401F329a37640a178064b020c0

Total Page:16

File Type:pdf, Size:1020Kb

401F329a37640a178064b020c0 Published online 13 January 2014 Nucleic Acids Research, 2014, Vol. 42, No. 6 3607–3622 doi:10.1093/nar/gkt1382 NAR Breakthrough Article Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer Dayong Wu1,y, Benjamin Sunkel1,2,y, Zhong Chen1, Xiangtao Liu1, Zhenqing Ye3, Qianjin Li1, Cassandra Grenade1, Jingdong Ke1, Chunpeng Zhang1, Hongyan Chen1,4, Kenneth P. Nephew5, Tim H.-M. Huang3, Zhihua Liu4, Victor X. Jin3 and Qianben Wang1,2,* 1Department of Molecular and Cellular Biochemistry and the Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA, 2Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA, 3Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA, 4State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and 5Medical Sciences Program and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN 47405, USA Received August 13, 2013; Revised November 26, 2013; Accepted December 15, 2013 ABSTRACT exhibit both independent and codependent In prostate cancer, androgen receptor (AR) binding co-occupancy of AR target gene enhancers. and androgen-responsive gene expression are Identifying these determinants of AR transcriptional defined by hormone-independent binding patterns of activity may provide a foundation for the develop- the pioneer factors FoxA1 and GATA2. Insufficient ment of future prostate cancer therapeutics that evidence of the mechanisms by which GATA2 con- target pioneer factor function. tributes to this process precludes complete under- standing of a key determinant of tissue-specific AR INTRODUCTION activity. Our observations suggest that GATA2 facili- Androgen signaling mediates diverse and complex func- tates androgen-responsive gene expression by tions throughout the body ranging from skeletal develop- three distinct modes of action. By occupying novel ment and maintenance to spermatogenesis on ligand binding sites within the AR gene locus, GATA2 posi- activation of the androgen receptor (AR) (1). A member tively regulates AR expression before and after of the nuclear hormone receptor family, AR mediates androgen stimulation. Additionally, GATA2 engages androgen-dependent gene expression following release AR target gene enhancers prior to hormone stimu- from cytoplasmic heat-shock proteins, receptor phosphor- lation, producing an active and accessible chroma- ylation and nuclear translocation whereupon AR tin environment via recruitment of the histone homodimers bind to recognition sites within regulatory elements of target genes (2). This mechanism of acetyltransferase p300. Finally, GATA2 functions in hormone-dependent gene expression facilitates the fetal establishing and/or sustaining basal locus looping development of the prostate and regulates maintenance by recruiting the Mediator subunit MED1 in the and normal function of the prostate secretory epithelium absence of androgen. These mechanisms may con- (1,3). In androgen-dependent prostate cancer (ADPC), tribute to the generally positive role of GATA2 in androgen-stimulated AR function plays a vital role defining AR genome-wide binding patterns that in the aberrant proliferation of epithelial cells, thus determine androgen-responsive gene expression androgen deprivation therapy (ADT) precipitates profiles. We also find that GATA2 and FoxA1 marked disease regression (3,4). As is too often the case *To whom correspondence should be addressed. Tel: +1 614 247 1609; Fax: +1 614 688 4181; Email: [email protected] yThese authors contributed equally to the paper as first authors. ß The Author(s) 2014. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] 3608 Nucleic Acids Research, 2014, Vol. 42, No. 6 however, reestablished AR activity leads to ADT resist- While GATA family proteins have long since been ance, marking the fatal progression to castration resistant identified as putative pioneer factors acting in concert prostate cancer (CRPC) (5–7). How tissue-, cell type-, and with FOX proteins in establishing temporal gene expres- disease stage-specific patterns of androgen-stimulated sion patterns required for fetal liver development (28,29), gene expression are generated is an area of considerable progress in understanding GATA pioneer function in NR- research focus, and a complete picture of the activities driven cancers has been largely limited to ER activity. determining this specificity is required for our understand- GATA3 expression patterns positively correlate with ing of androgen-driven prostate cancer progression both ER and FoxA1 in the developing, mature and can- and for the rational design of potent prostate cancer cerous mammary epithelium, and are in fact necessary therapeutics. for determining hormone-responsive gene expression and In nuclear receptor (NR)-regulated gene transcription, breast cancer cell proliferation (30–34). As stated, prostate pioneer factor function has been studied extensively, cancer-specific AR binding sites are also significantly providing information on the manner in which tissue- enriched in GATA motifs, and GATA2, overexpressed specific, hormone-responsive gene expression is controlled in high-risk prostate cancer, has been shown to play an (8–10). Pioneer factors are characterized by their ability to essential role in productive AR-chromatin binding result- engage compact chromatin, initialize local chromatin ing in androgen-responsive