Photography Composition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
USER MANUAL AKASO Brave 6 Plus Action Camera
USER MANUAL AKASO Brave 6 Plus Action Camera V1.2 CONTENTS What's in the Box 1 Your Brave 6 Plus 2 Getting Started 4 Overview of Modes 5 Customizing Your Brave 6 Plus 8 Playing Back Your Content 15 Deleting Your Content 15 Connecting to the AKASO GO app 15 Offloading Your Content 16 Maintaining Your Camera 16 Maximizing Battery Life 17 Battery Storage and Handling 17 External Microphone 18 Remote 18 Mounting Your Camera 20 Contact Us 22 WHAT'S IN THE BOX Waterproof Handle Bar/ Brave 6 Plus Housing Pole Mount Mount 1 Mount 2 Mount 3 Mount 4 Mount 5 Mount 6 Mount 7 Mount 8 Charger 1 Helmet Mounts Battery Protective Backdoor Clip 1 Clip 2 Tethers Lens Cloth USB Cable Quick Start Guide AKASO Brave 6 Plus Action Camera Remote Bandages Quick Start Guide 1 YOUR BRAVE 6 PLUS 3 1 4 5 2 6 7 8 10 9 2 11 1 Shutter/Select Button 7 USB Type-C Port 2 Power/Mode/Exit Button 8 Micro HDMI Port 3 Up/Wifi Button 9 Touch Screen 4 Down Button 10 Battery Door 5 Speaker 11 MicroSD Slot 6 Lens Note: The camera does not record sound when it is in the waterproof case. 3 GETTING STARTED Welcome to your AKASO Brave 6 Plus. To capture videos and photos, you need a microSD card to start recording (sold separately). MICROSD CARDS Please use brand name microSD cards that meet these requirements: • microSD, microSDHC or microSDXC • UHS-III rating only • Capacity up to 64GB (FAT32) Note: 1. -
Logitech PTZ Pro Camera
THE USB 1080P PTZ CAMERA THAT BRINGS EVERY COLLABORATION TO LIFE Logitech PTZ Pro Camera The Logitech PTZ Pro Camera is a premium USB-enabled HD Set-up is a snap with plug-and-play simplicity and a single USB cable- 1080p PTZ video camera for use in conference rooms, education, to-host connection. Leading business certifications—Certified for health care and other professional video workspaces. Skype for Business, Optimized for Lync, Skype® certified, Cisco Jabber® and WebEx® compatible2—ensure an integrated experience with most The PTZ camera features a wide 90° field of view, 10x lossless full HD business-grade UC applications. zoom, ZEISS optics with autofocus, smooth mechanical 260° pan and 130° tilt, H.264 UVC 1.5 with Scalable Video Coding (SVC), remote control, far-end camera control1 plus multiple presets and camera mounting options for custom installation. Logitech PTZ Pro Camera FEATURES BENEFITS Premium HD PTZ video camera for professional Ideal for conference rooms of all sizes, training environments, large events and other professional video video collaboration applications. HD 1080p video quality at 30 frames per second Delivers brilliantly sharp image resolution, outstanding color reproduction, and exceptional optical accuracy. H.264 UVC 1.5 with Scalable Video Coding (SVC) Advanced camera technology frees up bandwidth by processing video within the PTZ camera, resulting in a smoother video stream in applications like Skype for Business. 90° field of view with mechanical 260° pan and The generously wide field of view and silky-smooth pan and tilt controls enhance collaboration by making it easy 130° tilt to see everyone in the camera’s field of view. -
Real-Time Burst Photo Selection Using a Light-Head Adversarial Network
Real-time Burst Photo Selection Using a Light-Head Adversarial Network Baoyuan Wang, Noranart Vesdapunt, Utkarsh Sinha, Lei Zhang Microsoft Research Abstract. We present an automatic moment capture system that runs in real-time on mobile cameras. The system is designed to run in the viewfinder mode and capture a burst sequence of frames before and after the shutter is pressed. For each frame, the system predicts in real-time a \goodness" score, based on which the best moment in the burst can be selected immediately after the shutter is released, without any user interference. To solve the problem, we develop a highly efficient deep neural network ranking model, which implicitly learns a \latent relative attribute" space to capture subtle visual differences within a sequence of burst images. Then the overall goodness is computed as a linear aggre- gation of the goodnesses of all the latent attributes. The latent relative attributes and the aggregation function can be seamlessly integrated in one fully convolutional network and trained in an end-to-end fashion. To obtain a compact model which can run on mobile devices in real-time, we have explored and evaluated a wide range of network design choices, tak- ing into account the constraints of model size, computational cost, and accuracy. Extensive studies show that the best frame predicted by our model hit users' top-1 (out of 11 on average) choice for 64:1% cases and top-3 choices for 86:2% cases. Moreover, the model(only 0.47M Bytes) can run in real time on mobile devices, e.g. -
The Evolution of Keyence Machine Vision Systems
