Understanding Magmatic Processes and Seismo-Volcanic Source Localization with Multicomponent Seismic Arrays

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Magmatic Processes and Seismo-Volcanic Source Localization with Multicomponent Seismic Arrays Understanding magmatic processes and seismo-volcanic source localization with multicomponent seismic arrays Lamberto Adolfo INZA CALLUPE Thesis Defense May 30th, 2013 Supervisor: Jer´ omeˆ MARS Gipsa-Lab, INP Grenoble Co-supervisors: Jean-Philippe METAXIAN´ ISTerre, Chambery´ Christopher BEAN UCD Earth Institute, Ireland Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 1/50 Volcanoes Millions of people are at risk from volcano hazards along the Andes (Tilling 2009) 2 major volcanic events: Nevado del Ruiz VEI 3 (1985) and Huaynaputina VEI 6 (1600) (VEI = volcanic explosivity index from 0 to 7) Seven active volcanoes in southern Peru Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 2/50 Misti volcano - 5822 m (Altitude) EL MISTI the most dangerous volcano Misti volcano: Lat -16.3 Lon: -71.4 Alt: 5822 m Arequipa city, the 2nd most important of Peru, 17 km away south-west of Misti crater Arequipa: more than 1 million inhabitants A telemetry seismic network of 5 stations around Misti volcano Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 3/50 Ubinas volcano - 5672 m (Altitude) UBINAS the most active volcano Ubinas crater: Lat:-16.3 Lon:-70.9 Alt:5672 m An andesitic stratovolcano, more than 5000 people living within 12 km from the crater 23 eruptions between 1550 - 1899 10 eruptions between 1906 - 1999 Eruption rate: 7 per century (Thouret et al 2005 Last eruption: 2006 - 2009 Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 4/50 Classical seismic network in Ubinas Seismic activity dominated by volcanic earthquakes (explosive, LP, tremors events) This type of signals are different of normal earthquakes (Waveforms with emergent onset, unclear P and S seismic phases) Traditional means do not work his type of signals, they cannot be localized New methods needs to be developed Ubinas eruption is characterized by vulcanian style (short-duration highly explosive and destructive). Last eruption produced ash columns of 3 km, and ashfall was reached 20 Seismic network is a group of seismometer to monitoring km away the volcano. the volcano Ubinas: 4 seismometers, short-band response (1Hz), single component (vertical) since 2006, Old technology Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 5/50 Outline 1 Introduction 2 Source Localization 3 Application and Interpretation 4 Conclusions and perspectives Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 6/50 Plan 1 Introduction 2 Source Localization How to study Ubinas volcano? New instrumentation 3 Application and Interpretation Experiment Ubinas 2009 4 Conclusions and perspectives Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 7/50 How to study Ubinas volcano? 8196 NUBI 4600 4800 4800 Two seismic antennas (NUBI and UB2 WUBI). 8194 Using three component (3C) 5000 5000 UB3 UB1 seismometers. 5200 4800 WUBI 5400 Goal: Extract information of wave 5400 fields to understand magma LATITUDE (UTM KM) 5400 mechanisms 8192 4800 5200 Seismic array can measure an important vector consist of 4400 5000 4600 slowness, back-azimuth and 4800 incidence angle 8190 UB4 294 296 298 300 LONGITUDE (UTM KM) Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 8/50 State of the art 1C/3C Author Method Volcano Saccorotti & Del Pozzo (2000) 1C-antennas Stromboli (Italy) Metaxian et al (2002) 1C-antennas Arenal (Costa Rica) Almendros et al (2001b) 1C-antennas Kilauea (USA) La Rocca et al (2004) 1C-antennas Stromboli (Italy) Di Laito et al (2007) 1C-antennas Etna (Italy) Earthquake depths related to magma transport were not clearly estimated from array data. Locating the magma depth is crucial to understand eruptive mechanisms. Chouet et al 2003 and 2013 highlight the evolution of broadband 3C-seismometers Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 9/50 New instrumentation Band width: 0.03 - 50 Hz Three component with broadband sensors. High dynamic range with 24-bit digitizer. Wireless communication capabilities (WiFi) Compact with very low power consumption Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 10/50 Experiment Ubinas: May - July 2009 4600 8196 NUBI 4400 4800 NUBI: 10 instruments (Guralp a) 6TD and 3EPS) 4600 8194 WUBI: 12 instruments (Guralp 5000 5000 6TD and Titan-Neomax) WUBI 5200 Sensor distance: around 50m, 5400 4800 4800 aperture seismic array: 300m 5400 Latitude Km Altitude: NUBI at 4632 m high and WUBI 4732 m 8192 5400 5200 Distance: NUBI 3750 and WUBI 2567 m away the crater 4600 4400 Extreme environment range 5000 4200 between, -10 Celsius, high 4800 altitude. 