last decades have dramatically changed our knowledge of these organisms, nowadays understood as examples of early metazoan evolution and extreme adaptation to parasitic lifestyles. Two distinct classes of myxozoans, Myxosporea and Malacosporea, are characterized by profound differences in rDNA evolution and well supported by differential biological and developmental features. This notwithstanding, most of the existing Myxosporea subtaxa require revision in the light of molecular phylogeny data. Most known myxozoans exhibit diheteroxenous cycles, alternating between a vertebrate host (mostly fish but also other poikilothermic vertebrates, and exceptionally birds and mammals) and an invertebrate (mainly annelids and bryozoans but possibly other ©Encyclopedia of Life Support Systems (EOLSS) FISHERIES AND AQUACULTURE - Myxozoan Biology And Ecology - Dr.
    [Show full text]
  • The Relationship of Chaetogaster Limnaei (Oligochaeta: Naididae) with a Variety of Gastropod Species Author(S): Alan Buse Source: the Journal of Animal Ecology, Vol
    The Relationship of Chaetogaster limnaei (Oligochaeta: Naididae) with a Variety of Gastropod Species Author(s): Alan Buse Source: The Journal of Animal Ecology, Vol. 43, No. 3 (Oct., 1974), pp. 821-837 Published by: British Ecological Society Stable URL: http://www.jstor.org/stable/3538 Accessed: 19/09/2008 15:13 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=briteco. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org. British Ecological Society is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Animal Ecology. http://www.jstor.org 821 THE RELATIONSHIP OF CHAETOGASTERLIMNAEI (OLIGOCHAETA: NAIDIDAE) WITH A VARIETY OF GASTROPOD SPECIES BY ALAN BUSE* Department of Zoology, University College of North Wales, Bangor INTRODUCTION Two subspecies of Chaetogaster limnaei (von Baer) are recognized: C.
    [Show full text]
  • Myxobolus Opsaridiumi Sp. Nov. (Cnidaria: Myxosporea) Infecting
    European Journal of Taxonomy 733: 56–71 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.733.1221 www.europeanjournaloftaxonomy.eu 2021 · Lekeufack-Folefack G.B. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:901649C0-64B5-44B5-84C6-F89A695ECEAF Myxobolus opsaridiumi sp. nov. (Cnidaria: Myxosporea) infecting different tissues of an ornamental fi sh, Opsaridium ubangiensis (Pellegrin, 1901), in Cameroon: morphological and molecular characterization Guy Benoit LEKEUFACK-FOLEFACK 1, Armandine Estelle TCHOUTEZO-TIWA 2, Jameel AL-TAMIMI 3, Abraham FOMENA 4, Suliman Yousef AL-OMAR 5 & Lamjed MANSOUR 6,* 1,2,4 University of Yaounde 1, Faculty of Science, PO Box 812, Yaounde, Cameroon. 3,5,6 Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451 Riyadh, Saudi Arabia. 6 Laboratory of Biodiversity and Parasitology of Aquatic Ecosystems (LR18ES05), Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, University Campus, 2092 Tunis, Tunisia. * Corresponding author: lmansour@ksu.edu.sa; lamjed.mansour@gmail.com 1 Email: leguyzo@yahoo.fr 2 Email: estelle.tiwa@yahoo.com 4 Email: abfomena@yahoo.fr 5 Email: syalomar@ksu.edu.sa 1 urn:lsid:zoobank.org:author:A9AB57BA-D270-4AE4-887A-B6FB6CCE1676 2 urn:lsid:zoobank.org:author:27D6C64A-6195-4057-947F-8984C627236D 3 urn:lsid:zoobank.org:author:0CBB4F23-79F9-4246-9655-806C2B20C47A 4 urn:lsid:zoobank.org:author:860A2A52-A073-49D8-8F42-312668BD8AC7 5 urn:lsid:zoobank.org:author:730CFB50-9C42-465B-A213-BE26BCFBE9EB 6 urn:lsid:zoobank.org:author:2FB65FF2-E43F-40AF-8C6F-A743EEAF3233 Abstract.