NEW High-Speed, Multi-Camera Machine Vision System CV-X200/X100 Series POWER MEETS SIMPLICITY GLOBAL STANDARD DIGEST VERSION CV-X200/X100 Series Ver.3 THE EVOLUTION OF KEYENCE MACHINE VISION SYSTEMS KEYENCE has been an innovative leader in the machine vision field for more than 30 years. Its high-speed and high-performance machine vision systems have been continuously improved upon allowing for even greater usability and stability when solving today's most difficult applications. In 2008, the XG-7000 Series was released as a “high-performance image processing system that solves every challenge”, followed by the CV-X100 Series as an “image processing system with the ultimate usability” in 2012. And in 2013, an “inline 3D inspection image processing system” was added to our lineup. In this way, KEYENCE has continued to develop next-generation image processing systems based on our accumulated state-of-the-art technologies. KEYENCE is committed to introducing new cutting-edge products that go beyond the expectations of its customers. XV-1000 Series CV-3000 Series THE FIRST IMAGE PROCESSING SENSOR VX Series CV-2000 Series CV-5000 Series CV-500/700 Series CV-100/300 Series FIRST PHASE 1980s to 2002 SECOND PHASE 2003 to 2007 At a time when image processors were Released the CV-300 Series using a color Released the CV-2000 Series compatible with x2 Released the CV-3000 Series that can simultaneously expensive and difficult to handle, KEYENCE camera, followed by the CV-500/700 Series speed digital cameras and added first-in-class accept up to four cameras of eight different types, started development of image processors in compact image processing sensors with 2 mega-pixel CCD cameras to the lineup. -
Intro to Digital Photography.Pdf
ABSTRACT Learn and master the basic features of your camera to gain better control of your photos. Individualized chapters on each of the cameras basic functions as well as cheat sheets you can download and print for use while shooting. Neuberger, Lawrence INTRO TO DGMA 3303 Digital Photography DIGITAL PHOTOGRAPHY Mastering the Basics Table of Contents Camera Controls ............................................................................................................................. 7 Camera Controls ......................................................................................................................... 7 Image Sensor .............................................................................................................................. 8 Camera Lens .............................................................................................................................. 8 Camera Modes ............................................................................................................................ 9 Built-in Flash ............................................................................................................................. 11 Viewing System ........................................................................................................................ 11 Image File Formats ....................................................................................................................... 13 File Compression ...................................................................................................................... -
Impact with Smartphone Photography
A Smartphone for Serious Photography? DSLR technically superior … but photo quality depends on technical skill, creative vision Smartphone cameras can produce remarkable pictures … always at ready … After all … The Best Camera is the One You Have With You Impact With Smartphone Photography 1 2 Smartphone Camera Handling To further avoid camera shake, release shutter with volume buttons …or use Apple headphones Cradle phone with both hands in “C” shape … keeps fingers away from lens … reduces camera shake 3 4 Keep Your Lens Clean Phone spends lot of time in pocket Master your or purse …grimy lens = poor image camera’s interface quality Explore …experiment with every control… Clean often with microfiber cloth … (breathe on lens to add moisture — every shooting mode no liquids) in built-in camera app Make small circles with soft pressure Set Phone Down With Camera Facing Up 5 6 Key Features: iPhone Standard Camera App AE/AF Lock Auto Burst Touch and hold finger on “Point and shoot”… automatic Take 10 photos in one second … screen … AE/AF Lock and focus and exposure perfect to capture action sun indicators appear Manual Focus High Dynamic Range (HDR) Tap a spot on screen to set focus Combines 3 different exposures to create one image with detail in both Exposure Adjust Exposure Adjust highlights and shadows Slide sun indicator up or Swipe up or down to make image down to make image brighter or darker lighter or darker Grid Grid Horizontal and vertical lines divide Helps keep horizons level, architectural lines Lock Focus & Exp (AE Lock) screen -
Visual Homing with a Pan-Tilt Based Stereo Camera Paramesh Nirmal Fordham University