gene expression (12,16,35). decondensation and provide an environment amenable Given existing evidence for the central role of GATA to the recruitment of transcription factors and activation family members in defining transcription factor activity, of transcription (10). Their role in determining NR target the demonstrated function of GATA factors in facilitating gene expression was suggested on analysis of common hormone-dependent gene expression, and the dearth of DNA sequence motifs enriched within genome-wide NR information on the mechanism by which GATA proteins binding sites identified using chromatin immunopre- contribute functionally to NR-transcriptional regulation, cipitation combined with tiled oligonucleotide micro- further analyses are needed to elucidate the means by arrays (ChIP-on-chip) or high-throughput sequencing which GATA pioneer factors function in hormone- technology (ChIP-seq) (11–15). Two key pioneer factors related cancers. emerged from complementary analyses in distinct In the present work, we focus specifically on the role of hormone-related cancers, breast and prostate, driven by GATA2 in recruiting AR to distal enhancers elements estrogen receptor (ER) and AR transcriptional activity, of androgen-responsive AR target genes in androgen- respectively. Significantly enriched within ER and AR responsive prostate cancer cell lines. We provide evidence that GATA2 acts at multiple levels to contribute binding sites were motifs recognized by the Forkhead positively to AR transcriptional activity by enhancing AR box (FOX) and GATA pioneer transcription factor expression itself, facilitating AR-enhancer binding by families (10,12,13,16,17). establishing an accessible local chromatin environment, FOX proteins, specifically the FOXA subclass, have at- and enhancing AR target gene expression through in- tracted considerable attention for their capacity to impact volvement in the formation and maintenance of regulatory local chromatin architecture, their essential role in priming chromatin loops between AR-bound distal enhancers for temporal patterns of gene expression observed in early and AR target gene promoters. These mechanisms may organogenesis and their influence over tissue-specific account for the generally positive role of GATA2 in patterns of NR target gene expression, of particular defining global AR binding that regulates AR target interest in hormone-related cancers (9,10,18,19). In par- gene expression. Additionally, we reveal a complex rela- ticular, FoxA1, expressed alongside ER and AR in the tionship between FoxA1 and GATA2 in mediating AR developing and mature mammary and prostate ductal expression and in site-specific AR recruitment facilitating epithelia, respectively (20–23), has been shown to contrib- AR target gene expression. ute significantly to maintaining the oncogenic functions of these nuclear receptors in both treatment-sensitive and -resistant breast and prostate cancers (11,16). While the MATERIALS AND METHODS role of FoxA1 in ER-positive breast cancers appears to be Cell culture the positive regulation of ER-chromatin binding, resulting in canonical and noncanonical ligand-dependent ER The prostate cancer cell line LNCaP was purchased from target gene expression and breast cancer cell proliferation the American Type Culture Collection (ATCC), and (11,24), a more complex relationship between AR and C4-2B cells were purchased from ViroMed Laboratories. FoxA1 exists in prostate cancer. Initial studies described These cells were maintained
Recommended publications
  • Mechanism of Nucleosome Targeting by Pioneer Transcription Factors
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Mechanism Of Nucleosome Targeting By Pioneer Transcription Factors Meilin Mary Fernandez Garcia University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons, and the Biophysics Commons Recommended Citation Fernandez Garcia, Meilin Mary, "Mechanism Of Nucleosome Targeting By Pioneer Transcription Factors" (2019). Publicly Accessible Penn Dissertations. 3624. https://repository.upenn.edu/edissertations/3624 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3624 For more information, please contact [email protected]. Mechanism Of Nucleosome Targeting By Pioneer Transcription Factors Abstract Transcription factors (TFs) forage the genome to instruct cell plasticity, identity, and differentiation. These developmental processes are elicited through TF engagement with chromatin. Yet, how and which TFs can engage with chromatin and thus, nucleosomes, remains largely unexplored. Pioneer TFs are TF that display a high affinity for nucleosomes. Extensive genetic and biochemical studies on the pioneer TF FOXA, a driver of fibroblast to hepatocyte reprogramming, revealed its nucleosome binding ability and chromatin targeting lead to chromatin accessibility and subsequent cooperative binding of TFs. Similarly, a number of reprogramming TFs have been suggested to have pioneering activity due to their ability to target compact chromatin and increase accessibility and enhancer formation in vivo. But whether these factors directly interact with nucleosomes remains to be assessed. Here we test the nucleosome binding ability of the cell reprogramming TFs, Oct4, Sox2, Klf4 and cMyc, that are required for the generation of induced pluripotent stem cells. In addition, we also test neuronal and macrophage reprogramming TFs.
