Mineral Minutes April 2017.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geology Club Mineral: Collecting Trip
Geology Club: Mineral Collecting Trip (10 October 2009) Trip Notes by Charles Merguerian STOP 1 – Grossular Garnet Locality, West Redding, Connecticut. [UTM Coordinates: 630.71E / 4575.38N, Bethel quadrangle]. Covering roughly 60 acres of land, this enigmatic massive fine-grained grossularite garnet + diopside rock in West Redding has made many mineral collectors and geologists take notice. Walk up the steep slope east of Simpaug Turnpike to see highly fractured, massive cinnamon-colored grossular garnet rock, part of a 0.6-km wide heart-shaped mass found at the faulted contact between the Stockbridge Marble (OCs) and injected muscovitic schist of the Rowe Schist member (OCr) of the Hartland Formation (Figure 1). According to Rodgers et al. (1985), we are very near Cameron’s Line (red and black line in Figure 1). Figure 1 – Geologic map of the area surrounding Stop 1 showing the Proterozoic gneissic rocks (Yg) and Cambrian Dalton Schist (Cd) to the west, the Stockbridge Marble (OCs), Cameron’s Line (CL in red), the injected schistose rocks of the Rowe Formation (OCr), and an Ordovician granitoid (Og) that may be responsible for this unusual Ca++-enriched skarn deposit. Note the NW-trending high-angle brittle faults that cut the region. (Adapted from Rodgers et al. 1985.) Two knolls at this locality are almost entirely composed of grossularite garnet (var. essonite) and lesser clinopyroxene. Mostly the garnet occurs alone with minor quartz and localized quartz veining has been observed. Chemical analysis of the garnet (SiO2 = 39.10%, CaO = 34.85%, Al2O3 = 19.61%, and total FeO+Fe2O3 = 5.44%), are quite similar to published analyses of grossular garnet, including the phenomenal grossular garnet crystals from Morelos, Mexico. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Maine the Way Life Should Be. Mineral Collecting
MAINE The Way Life Should Be. Mineral Collecting The Maine Publicity Bureau, Inc. Quarries You May Visit # 1 Topsham: The Fisher Quarry is located off Route 24 in Topsham. This locale is best known for crystals of topaz, green microlite, and dark blue tourmaline. It has also produced other minerals such as beryl, uraninite and cassiterite. #2 Machiasport: At an area known as Jasper Beach there is an abundance of vari-colored jasper and/or rhyolite specimens. Located on Route 92. #3 Buckfield: The Bennett Quarry, located between Buckfield and Paris Hill, has produced fine specimens of blue and pink beryl including some gem material. It is also known for crystals of quartz, green tourmaline and rare minerals. #4 Casco: The Chute Prospect is best known for vesuvianite. It is located east of Route 302-35. Crystals of “cinnamon” garnet, quartz and pyrite are also found here. #5 Georgetown: The Consolidated Feldspar Quarry has produced excel lent specimens of gem citrine quartz, tourmaline and spodumene. Rose Quartz, cookeite and garnet are also found. #6 Paris: Mount Mica is world famous for tourmaline and this gem material was discovered here in 1821. This is one of the most likely places for a collector to find tourmaline. Mount Mica has produced a host of other minerals including beryl, cookeite, black tourmaline, colum- bite, lepidolite and garnet. (Currently being mined) #7 Greenwood: The Tamminen Quarry and the Harvard Quarry, both located near Route 219, have produced an interesting variety of miner als. The Tamminen Quarry is best known for pseudo-cubic quartz crystals, montmorillonite, spodumene and garnet. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
Carbon Mineral Ecology: Predicting the Undiscovered Minerals of Carbon
