Curriculum Vitae (Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atmospheric Circulation Newsletter of the University of Washington Atmospheric Sciences Department
Autumn 2017 Atmospheric Circulation Newsletter of the University of Washington Atmospheric Sciences Department Studying the effects of Southern African biomass burning on clouds and climate: The ORACLES mission by Professor Robert Wood, Michael Diamond, & Sarah Doherty iny aerosol particles, emitted by Fires, mainly associated with dry season Teverything from tailpipes to trees, float agricultural burning on African savannas, above us reflecting sunlight, seeding clouds and generate smoke, a chemical soup that absorbing solar heat. How exactly this happens includes a large quantity of tiny aerosol – and how it might change in the future particles. This smoke rises high in – is one of the biggest uncertainties the atmosphere driven by strong in how humans are influencing surface heating and then is climate. blown west off the coast; it In September 2016, three then subsides down toward University of Washington the cloud layer over the scientists took part in a southeastern Atlantic large NASA field campaign, Ocean. The interaction Observations of Aerosols between air moisture and Above Clouds and their smoke pollution is complex Interactions, or ORACLES, and not well understood. that is flying research planes Southern Africa produces around clouds off the west coast almost a third of the Earth’s of southern Africa to see how smoke biomass burning aerosol particles, particles and clouds interact. yet the fate of these particles and their ORACLES is a five year program, with influence on regional and global climate is three month-long aircraft field studies, and is poorly represented in climate models. led by Dr. Jens Redemann from NASA Ames The ORACLES experiment is providing Research Center in California. -
Jiafu Mao, Ph.D. BIO EDUCATION RESEARCH and PROFESSIONAL
Jiafu Mao, Ph.D. R&D Staff Scientist Terrestrial Systems Modeling Group Climate Change Science Institute Environmental Sciences Division Oak Ridge National Laboratory Mailing address: P.O. Box 2008, MS 6301, Oak Ridge, Tennessee 37831-6201, USA Phone: +1 (865) 576-7815 (work); +1(865) 804-5605 (cell phone) Email: [email protected] https://www.ornl.gov/staff-profile/jiafu-mao https://climatechangescience.ornl.gov/content/jiafu-mao http://ise.utk.edu/people/jiafu-mao/ BIO I study the response and feedback of land surface to environmental change. My work primarily involves understanding hydrology, carbon cycling, and vegetation dynamics in the terrestrial ecosystems with field measurements, satellite data, process-oriented land surface and Earth system models; investigating the land surface response to multiple-factor global change and to attribute the variations of terrestrial ecosystem dynamics to natural and anthropogenic drivers; and global scale coupling research primarily concentrating on land-climate interactions with the integrated Earth system modeling framework. My research has been published in leading journals including Nature Climate Change, Nature Communications, Nature Geoscience, Proceedings of the National Academy of Sciences of the United States of America, and Global Change Biology among others. I have also been involved in mentoring students, postdocs and staff members at the University of Tennessee at Knoxville, the University of Texas at Austin, the Iowa State University, the Colorado State University, and GFDL. EDUCATION -
Assessing the Impact of Late Pleistocene Megafaunal Extinctions
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Clim. Past Discuss., 9, C1003–C1014, 2013 Climate www.clim-past-discuss.net/9/C1003/2013/Climate © Author(s) 2013. This work is distributedof the under Past of the Past the Creative Commons Attribute 3.0 License. Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions Open Access Interactive commentGeoscientific on “Assessing theGeoscientific impactOpen Access of Instrumentation Instrumentation late PleistoceneMethods megafaunal and extinctionsMethods on and global vegetation andData climate” Systems by M.-O. BraultData etSystems al. Discussions Open Access Open Access Geoscientific M.-O. Brault et al. Geoscientific Model Development Model Development [email protected] Discussions Received and published: 3 June 2013 Open Access Open Access Hydrology and Hydrology and Earth System Earth System Reviewer(s)’ Comments to Authors: Sciences Sciences Short Commentary by ALS Swann Discussions Open Access Open Access " I enjoyed this paper and -
Forests Emerge As a Major Overlooked Climate Factor