    [Show full text]
  • Identification of Regulatory Elements from Nascent Transcription Using Dreg
    Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Identification of regulatory elements from nascent transcription using dREG Zhong Wang1, Tinyi Chu1,2, Lauren A. Choate1, and Charles G. Danko1,3,* 1 Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853. 2 Graduate field of Computational Biology, Cornell University, Ithaca, NY 14853. 3 Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853. * Address correspondence to: Charles G. Danko, Ph.D. Baker Institute for Animal Health Cornell University Hungerford Hill Rd. Ithaca, NY 14853 Phone: (607) 256-5620 E-mail: [email protected] Abstract: Our genomes encode a wealth of transcription initiation regions (TIRs) that can be identified by their distinctive patterns of actively elongating RNA polymerase. We previously introduced dREG to identify TIRs using PRO-seq data. Here we introduce an efficient new implementation of dREG that uses PRO-seq data to identify both uni- and bidirectionally transcribed TIRs with 70% improvements in accuracy, 3-4-fold higher resolution, and >100-fold increases in computational efficiency. Using a novel strategy to identify TIRs based on their statistical confidence reveals extensive overlap with orthogonal assays, yet also reveals thousands of additional weakly-transcribed TIRs that were not identified by H3K27ac ChIP-seq or DNase-seq. Novel TIRs discovered by dREG were often associated with RNA polymerase III initiation, bound by pioneer transcription factors, or located in broad domains marked by repressive chromatin modifications. Our results suggest that transcription initiation can be a powerful tool for expanding the catalog of functional elements.
    [Show full text]
  • Genetic Determinants and Epigenetic Effects of Pioneer-Factor Occupancy
    ARTICLES https://doi.org/10.1038/s41588-017-0034-3 Genetic determinants and epigenetic effects of pioneer-factor occupancy Julie Donaghey1,2, Sudhir Thakurela 1,2, Jocelyn Charlton2,3, Jennifer S. Chen2, Zachary D. Smith1,2, Hongcang Gu1, Ramona Pop2, Kendell Clement1,2, Elena K. Stamenova1, Rahul Karnik1,2, David R. Kelley 2, Casey A. Gifford1,2,5, Davide Cacchiarelli1,2,6, John L. Rinn1,2,7, Andreas Gnirke1, Michael J. Ziller4 and Alexander Meissner 1,2,3* Transcription factors (TFs) direct developmental transitions by binding to target DNA sequences, influencing gene expres- sion and establishing complex gene-regultory networks. To systematically determine the molecular components that enable or constrain TF activity, we investigated the genomic occupancy of FOXA2, GATA4 and OCT4 in several cell types. Despite their classification as pioneer factors, all three TFs exhibit cell-type-specific binding, even when supraphysiologically and ectopically expressed. However, FOXA2 and GATA4 can be distinguished by low enrichment at loci that are highly occupied by these fac- tors in alternative cell types. We find that expression of additional cofactors increases enrichment at a subset of these sites. Finally, FOXA2 occupancy and changes to DNA accessibility can occur in G1-arrested cells, but subsequent loss of DNA meth- ylation requires DNA replication. rganismal development is orchestrated by the selective use the regulatory capabilities of the presumed pioneer TFs FOXA2, and distinctive interpretation of identical genetic material GATA4 and OCT4, which are frequently studied in development Oin each cell. During this process, TFs coordinate protein and used in cellular reprogramming. complexes at associated promoter and distal enhancer elements to modulate gene expression.