American Mineralogist, Volume 101, pages 889–906, 2016 Carbon mineral ecology: Predicting the undiscovered minerals of carbon ROBERT M. HAZEN1,*, DANIEL R. HUMMER1, GRETHE HYSTAD2, ROBERT T. DOWNS3, AND JOSHUA J. GOLDEN3 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Calumet, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. ABSTRACT Studies in mineral ecology exploit mineralogical databases to document diversity-distribution rela- tionships of minerals—relationships that are integral to characterizing “Earth-like” planets. As carbon is the most crucial element to life on Earth, as well as one of the defining constituents of a planet’s near-surface mineralogy, we focus here on the diversity and distribution of carbon-bearing minerals. We applied a Large Number of Rare Events (LNRE) model to the 403 known minerals of carbon, using 82 922 mineral species/locality data tabulated in http://mindat.org (as of 1 January 2015). We find that all carbon-bearing minerals, as well as subsets containing C with O, H, Ca, or Na, conform to LNRE distributions. Our model predicts that at least 548 C minerals exist on Earth today, indicating that at least 145 carbon-bearing mineral species have yet to be discovered. Furthermore, by analyzing subsets of the most common additional elements in carbon-bearing minerals (i.e., 378 C + O species; 282 C + H species; 133 C + Ca species; and 100 C + Na species), we predict that approximately 129 of these missing carbon minerals contain oxygen, 118 contain hydrogen, 52 contain calcium, and more than 60 contain sodium. -
Nomenclature of the Garnet Supergroup
American Mineralogist, Volume 98, pages 785–811, 2013 IMA REPORT Nomenclature of the garnet supergroup EDWARD S. GREW,1,* ANDREW J. LOCOCK,2 STUART J. MILLS,3,† IRINA O. GALUSKINA,4 EVGENY V. GALUSKIN,4 AND ULF HÅLENIUS5 1School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 3Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia 4Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland 5Swedish Museum of Natural History, Department of Mineralogy, P.O. Box 50 007, 104 05 Stockholm, Sweden ABSTRACT The garnet supergroup includes all minerals isostructural with garnet regardless of what elements occupy the four atomic sites, i.e., the supergroup includes several chemical classes. There are pres- ently 32 approved species, with an additional 5 possible species needing further study to be approved. The general formula for the garnet supergroup minerals is {X3}[Y2](Z3)ϕ12, where X, Y, and Z refer to dodecahedral, octahedral, and tetrahedral sites, respectively, and ϕ is O, OH, or F. Most garnets are cubic, space group Ia3d (no. 230), but two OH-bearing species (henritermierite and holtstamite) have tetragonal symmetry, space group, I41/acd (no. 142), and their X, Z, and ϕ sites are split into more symmetrically unique atomic positions. Total charge at the Z site and symmetry are criteria for distinguishing groups, whereas the dominant-constituent and dominant-valency rules are critical in identifying species. Twenty-nine species belong to one of five groups: the tetragonal henritermierite group and the isometric bitikleite, schorlomite, garnet, and berzeliite groups with a total charge at Z of 8 (silicate), 9 (oxide), 10 (silicate), 12 (silicate), and 15 (vanadate, arsenate), respectively. -
Thirty-Seventh List of New Mineral Names. Part 1" A-L
Thirty-seventh list of new mineral names. Part 1" A-L A. M. CLARK Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK AND V. D. C. DALTRYt Department of Geology and Mineralogy, University of Natal, Private Bag XO1, Scottsville, Pietermaritzburg 3209, South Africa THE present list is divided into two sections; the pegmatites at Mount Alluaiv, Lovozero section M-Z will follow in the next issue. Those Complex, Kola Peninsula, Russia. names representing valid species, accredited by the Na19(Ca,Mn)6(Ti,Nb)3Si26074C1.H20. Trigonal, IMA Commission on New Minerals and Mineral space group R3m, a 14.046, c 60.60 A, Z = 6. Names, are shown in bold type. Dmeas' 2.76, Dc~ac. 2.78 g/cm3, co 1.618, ~ 1.626. Named for the locality. Abenakiite-(Ce). A.M. McDonald, G.Y. Chat and Altisite. A.P. Khomyakov, G.N. Nechelyustov, G. J.D. Grice. 1994. Can. Min. 32, 843. Poudrette Ferraris and G. Ivalgi, 1994. Zap. Vses. Min. Quarry, Mont Saint-Hilaire, Quebec, Canada. Obschch., 123, 82 [Russian]. Frpm peralkaline Na26REE(SiO3)6(P04)6(C03)6(S02)O. Trigonal, pegmatites at Oleny Stream, SE Khibina alkaline a 16.018, c 19.761 A, Z = 3. Named after the massif, Kola Peninsula, Russia. Monoclinic, a Abenaki Indian tribe. 10.37, b 16.32, c 9.16 ,~, l~ 105.6 ~ Z= 2. Named Abswurmbachite. T. Reinecke, E. Tillmanns and for the chemical elements A1, Ti and Si. H.-J. Bernhardt, 1991. Neues Jahrb. Min. Abh., Ankangite. M. Xiong, Z.-S. -