    [Show full text]
  • Primer Registro De Chaetogaster Limnaei (Annelida: Naididae) En Chile Con Base En Muestras Obtenidas De Un Caracol De Agua Dulce Invasor
    Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 90 (2019): e902572 Taxonomy and systematics First report of Chaetogaster limnaei (Annelida: Naididae) in Chile based on samples retrieved from an invasive freshwater snail Primer registro de Chaetogaster limnaei (Annelida: Naididae) en Chile con base en muestras obtenidas de un caracol de agua dulce invasor Gonzalo A. Collado a, b, *, Francisco J. Cabrera c, Gabriel I. Ballesteros d, Nicolás I. Villalobos a, Karina P. Aguayo a a Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Andrés Bello 720, Casilla 447, Chillán, Chile b Grupo de Investigación Biodiversidad y Cambio Global, Universidad del Bío-Bío, Avenida Andrés Bello 720, Casilla 447, Chillán, Chile c Universidad Tecnológica de Chile INACAP, Longitudinal Sur 441, Chillán, Chile d Centro de Ecología Molecular y Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile *Corresponding author: gcollado@ubiobio.cl (G.A. Collado) Received: 15 diciembre 2017; accepted: 24 septiembre 2018 Abstract Some naidid oligochaetes establish commensal relationships with species of molluscs worldwide. In the present study, we report the finding of Chaetogaster limnaei in Illapel River, northern Chile. This worm was found inhabiting the mantle cavity of the freshwater gastropod Physa acuta, an invasive species in this country. The taxonomic status of C. limnaei was confirmed by molecular analysis based on mitochondrial 16S ribosomal RNA gene. Keywords: Aquatic molluscs; Invasive species; Naidids; Oligochaetes; Physa acuta Resumen Los oligoquetos Naididae pueden establecer relaciones comensales con especies de moluscos alrededor del mundo. En el presente estudio se informa el hallazgo del oligoqueto Chaetogaster limnaei en el río Illapel, norte de Chile.
    [Show full text]
  • Bioluminescence Imaging of Live Infected Salmonids Reveals That the Fin Bases Are the Major Portal of Entry for Novirhabdovirus
    JOURNAL OF VIROLOGY, Apr. 2006, p. 3655–3659 Vol. 80, No. 7 0022-538X/06/$08.00ϩ0 doi:10.1128/JVI.80.7.3655–3659.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Bioluminescence Imaging of Live Infected Salmonids Reveals that the Fin Bases Are the Major Portal of Entry for Novirhabdovirus Abdallah Harmache,1 Monique LeBerre,1 Ste´phanie Droineau,1 Marco Giovannini,2 and Michel Bre´mont1* Unite´ de Virologie et Immunologie Mole´culaires, INRA, CRJ Domaine de Vilvert, 78352 Jouy en Josas, France,1 and Inserm U434 Fondation Jean Dausset, CEPH 27 rue Juliette Dodu, 75010 Paris, France2 Received 10 November 2005/Accepted 13 January 2006 Although Novirhabdovirus viruses, like the Infectious hematopietic necrosis virus (IHNV), have been extensively studied, limited knowledge exists on the route of IHNV entry during natural infection. A recombinant IHNV (rIHNV) expressing the Renilla luciferase gene was generated and used to infect trout. A noninvasive bioluminescence assay was developed so that virus replication in live fish could be followed hours after infection. We provide here evidence that the fin bases are the portal of entry into the fish. Confirmation was brought by the use of a nonpathogenic rIHNV, which was shown to persist in fins for 3 weeks postinfection. The Infectious hematopoietic necrosis virus (IHNV) be- Renilla reniformis luciferase reporter gene (20), rIHNVLUC longs to the Novirhabdovirus genus in the Rhabdoviridae (Fig. 1A, middle). A full-length pIHNV cDNA clone (4) was family and is the etiological agent of a serious disease in modified such that an additional expression cassette, con- salmonids, mainly in yearling trout.