Fordham University Masthead Logo DigitalResearch@Fordham Faculty Publications Robotics and Computer Vision Laboratory 2-2013 Visual homing with a pan-tilt based stereo camera Paramesh Nirmal Fordham University Damian M. Lyons Fordham University Follow this and additional works at: https://fordham.bepress.com/frcv_facultypubs Part of the Robotics Commons Recommended Citation Nirmal, Paramesh and Lyons, Damian M., "Visual homing with a pan-tilt based stereo camera" (2013). Faculty Publications. 15. https://fordham.bepress.com/frcv_facultypubs/15 This Article is brought to you for free and open access by the Robotics and Computer Vision Laboratory at DigitalResearch@Fordham. It has been accepted for inclusion in Faculty Publications by an authorized administrator of DigitalResearch@Fordham. For more information, please contact [email protected]. Visual homing with a pan-tilt based stereo camera Paramesh Nirmal and Damian M. Lyons Department of Computer Science, Fordham University, Bronx, NY 10458 ABSTRACT Visual homing is a navigation method based on comparing a stored image of the goal location and the current image (current view) to determine how to navigate to the goal location. It is theorized that insects, such as ants and bees, employ visual homing methods to return to their nest [1]. Visual homing has been applied to autonomous robot platforms using two main approaches: holistic and feature-based. Both methods aim at determining distance and direction to the goal location. Navigational algorithms using Scale Invariant Feature Transforms (SIFT) have gained great popularity in the recent years due to the robustness of the feature operator. Churchill and Vardy [2] have developed a visual homing method using scale change information (Homing in Scale Space, HiSS) from SIFT. -
Three Techniques for Rendering Generalized Depth of Field Effects
Three Techniques for Rendering Generalized Depth of Field Effects Todd J. Kosloff∗ Computer Science Division, University of California, Berkeley, CA 94720 Brian A. Barskyy Computer Science Division and School of Optometry, University of California, Berkeley, CA 94720 Abstract Post-process methods are fast, sometimes to the point Depth of field refers to the swath that is imaged in sufficient of real-time [13, 17, 9], but generally do not share the focus through an optics system, such as a camera lens. same image quality as distributed ray tracing. Control over depth of field is an important artistic tool that can be used to emphasize the subject of a photograph. In a A full literature review of depth of field methods real camera, the control over depth of field is limited by the is beyond the scope of this paper, but the interested laws of physics and by physical constraints. Depth of field reader should consult the following surveys: [1, 2, 5]. has been rendered in computer graphics, but usually with the same limited control as found in real camera lenses. In Kosara [8] introduced the notion of semantic depth this paper, we generalize depth of field in computer graphics of field, a somewhat similar notion to generalized depth by allowing the user to specify the distribution of blur of field. Semantic depth of field is non-photorealistic throughout a scene in a more flexible manner. Generalized depth of field provides a novel tool to emphasize an area of depth of field used for visualization purposes. Semantic interest within a 3D scene, to select objects from a crowd, depth of field operates at a per-object granularity, and to render a busy, complex picture more understandable allowing each object to have a different amount of blur. -
An Analysis and Implementation of the HDR+ Burst Denoising Method
Published in Image Processing On Line on 2021–05–25. Submitted on 2021–03–01, accepted on 2021–05–05. ISSN 2105–1232 c 2021 IPOL & the authors CC–BY–NC–SA This article is available online with supplementary materials, software, datasets and online demo at https://doi.org/10.5201/ipol.2021.336 2015/06/16 v0.5.1 IPOL article class An Analysis and Implementation of the HDR+ Burst Denoising Method Antoine Monod1,2, Julie Delon1, Thomas Veit2 1 MAP5, Universit´ede Paris, France ({antoine.monod, julie.delon}@u-paris.fr) 2 GoPro Technology, France ([email protected]) Abstract HDR+ is an image processing pipeline presented by Google in 2016. At its core lies a denoising algorithm that uses a burst of raw images to produce a single higher quality image. Since it is designed as a versatile solution for smartphone cameras, it does not necessarily aim for the maximization of standard denoising metrics, but rather for the production of natural, visually pleasing images. In this article, we specifically discuss and analyze the HDR+ burst denoising algorithm architecture and the impact of its various parameters. With this publication, we provide an open source Python implementation of the algorithm, along with an interactive demo. Source Code The Python implementation of HDR+ has been peer-reviewed and accepted by IPOL. The source code, its documentation, and the online demo are available from the web page of this article1. Compilation and usage instructions are included in the README.txt file of the archive. The code is also available on GitHub2. Keywords: burst denoising; computational photography; motion estimation; temporal filter- ing; high dynamic range; image signal processor 1 Introduction Image noise is a common issue in digital photography, and that issue is even more prominent in smaller sensors used in devices like smartphones or action cameras. -