Previously Unknown Quasicrystal Periodic Approximant Found in Space Received: 13 August 2018 Luca Bindi 1, Joyce Pham 2 & Paul J
www.nature.com/scientificreports OPEN Previously unknown quasicrystal periodic approximant found in space Received: 13 August 2018 Luca Bindi 1, Joyce Pham 2 & Paul J. Steinhardt3,4 Accepted: 16 October 2018 We report the discovery of Al Ni Fe , the frst natural known periodic crystalline approximant Published: xx xx xxxx 34 9 2 to decagonite (Al71Ni24Fe5), a natural quasicrystal composed of a periodic stack of planes with quasiperiodic atomic order and ten-fold symmetry. The new mineral has been approved by the International Mineralogical Association (IMA 2018-038) and ofcially named proxidecagonite, which derives from its identity to periodic approximant of decagonite. Both decagonite and proxidecagonite were found in fragments from the Khatyrka meteorite. Proxidecagonite is the frst natural quasicrystal approximant to be found in the Al-Ni-Fe system. Within this system, the decagonal quasicrystal phase has been reported to transform at ~940 °C to Al13(Fe,Ni)4, Al3(Fe,Ni)2 and the liquid phase, and between 800 and 850 °C to Al13(Fe,Ni)4, Al3(Fe,Ni) and Al3(Fe,Ni)2. The fact that proxidecagonite has not been observed in the laboratory before and formed in a meteorite exposed to high pressures and temperatures during impact-induced shocks suggests that it might be a thermodynamically stable compound at high pressure. The most prominent structural motifs are pseudo-pentagonal symmetry subunits, such as pentagonal bipyramids, that share edges and corners with trigonal bipyramids and which maximize shortest Ni–Al over Ni–Ni contacts. 1,2 Te frst decagonal quasicrystalline (QC) phase found in nature, decagonite Al71Ni24Fe5 , was discovered in the Khatyrka meteorite, a CV3 carbonaceous chondrite3–8. -
Gilalite Cu5si6o17 ² 7H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Monoclinic, Probable
Gilalite Cu5Si6O17 ² 7H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic, probable. Point Group: n.d. As spherules of radial ¯bers, to 0.3 mm. Physical Properties: Tenacity: Waxy or gummy. Hardness = 2 D(meas.) = 2.72(5) D(calc.) = [2.54] Optical Properties: Transparent or translucent. Color: Chrysocolla-green, inclining to pale blue-green. Luster: Nonmetallic. Optical Class: Biaxial ({). Pleochroism: Weak in drab grayish green. Orientation: Blades extinguish up to 8± from Z length. Absorption: Z > X = Y. ® = 1.560 ¯ = 1.635 ° = 1.635 2V(meas.) = Verky small. Cell Data: Space Group: n.d. a = 13.38 b = 19.16 c = 9.026 ¯ = 90± Z = [4] » X-ray Powder Pattern: Christmas, Arizona, USA. 13.4 (100), 7.786 (50), 4.790 (40), 3.897 (40), 10.97 (30), 6.684 (30), 3.315 (30) Chemistry: (1) (2) SiO2 41.5 40.77 MnO 0.5 CuO 36.2 44.97 MgO 2.3 CaO 3.8 H2O 14.6 14.26 Total 98.9 100.00 (1) Christmas, Arizona, USA; average of two closely agreeing analyses. (2) Cu5Si6O17 ² 7H2O: Occurrence: A retrograde metamorphic or mesogene mineral formed at the expense of a prograde calc-silicate and sul¯de assemblage; in tactites, commonly incrusting fractures; also ¯lling cracks or interstices in diopside grains (Christmas, Arizona, USA). Association: Kinoite, apachite, stringhamite, junitoite, clinohedrite, xonotlite, diopside, apophyllite, calcite, tobermorite (Christmas, Arizona, USA). Distribution: From the Christmas copper mine, Gila Co., and the Lonestar [ckname??] deposit, near Sa®ord, Graham Co., Arizona, USA. Name: For Gila Co., Arizona, USA, where it was found. -
By Michael Fleischer and Constance M. Schafer Open-File Report 81