    [Show full text]
  • A Test of Monophyly of the Gutless Phallodrilinae (Oligochaeta
    A test of monophyly of the gutless Phallodrilinae (Oligochaeta, Tubificidae) and the use of a 573-bp region of the mitochondrial cytochrome oxidase I gene in analysis of annelid phylogeny JOHAN A. A. NYLANDER,CHRISTER ERSEÂ US &MARI KAÈ LLERSJOÈ Accepted 7 Setember 1998 Nylander, J. A. A., ErseÂus, C. & KaÈllersjoÈ , M. (1999) A test of monophyly of the gutless Phallodrilinae (Oligochaeta, Tubificidae) and the use of a 573 bp region of the mitochondrial cytochrome oxidase I sequences in analysis of annelid phylogeny. Ð Zoologica Scripta 28, 305±313. A 573-bp region of the mitochondrial gene cytochrome c oxidase subunit I (COI) of two species of Inanidrilus ErseÂus and four species of Olavius ErseÂus (Phallodrilinae, Tubificidae) is used in a parsimony analysis together with a selection of 35 other annelids (including members of Polychaeta, Pogonophora, Aphanoneura, and the clitellate taxa Tubificidae, Enchytraeidae, Naididae, Lumbriculidae, Haplotaxidae, Lumbricidae, Criodrilidae, Branchiobdellida and Hirudinea), and with two molluscs as outgroups. The data support the monophyly of the Olavius and Inanidrilus group, with a monophyletic Inanidrilus. However, parsimony jackknife analyses show that most of the other groups are unsupported by the data set, thus revealing a large amount of homoplasy in the selected gene region. Practically no information is given of within/between family relationships except for a few, closely related species. This suggests that the analysed COI region is not useful, when used alone, for inferring higher level relationships among the annelids. Johan A. A. Nylander, Department of Systematic Zoology, Evolutionary Biology Center, Uppsala University, NorbyvaÈgen 18D, SE-752 36 Uppsala, Sweden. Christer ErseÂus, Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden.
    [Show full text]
  • Drivers of Symbiont Diversity in Freshwater Snails: a Comparative Analysis of Resource Availability, Community Heterogeneity, and Colonization Opportunities
    Oecologia (2017) 183:927–938 DOI 10.1007/s00442-016-3795-y HIGHLIGHTED STUDENT RESEARCH Drivers of symbiont diversity in freshwater snails: a comparative analysis of resource availability, community heterogeneity, and colonization opportunities Keegan McCaffrey1 · Pieter T. J. Johnson1 Received: 6 May 2016 / Accepted: 4 December 2016 / Published online: 30 December 2016 © Springer-Verlag Berlin Heidelberg 2016 Abstract Decades of community ecology research have density nor the richness of snail species accounted for sig- highlighted the importance of resource availability, habi- nificant variation in symbiont diversity. Host species iden- tat heterogeneity, and colonization opportunities in driv- tity also affected symbiont richness, with higher gamma ing biodiversity. Less clear, however, is whether a similar and average alpha diversity among more common host suite of factors explains the diversity of symbionts. Here, species with higher local abundances. These findings high- we used a hierarchical dataset involving 12,712 freshwa- light the importance of multiple, concurrent factors in driv- ter snail hosts representing five species to test the relative ing symbiont richness that extend beyond epidemiological importance of potential factors in driving symbiont rich- measures of host abundance or host diversity alone. ness. Specifically, we used model selection to assess the explanatory power of variables related to host species iden- Keywords Biodiversity loss · Parasite community · tity, resource availability (average body size, host
    [Show full text]
  • Patterns of Multi-Symbiont Community Interactions in California
    Patterns of Multi-Symbiont Community Interactions in California Freshwater Snails By Keegan McCaffrey Ecology and Evolutionary Biology, University of Colorado at Boulder April 4, 2014 Thesis Advisor: Dr. Pieter Johnson, Department of Ecology and Evolutionary Biology Defense Committee: Dr. Pieter Johnson, Department of Ecology and Evolutionary Biology Dr. Barbara Demmig-Adams, Department of Ecology and Evolutionary Biology Dr. Suzanne Nelson, Department of Integrative Physiology Abstract Virtually all organisms function as hosts for a variety of symbionts that can interact and form complex communities. Recently, research has begun to highlight the influence that symbiont communities can have on human and animal health through multi-symbiont interactions. Here, we examine symbiont community patterns both by host species and specific symbiont interactions in California freshwater snails. Specifically we explore two questions. First, what are the broad patterns observed among five commonly occurring snail species (Helisoma trivolvis, Physa spp., Gyraulus spp., Lymnaea columella, and Radix auricularia)? Second, what are the dynamics between the symbiont annelid Chaetogaster limnaei limnaei and larval trematode infections? We sampled and necropsied 12,713 snail hosts from Contra Costa, Alameda, and Santa Clara counties in California and found that among wetlands, symbiont communities varied significantly between snail species. The prevalence of symbionts and the richness of symbiont communities were both positively correlated to the abundance of each snail host species across the landscape. Within individual snail hosts, larval trematode infection and C. l. limnaei abundance correlated positively, with ~30% more C. l. limnaei in trematode infected hosts as compared to uninfected snails. This relationship, however, was variable among trematode species, suggesting that the underlying mechanism of interaction may be a combination of preferred predation by the annelid worm and other less direct interactions.