TESSERACT -- Antique Scientific Instruments
TESSERACT Early Scientific Instruments Special Issue: OPTICAL PLEASURES Catalogue One Hundred Seven Summer, 2018 $10 CATALOGUE ONE HUNDRED SEVEN Copyright 2018 David Coffeen CONDITIONS OF SALE All items in this catalogue are available at the time of printing. We do not charge for shipping and insurance to anywhere in the contiguous 48 states. New York residents must pay applicable sales taxes. For buyers outside the 48 states, we will provide packing and delivery to the post office or shipper but you must pay the actual shipping charges. Items may be reserved by telephone, and will be held for a reasonable time pending receipt of payment. All items are offered with a 10-day money-back guarantee for any reason, but you pay return postage and insurance. We will do everything possible to expedite your shipment, and can work within the framework of institutional requirements. The prices in this catalogue are net and are in effect through December, 2018. Payments by check, bank transfer, or credit card (Visa, Mastercard, American Express) are all welcome. — David Coffeen, Ph.D. — Yola Coffeen, Ph.D. Members: Scientific Instrument Society American Association for the History of Medicine Historical Medical Equipment Society Antiquarian Horological Society International Society of Antique Scale Collectors Surveyors Historical Society Early American Industries Association The Oughtred Society American Astronomical Society International Coronelli Society American Association of Museums Co-Published : RITTENHOUSE: The Journal of the American Scientific Instrument Enterprise (http://www.etesseract.com/RHjournal/) We are always interested in buying single items or collections. In addition to buying and selling early instruments, we can perform formal appraisals of your single instruments or whole collections, whether to determine fair market value for donation, for insurance, for loss, etc. -
Download Spec Sheet
Hardware Camera & Entertainment • Snapdragon 2.26 GHz Quad-Core Processor • 13 MP Optical Image Stabilization (OIS) Full HD Rear- • T-Mobile 4G LTE Network* Facing Autofocus Camera and Camcorder with LED Flash • 5.2" Full HD IPS Display – 1920 x 1080 resolution, 16:9 • Optical Image Stabilization – clearer results by keeping aspect ratio, and 423 ppi imagery stable while a photo or video is taken, even in • Zerogap Touch – precise touch response by reducing the low-light conditions space under the surface of the display • 2.1 MP Full HD Front-Facing Camera • Rear Key Placement – allows ambidextrous convenience • Camera Resolutions: up to 4160 x 31201 for the most natural and immediate use (4160 x 2340 default) pixels • Sapphire Crystal Glass – scratch-resistant material helps • Multipoint Autofocus – camera detects and captures a protect camera lens from blemishes particular subject faster and more precisely with nine autofocus points * T-Mobile’s 4G LTE Network not available everywhere. • Shot & Clear – eliminate select moving objects in the 2.79" 0.35" background of a picture UX Productivity • Tracking Zoom1 – zoom in on a subject while recording to • Slide Aside – three-finger swipe to the left saves up to track and magnify it through the scene three running apps; access tabs with a swipe to the right • Voice Shutter – take pictures using voice commands • QSlide – overlay up to two QSlide app windows with • Shot Mode – choose from Normal, Shot & Clear,1 Dynamic Tone adjustable sizing and transparency on primary screen (HDR),1 Panorama,1 -
Nikon D5100: from Snapshots to Great Shots
Nikon D5100: From Snapshots to Great Shots Rob Sylvan Nikon D5100: From Snapshots to Great Shots Rob Sylvan Peachpit Press 1249 Eighth Street Berkeley, CA 94710 510/524-2178 510/524-2221 (fax) Find us on the Web at www.peachpit.com To report errors, please send a note to [email protected] Peachpit Press is a division of Pearson Education Copyright © 2012 by Peachpit Press Senior Acquisitions Editor: Nikki McDonald Associate Editor: Valerie Witte Production Editor: Lisa Brazieal Copyeditor: Scout Festa Proofreader: Patricia Pane Composition: WolfsonDesign Indexer: Valerie Haynes Perry Cover Image: Rob Sylvan Cover Design: Aren Straiger Back Cover Author Photo: Rob Sylvan Notice of Rights All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting permission for reprints and excerpts, contact permissions@ peachpit.com. Notice of Liability The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the computer software and hardware products described in it. Trademarks All Nikon products are trademarks or registered trademarks of Nikon and/or Nikon Corporation. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.