aerospace Article Emission Modes in Electrospray Thrusters Operating with High Conductivity Ionic Liquids Nolan M. Uchizono 1,† , Adam L. Collins 1,† , Anirudh Thuppul 1,† , Peter L. Wright 1,† , Daniel Q. Eckhardt 2 , John Ziemer 3 and Richard E. Wirz 1,*,† 1 Plasma & Space Propulsion Laboratory, UCLA Mechanical and Aerospace Engineering, 420 Westwood Plaza, Los Angeles, CA 90095, USA;
[email protected] (N.M.U.);
[email protected] (A.L.C.);
[email protected] (A.T.);
[email protected] (P.L.W.) 2 Electric Propulsion Lead, In-Space Propulsion Branch (RQRS), Air Force Research Laboratory, Edwards AFB, CA 93524, USA;
[email protected] 3 LISA Microthruster Technology Lead, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
[email protected] * Correspondence:
[email protected] † Current address: UCLA Department of Mechanical and Aerospace Engineering, 420 Westwood Plaza, Los Angeles, CA 90095, USA. Received: 24 August 2020; Accepted: 22 September 2020; Published: 25 September 2020 Abstract: Electrospray thruster life and mission performance are strongly influenced by grid impingement, the extent of which can be correlated with emission modes that occur at steady-state extraction voltages, and thruster command transients. Most notably, we experimentally observed skewed cone-jet emission during steady-state electrospray thruster operation, which leads to the definition of an additional grid impingement mechanism that we termed “tilted emission”. Long distance microscopy was used in conjunction with high speed videography to observe the emission site of an electrospray thruster operating with an ionic liquid propellant (EMI-Im). During steady-state thruster operation, no unsteady electrohydrodynamic emission modes were observed, though the conical meniscus exhibited steady off-axis tilt of up to 15◦.