Quanta Magazine Forests Emerge as a Major Overlooked Climate Factor New work at the intersection of atmospheric science and ecology is finding that forests can influence rainfall and climate from across a continent. By Gabriel Popkin Raphael Alù Mist hangs over the Amazon rainforest shortly after sunrise. Forests routinely transfer extraordinary amounts of water vapor into the atmosphere — the equivalent of “flying rivers” — and scientists are only beginning to understand the complex consequences for rainfall and climate at remote locations. https://www.quantamagazine.org/forests-emerge-as-a-major-overlooked-climate-factor-20181009/ October 9, 2018 Quanta Magazine When Abigail Swann started her career in the mid-2000s, she was one of just a handful of scientists exploring a potentially radical notion: that the green plants living on Earth’s surface could have a major influence on the planet’s climate. For decades, most atmospheric scientists had focused their weather and climate models on wind, rain and other physical phenomena. But with powerful computer models that can simulate how plants move water, carbon dioxide and other chemicals between ground and air, Swann has found that vegetation can control weather patterns across huge distances. The destruction or expansion of forests on one continent might boost rainfall or cause a drought halfway around the world. Swann is now a professor at the University of Washington, where she runs the Ecoclimate lab. She is in the vanguard of a small but growing group of scientists studying how plants shape Earth’s weather and climate. Their results could shake up climate science. “None of the atmospheric scientists are thinking about” how plants could influence rainfall, Swann said, though hints had appeared in the scientific literature for decades. -
Alumni Update • 2009 - 2010
DEPARTMENT OF EARTH AND PLANETARY SCIENCE Alumni Update • 2009 - 2010 UNIVERSITY OF CALIFORNIA, BERKELEY photo by Roland Bürgmann photo by Roland Bürgmann Left to right: George Brimhall and staff Micaelee Ellswythe, Left to right: Bill Dietrich, Rudy Wenk and Barbara Judith Coyote and Catherine Pauling enjoying the sun in front Romanowicz cutting their cakes at a faculty party last fall to of McCone in a setting that some alums will remember as a celebrate their honors (see p. 2). parking lot. Henry Allen, one day old, born April 26, 2010. Richard and Kasia Allen’s new son clearly is a future seismologist photo by Richard Allen like his father. photo by Margie Winn Phil Behrman (2nd from left), whose gift established the Graduate Student Field Support Fund, flanked by Rudy Wenk (left to right) Richard Allen, and Chair Roland Bürgmann. Editors: Doris Sloan, Micaelee Ellswythe, Judith Coyote Layout: Anna Reeser photo by Margie Winn Chancellor Robert Birgeneau congratulating Walter Printers: Bacchus Press Alvarez on his 2010 Faculty Research Lecture. Cover Photo: Nearly every year since 1982 Professor Bill Dietrich has taken his geomorphology class to Marin County to investigate the mechanisms of landsliding and soil transport at a site first described by Berkeley graduate Andre Lehre (who worked with Professor Clyde Wahrhaftig) and subsequently studied by Berkeley graduates Steve Reneau, Cathy Wilson, and Dave Montgomery. (Note to EPS 117 alumni: look how the baccharis and trees are slowly taking over the site!). TABLE OF CONTENTS 2 Chair’s -
Download Preprint
manuscript submitted to Geophysical Research Letters 1 Notice 2 An edited version of this paper was published by AGU. Copyright (2020) 3 American Geophysical Union. The citation for this paper is 4 Kim, J. E., Lagu¨e,M. M., Pennypacker, S., Dawson, E., & Swann, A. L. S. 5 ( 2020). Evaporative resistance is of equal importance as surface Albedo in 6 high-latitude surface temperatures due to cloud feedbacks. Geophysical Re- 7 search Letters, 47. e2019GL085663 https://doi.org/10.1029/2019GL085663 8 To view the published open abstract, go to http://dx.doi.org and enter the 9 DOI or the "Peer-reviewed Publication DOI" link will be on the right hand 10 side of this webpage. {1{ manuscript submitted to Geophysical Research Letters 11 Evaporative Resistance is of Equal Importance as 12 Surface Albedo in High Latitude Surface Temperatures 13 Due to Cloud Feedbacks 1 1;2 1 1;3 14 Jinhyuk E. Kim , Marysa M. Lagu¨e , Sam Pennypacker , Eliza Dawson , 1;4 15 Abigail L.S. Swann 1 16 Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA 2 17 Now at Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 18 94709, USA 3 19 Now at School of Earth, Energy, and Environmental Sciences, Stanford University, Stanford, CA 94305, 20 USA 4 21 Department of Biology, University of Washington, Seattle, WA 98195, USA 22 Key Points: 23 • Two Arctic plant types with different properties cause substantial changes to land 24 surface temperature through different physical pathways 25 • Reducing land surface evaporative resistance increases low clouds and increases 26 shortwave cloud forcing 27 • Albedo directly warms the land surface, while changes in evaporation warms mostly 28 by modifying cloud cover Corresponding author: Abigail Swann, [email protected] Corresponding author: Jinhyuk Kim, [email protected] {2{ manuscript submitted to Geophysical Research Letters 29 Abstract 30 Arctic vegetation is known to influence Arctic surface temperatures through albedo.