U.S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY THE FORD-FLEISCHER FILE OF MINERALOGICAL REFERENCES, 1978-1980 INCLUSIVE by Michael Fleischer and Constance M. Schafer Open-File Report 81-1174 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards 1981 The Ford-Fleischer File of Mineralogical References 1978-1980 Inclusive by Michael Fleischer and Constance M. Schafer In 1916, Prof. W.E. Ford of Yale University, having just published the third Appendix to Dana's System of Mineralogy, 6th Edition, began to plan for the 7th Edition. He decided to create a file, with a separate folder for each mineral (or for each mineral group) into which he would place a citation to any paper that seemed to contain data that should be considered in the revision of the 6th Edition. He maintained the file in duplicate, with one copy going to Harvard University, when it was agreed in the early 1930's that Palache, Berman, and Fronde! there would have the main burden of the revision. A number of assistants were hired for the project, including C.W. Wolfe and M.A. Peacock to gather crystallographic data at Harvard, and Michael Fleischer to collect and evaluate chemical data at Yale. After Prof. Ford's death in March 1939, the second set of his files came to the U.S. Geological Survey and the literature has been covered since then by Michael Fleischer. Copies are now at the U.S. Geological Survey at Reston, Va., Denver, Colo., and Menlo Park, Cal., and at the U.S. -
Mineral Minutes May 2017 A.Pdf
THE MONTHLY NEWSLETTER OF THE MINERALOGICAL SOCIETY OF THE DISTRICT OF COLUMBIA The Mineral Volume 75-05 In this Issue: May 2017 The Prez Says⁄ Page 1 i May Program – „Geology in the National Capital Region‰ Page 1 Minutes of the April Business Meeting Page 4 April 2017 Program „What's New in Smithsonian Gems Prez Page 4 Minerals‰ Says... n Geologists Uncover Three New Uranyl Minerals Page 6 Large, Exceptional Gem Diamonds Formed from Metallic Page 7 by Dave Liquid inside EarthÊs Mantle Nanney, The Earth's Crust Is Getting Thinner Than Ever Before Page 8 MSDC President u Evidence of Ancient 'Geological Brexit' Revealed Page 9 Sapphire Rush Near Ambatondrazaka, Madagascar Page 10 A Photo-Tour of Garnets...Now in Every Color! Page 11 Blue Dravite-Uvite Tourmaline from Koksha Valley, pring is finally here. It was just Page 16 t Afghanistan pretending for the first couple of Mineral of the Month - Platinum Page 18 Sweeks but by the first week in April, Minerals of Ireland Page 19 IT IS HERE. Our garden is getting really pretty as about a third of our plants are e Geologist of the Month – John Sinkankas Page 20 in bloom. Please join us on 30 April from In Memorium - George Reimherr Page 22 1-5PM for our open house where you Mineralogical Society of America EditorsÊ Picks Page 23 can see our mineral collection, wander Upcoming Geology Events Page 24 through our 2 ½ acre garden, while carrying fluids of your choice. Reach out s Useful Mineral Links Page 24 and we can send you directions. -
Volume 35 / No. 7 / 2017
GemmologyThe Journal of Volume 35 / No. 7 / 2017 The Gemmological Association of Great Britain Contents GemmologyThe Journal of Volume 35 / No. 7 / 2017 COLUMNS p. 581 569 What’s New AMS2 melee diamond tester| p. 586 MiNi photography system| Spectra diamond colorimeter| Lab Information Circular| Gemmological Society of Japan abstracts|Bead-cultured blister pearls from Pinctada maculata|Rubies from Cambo- dia and Thailand|Goldsmiths’ S. Bruce-Lockhart photo Review|Topaz and synthetic moissanite imitating rough diamonds|Santa Fe Symposium proceedings|Colour-change ARTICLES glass imitating garnet rough| Thanh Nhan Bui photo M2M diamond-origin tracking service|More historical reading Feature Articles lists 598 The Linkage Between Garnets Found in India at the 572 Gem Notes Arikamedu Archaeological Site and Their Source at Cat’s-eye aquamarine from Meru, the Garibpet Deposit Kenya|Colour-zoned beryl from By Karl Schmetzer, H. Albert Gilg, Ulrich Schüssler, Jayshree Pakistan|Coloration of green dravite from Tanzania|Enstatite Panjikar, Thomas Calligaro and Patrick Périn from Emali, Kenya|Grossular from Tanga, Tanzania|Natrolite 628 Simultaneous X-Radiography, Phase-Contrast from Portugal|Large matrix opal and Darkfield Imaging to Separate Natural from carving|Sapphires from Tigray, Cultured Pearls northern Ethiopia|Whewellite from the Czech Republic| By Michael S. Krzemnicki, Carina S. Hanser and Vincent Revol Inclusions in sunstone feldspar from Norway and topaz from Sri 640 Camels, Courts and Financing the French Blue Lanka|Quartz with a tourmaline