    [Show full text]
  • Supplement. Transcriptional Factors (TF), Protein Name and Their Description Or Function
    Supplement. Transcriptional factors (TF), protein name and their description or function. TF Protein name TF description/function ARID3A AT rich interactive domain 3A (BRIGHT-like) This gene encodes a member of the ARID (AT-rich interaction domain) family of DNA binding proteins. ATF4 Activating Transcription Factor 4 Transcriptional activator. Binds the cAMP response element (CRE) (consensus: 5-GTGACGT[AC][AG]-3), a sequence present in many viral and cellular promoters. CTCF CCCTC-Binding Factor Chromatin binding factor that binds to DNA sequence specific sites. Involved in transcriptional regulation by binding to chromatin insulators and preventing interaction between promoter and nearby enhancers and silencers. The protein can bind a histone acetyltransferase (HAT)-containing complex and function as a transcriptional activator or bind a histone deacetylase (HDAC)-containing complex and function as a transcriptional repressor. E2F1-6 E2F transcription factors 1-6 The protein encoded by this gene is a member of the E2F family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. The E2F proteins contain several evolutionally conserved domains found in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids, and a tumor suppressor protein association domain which is embedded within the transactivation domain. EBF1 Transcription factor COE1 EBF1 has been shown to interact with ZNF423 and CREB binding proteins.
    [Show full text]
  • Pioneer Factors in Animals and Plants—Colonizing Chromatin for Gene Regulation
    molecules Review Pioneer Factors in Animals and Plants—Colonizing Chromatin for Gene Regulation Xuelei Lai †, Leonie Verhage † ID , Veronique Hugouvieux and Chloe Zubieta * Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France; [email protected] (X.L.); [email protected] (L.V.); [email protected] (V.H.) * Correspondence: [email protected]; Tel.: +33-043-878-0654 † These two authors contributed equally to this work. Received: 9 July 2018; Accepted: 28 July 2018; Published: 31 July 2018 Abstract: Unlike most transcription factors (TF), pioneer TFs have a specialized role in binding closed regions of chromatin and initiating the subsequent opening of these regions. Thus, pioneer TFs are key factors in gene regulation with critical roles in developmental transitions, including organ biogenesis, tissue development, and cellular differentiation. These developmental events involve some major reprogramming of gene expression patterns, specifically the opening and closing of distinct chromatin regions. Here, we discuss how pioneer TFs are identified using biochemical and genome-wide techniques. What is known about pioneer TFs from animals and plants is reviewed, with a focus on the strategies used by pioneer factors in different organisms. Finally, the different molecular mechanisms pioneer factors used are discussed, highlighting the roles that tertiary and quaternary structures play in nucleosome-compatible DNA-binding. Keywords: transcription factor; pioneer activity; cell fate transition; chromatin accessibility 1. Introduction Transcription factors (TFs) are DNA-binding proteins that read genomic information to control gene expression in all organisms [1–5]. They achieve this by binding to their cognate DNA motif in gene regulatory regions, leading to either transcriptional activation or repression depending on whether transcription machineries are recruited or excluded.
    [Show full text]
  • Pioneer Transcription Factors Are Associated with the Modulation of DNA Methylation Patterns Across Cancers
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443359; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Pioneer transcription factors are associated with the modulation of DNA methylation patterns across cancers Roza Berhanu Lemma1, Thomas Fleischer2, Emily Martinsen1,3, Vessela N. Kristensen4,5, Ragnhild Eskeland3, Odd Stokke Gabrielsen6, and Anthony Mathelier1,4,* 1 Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway 2 Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway 3 Institute of Basic Medical Sciences, Department of Molecular Medicine, and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway 4 Department of Medical Genetics, Oslo University Hospital, Oslo, Norway 5 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway 6 Department of Biosciences, University of Oslo, Oslo, Norway. * To whom correspondence should be addressed; email: [email protected] Abstract Methylation of cytosines on DNA is a prominent modification associated with gene expression regulation. Aberrant DNA methylation patterns have recurrently been linked to dysregulation of the regulatory program in cancer cells. To shed light on the underlying molecular mechanism driving this process, we hypothesized that aberrant methylation patterns could be controlled by the binding of specific transcription factors (TFs) across cancer types. By combining DNA methylation arrays and gene expression data with TF binding sites (TFBSs), we explored the interplay between TF binding and DNA methylation in 19 cancer cohorts.