    [Show full text]
  • Uncancylus Concentricus (D´Orbigny, 1835): Antecedentes De La Especie
    Sociedad Malacológica de Chile (SMACH) Amici Molluscarum 19: 41-43 (2011) Uncancylus concentricus (d´Orbigny, 1835): antecedentes de la especie Carmen Fuentealba Jara Facultad de Ciencias Naturales y Oceanográficas, Departamento de Zoología, Universidad de Concepción, Chile. Casilla 160-C. E-mail: cfuentea@udec.cl Sistemática Clase Gastropoda Cuvier, 1797. diagnosis a nivel específico. La ovotestis presenta Subclase Pulmonata Cuvier, 1797. alrededor de 25 folículos, la vesícula seminal está Orden Basommatophora Keferstein, 1864. ubicada en la porción media del ovispermioducto. Familia Ancylidae Rafinesque, 1815. La próstata por lo general presenta cinco folículos Género Uncancylus Pilsbry, 1913. alargados (d´Orbigny, 1835; Clessin, 1882; Wurtz, Uncancylus concentricus (d´Orbigny, 1835). 1951; Hylton-Scott, 1963; Hubendick, 1964, 1967; Fernández, 1981; Castellanos, 1982; dos Santos 1995; Lanzer, 1994, 1996). Sinonimia Uncancylus concentricus ha sido relacionado con los siguientes nombres: Ancylus concentricus d´Orbigny, 1835. Ancylus culicoides d´Orbigny, 1835. Ancylus plagioxus Bourguignat, 1862. Ancylus rushii Pilsbry, 1897. Ancylus uncinatus Ancey, 1897. Hebetancylus concentricus Pilsbry, 1913. Velletia Fuhrmanni Piaget, 1914. Uncancylus ameliae Pilsbry, 1920. Uncancylus calverti Pilsbry, 1920. Gundlachia concentrica Hubendick, 1967. Descripción Figura1. Vista dorsal de la concha de Uncancylus concentricus . Ejemplar recolectado en lago Lleu-Lleu, Concha alta, transparente y delgada, con líneas de Región del Bío-Bío, Chile. crecimiento y estrías radiales, las cuales pueden presentarse algo difusas en algunos casos, espe- Figure 1. Dorsal view of the shell of Uncancylus cialmente cuando habita ambientes torrentosos. concentricus . Specimen collected from Lleu-Lleu Lake, Ápice agudo, bastante recurvado, desplazado hacia Bío-Bío Region, Chile. atrás desde el punto medio y flexionado sobre el lado derecho (Fig.1).
    [Show full text]
  • Environmental Conservation Online System
    U.S. Fish and Wildlife Service Southeast Region Inventory and Monitoring Branch FY2015 NRPC Final Report Documenting freshwater snail and trematode parasite diversity in the Wheeler Refuge Complex: baseline inventories and implications for animal health. Lori Tolley-Jordan Prepared by: Lori Tolley-Jordan Project ID: Grant Agreement Award# F15AP00921 1 Report Date: April, 2017 U.S. Fish and Wildlife Service Southeast Region Inventory and Monitoring Branch FY2015 NRPC Final Report Title: Documenting freshwater snail and trematode parasite diversity in the Wheeler Refuge Complex: baseline inventories and implications for animal health. Principal Investigator: Lori Tolley-Jordan, Jacksonville State University, Jacksonville, AL. ______________________________________________________________________________ ABSTRACT The Wheeler National Wildlife Refuge (NWR) Complex includes: Wheeler, Sauta Cave, Fern Cave, Mountain Longleaf, Cahaba, and Watercress Darter Refuges that provide freshwater habitat for many rare, endangered, endemic, or migratory species of animals. To date, no systematic, baseline surveys of freshwater snails have been conducted in these refuges. Documenting the diversity of freshwater snails in this complex is important as many snails are the primary intermediate hosts of flatworm parasites (Trematoda: Digenea), whose infection in subsequent aquatic and terrestrial vertebrates may lead to their impaired health. In Fall 2015 and Summer 2016, snails were collected from a variety of aquatic habitats at all Refuges, except at Mountain Longleaf and Cahaba Refuges. All collected snails were transported live to the lab where they were identified to species and dissected to determine parasite presence. Trematode parasites infecting snails in the refuges were identified to the lowest taxonomic level by sequencing the DNA barcoding gene, 18s rDNA. Gene sequences from Refuge parasites were matched with published sequences of identified trematodes accessioned in the NCBI GenBank database.
    [Show full text]