    [Show full text]
  • 1 High Throughput Screening Identifies SOX2 As a Super Pioneer Factor That
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941682; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 High throughput screening identifies SOX2 as a Super Pioneer Factor that 2 inhibits DNA methylation maintenance at its binding sites. 3 Ludovica Vanzan1, Hadrien Soldati1§, Victor Ythier1, Santosh Anand1, Nicole Francis2, 4 Rabih Murr1,3* 5 1Department of Genetic Medicine and Development, University of Geneva Medical 6 School, Geneva, Switzerland. 7 2Institut de Recherches Cliniques de Montréal (IRCM) and Département de biochimie 8 et médecine moléculaire, Université de Montréal, Montréal, Canada. 9 3Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 10 Geneva, Switzerland 11 §Present address: Department of Physiology and Metabolism, University of Geneva 12 Medical School, Geneva, Switzerland 13 14 *Correspondence: R. Murr. Department of Genetic Medicine and Development 15 (GEDEV), University of Geneva, Medical School, 1 Rue Michel-Servet, Geneva 1206, 16 Switzerland 17 [email protected] 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941682; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 19 Abstract 20 Access of mammalian transcription factors (TFs) to regulatory regions, an essential 21 event for transcription regulation, is hindered by chromatin compaction involving 22 nucleosome wrapping, repressive histone modifications and DNA methylation.
    [Show full text]
  • Zygotic Pioneer Factor Activity of Odd-Paired/Zic Is Necessary for Establishing 8 the Drosophila Segmentation Network 9 10 Isabella V
    bioRxiv preprint doi: https://doi.org/10.1101/852707; this version posted November 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 4 5 6 7 Zygotic pioneer factor activity of Odd-paired/Zic is necessary for establishing 8 the Drosophila Segmentation Network 9 10 Isabella V. Soluri1, Lauren M. Zumerling1, Omar A. Payan Parra2,3, Eleanor G. Clark2, Shelby A. 11 Blythe1,4 12 1) Department of Molecular Biosciences, Northwestern University, Evanston, IL 13 2) Program in Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 14 3) Department of Neurobiology, Northwestern University, Evanston, IL 15 4) For correspondence: [email protected] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Running title: Patterning-dependent chromatin accessibility 30 bioRxiv preprint doi: https://doi.org/10.1101/852707; this version posted November 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 31 Abstract 32 Because regulatory networks of transcription factors drive embryonic patterning, it is possible that 33 chromatin accessibility states impact how networks interact with information encoded in DNA. To 34 determine the interplay between chromatin states and regulatory network function, we performed 35 ATAC seq on Drosophila embryos over the period spanning the establishment of the segmentation 36 network, from zygotic genome activation to gastrulation.
    [Show full text]
  • Glucocorticoid Receptor Collaborates with Pioneer Factors and AP-1 to Execute Genome-Wide Regulation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.444518; this version posted June 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. GLUCOCORTICOID RECEPTOR COLLABORATES WITH PIONEER FACTORS AND AP-1 TO EXECUTE GENOME-WIDE REGULATION APREPRINT Erin M. Wissink1, Delsy M. Martinez2, Kirk T. Ehmsen2, Keith R. Yamamoto2, and John T. Lis1, 3 1Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 2Department of Cellular and Molecular Pharmacology, University of California San Francisco School of Medicine, San Francisco, CA 3Corresponding author, email: [email protected] June 2, 2021 ABSTRACT The glucocorticoid receptor (GR) regulates transcription through binding to specific DNA motifs, particularly at enhancers. While the motif to which it binds is constant across cell types, GR has cell type-specific binding at genomic loci, resulting in regulation of different genes. The presence of other bound transcription factors (TFs) is hypothesized to strongly influence where GR binds. Here, we addressed the roles of other TFs in the glucocorticoid response by comparing changes in GR binding and nascent transcription at promoters and distal candidate cis-regulatory elements (CCREs) in two distinct human cancer cell types. We found that after glucocorticoid treatment, GR binds to thousands of genomic loci that are primarily outside of promoter regions and are potentially enhancers. The majority of these GR binding sites are cell-type specific, and they are associated with pioneer factor binding.
    [Show full text]
  • The AP-1 Transcriptional Complex Local Switch Or Remote Command?
    BBA - Reviews on Cancer 1872 (2019) 11–23 Contents lists available at ScienceDirect BBA - Reviews on Cancer journal homepage: www.elsevier.com/locate/bbacan Review The AP-1 transcriptional complex: Local switch or remote command? T ⁎ Fabienne Bejjania,b, Emilie Evannoa, Kazem Zibarab, Marc Piechaczyka, , ⁎ Isabelle Jariel-Encontrea, a Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France b PRASE and Biology Department, Faculty of Sciences – I, Lebanese University, Beirut, Lebanon ARTICLE INFO ABSTRACT Keywords: The ubiquitous family of AP-1 dimeric transcription complexes is involved in virtually all cellular and physio- AP-1 logical functions. It is paramount for cells to reprogram gene expression in response to cues of many sorts and is Fos involved in many tumorigenic processes. How AP-1 controls gene transcription has largely remained elusive till Jun recently. The advent of the “omics” technologies permitting genome-wide studies of transcription factors has Transcription however changed and improved our view of AP-1 mechanistical actions. If these studies confirm that AP-1 can Enhancer sometimes act as a local transcriptional switch operating in the vicinity of transcription start sites (TSS), they Promoter strikingly indicate that AP-1 principally operates as a remote command binding to distal enhancers, placing chromatin architecture dynamics at the heart of its transcriptional actions. They also unveil novel constraints operating
    [Show full text]
  • GATA Transcription Factors in Development and Disease Mathieu Tremblay*, Oraly Sanchez-Ferras* and Maxime Bouchard‡
    © 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev164384. doi:10.1242/dev.164384 PRIMER GATA transcription factors in development and disease Mathieu Tremblay*, Oraly Sanchez-Ferras* and Maxime Bouchard‡ ABSTRACT GATA proteins, review the different developmental systems in The GATA family of transcription factors is of crucial importance which GATA members have been implicated and link these findings during embryonic development, playing complex and widespread to human disease. roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three The GATA family proteins: molecular mechanisms germ layers, including the skin, brain, gonads, liver, hematopoietic, GATA factors were named after the consensus DNA-binding cardiovascular and urogenital systems. The crucial activity of GATA sequence (A/T)GATA(A/G), which is recognized by the zinc-finger factors is underscored by the fact that inactivating mutations in most domains common to all family members. Of the two zinc fingers GATA members lead to embryonic lethality in mouse models and are (Fig. 1A), one appears to be consistently required for consensus often associated with developmental diseases in humans. In this sequence recognition and binding (Yang and Evans, 1992). The Primer, we discuss the unique and redundant functions of GATA other zinc finger either binds the GATA recognition sequence, proteins in tissue morphogenesis, with an emphasis on their stabilizes the interaction with certain sequences or interacts with regulation of lineage specification and early organogenesis. protein partners (Bates et al., 2008; Crispino et al., 2001; Martin and Orkin, 1990; Trainor et al., 2000; Tsang et al., 1997; Wilkinson- KEY WORDS: GATA factors, Gene redundancy, Genetics, Lineage White et al., 2015).
    [Show full text]
  • Δnp63 Is a Pioneer Factor That Binds Inaccessible Chromatin and Elicit Chromatin Remodeling
    ΔNp63 is a pioneer factor that binds inaccessible chromatin and elicit chromatin remodeling Xinyang Yu University at Buffalo Jacobs School of Medicine and Biomedical Sciences: University at Buffalo School of Medicine and Biomedical Sciences Prashant K. Singh University at Buffalo Jacobs School of Medicine and Biomedical Sciences: University at Buffalo School of Medicine and Biomedical Sciences Shamira Tabrejee University at Buffalo Jacobs School of Medicine and Biomedical Sciences: University at Buffalo School of Medicine and Biomedical Sciences Satrajit Sinha University at Buffalo Jacobs School of Medicine and Biomedical Sciences: University at Buffalo School of Medicine and Biomedical Sciences Michael Buck ( [email protected] ) University at Buffalo - The State University of New York https://orcid.org/0000-0001-5320-3678 Research Keywords: p63, pioneer factor, nucleosome, chromatin modication Posted Date: November 30th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-111164/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Epigenetics & Chromatin on April 17th, 2021. See the published version at https://doi.org/10.1186/s13072-021-00394-8. Page 1/19 Abstract Background: ΔNp63 is a master transcriptional regulator playing critical roles in epidermal development and other cellular processes. Recent studies suggest that ΔNp63 functions as a pioneer factor that can target its binding sites within inaccessible chromatin and induce chromatin remodeling. Methods: In order to examine if ΔNp63 can bind to inaccessible chromatin and to determine if specic histone modications are required for binding we induced ΔNp63 expression in two p63 naive cell line.
    [Show full text]