8190 b) 294 296 298 300 Longitude Km Experiment supported by: IRD, UCD, IGP Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 11/50 Experiment Ubinas: May - July 2009 NUBI: 10 instruments (Guralp 6TD and 3EPS) WUBI: 12 instruments (Guralp 6TD and Titan-Neomax) Sensor distance: around 50m, aperture seismic array: 300m Altitude: NUBI at 4632 m high and WUBI 4732 m Distance: NUBI 3750 and WUBI 2567 m away the crater Extreme environment range between, -10 Celsius, high altitude. Hard work Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 11/50 Ubinas seismic activity wubi.z 2009.06.03 filt=1.000hz − 5.000hz wubi.z 2009.06.14 filt=1.000hz − 5.000hz 0h 0h 1h 1h 2h 2h 3h 3h 4h 4h 5h 5h 6h 6h 7h 7h 8h 8h 9h 9h 10h 10h 11h 11h 12h 12h 13h 13h 14h 14h 15h 15h 16h 16h 17h 17h 18h 18h 19h 19h 20h 20h 21h 21h 22h 22h 23h 23h 0 10 20 30 40 50 60 0 10 20 30 40 50 60 time (min) time (min) Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 12/50 Seismic waveforms on Ubinas -9 100 -9 100 20090614 1215 EXP 10 20090613 1325 EXP 10 50 50 0 10-12 0 10-12 -50 -100 -50 10-15 10-15 -150 -100 10-9 150 10-9 20090605 0039 EXP 50 20090610 0731 EXP 100 -12 50 10-12 0 10 0 -50 -50 10-15 10-15 -100 3 20090528 1345 LP 20090621 0231 LP 6 10-12 10-12 3 0 0 -3 10-15 -3 10-15 100 -9 10 20090707 0519 LP 20090524 1526 VT 10 5 50 10-12 0 0 10-12 -5 -50 10-15 -15 -10 -100 10 60 10-9 20090603 2106 HYB 16 20090604 1506 HYB 30 8 10-12 10-12 0 0 -30 -15 10-15 -8 10 -60 20090624 0528 TRE 20090602 1017 TOR 3 3 10-12 10-12 0 0 -3 -15 10-15 -3 10 0 15 30 45 60 75 0.1 1 10 0 15 30 45 60 75 0.1 1 10 Sec Hz Sec Hz Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 13/50 Global activity on Ubinas - RSEM 12 35 1 7 8 9 8 10 11 24 6 4 Based on RSEM method (De la 0 logRSEM Cruz Reyna and Reyes Davila -4 et al 2001) on 1C vertical 24 31 7 component. May June 12 More than 400 LP, 16 14 15 explosions, several hours of 8 12 13 16 tremors events manually 4 selected and compared with 0 IGP catalog logRSEM -4 Inverted triangles represent vulcanian explosions 7 14 21 June Dashed lines represent tremor Antenna: WUBI 24-May-2009 to 20-Jun-2009 events 1 Black squares represent t=iT + T 2 2 subduction earthquakes 1 2 RSEM(iT ) = log ∑ y (t) T t=iT T − 2 Realtime Seismic Energy Measurement Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 14/50 Global activity on Ubinas - RSEM 12 8 4 Based on RSEM method (De la 0 logRSEM Cruz Reyna and Reyes Davila -4 et al 2001) on 1C vertical component. 21 28 5 June July 12 More than 400 LP, 16 explosions, several hours of 8 tremors events manually 4 selected and compared with 0 IGP catalog logRSEM -4 Inverted triangles represent vulcanian explosions 5 12 July Dashed lines represent tremor Antenna: WUBI 21-Jun-2009 to 14-Jul-2009 events 1 Black squares represent t=iT + T 2 2 subduction earthquakes 1 2 RSEM(iT ) = log ∑ y (t) T t=iT T − 2 Realtime Seismic Energy Measurement Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 14/50 Plan 1 Introduction 3 Application and Interpretation 2 Source Localization 4 Conclusions and perspectives Small aperture seismic array Formulation for 1C and 3C MUSIC-3C algorithm Application on synthetic data Comparison between 3C and 1C Source localization Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 15/50 Small aperture seismic array Array Response Function 15 10 5 0 Ky 1/km −5 −10 −15 Slowness vector: −15 −10 −5 0 5 10 15 Kx 1/km cos(θ)sin(φ) 1 − u(θ,φ) = sin(θ)sin(φ) v − Multicomponent sensor: 3C seismometers a cos(φ) sense full seismic waves − Irregularly sensor spacing array due to the va is the apparent velocity volcano topography (dn < λmin/2) Delay: τn = dn u(θ,φ) · Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 16/50 Formulation for single component (1C) Signal received by one-component sensor Wn(f )= S(f )exp( j2πfsτn)+ Bn(f ) − Antenna output in matrix form W(f)= A(θ,φ)S(f )+ B(f) Steering vector 1 exp( j2πfs (d2 u)) A(θ,φ)= − · ... exp( j2πfs (dn u)) − · Cross-spectral matrix H ΓW = ξ W(f)W (f ) ξ H . is the expectation operator, (.) is the conjugate Direction of arrival algorithms transpose operator Conventional methods (Beamforming Capon), Γ θ φ ξ H H θ φ σ2 Subspace-based methods (ESPRIT, MUSIC) W = A( , ) S1(f )S1 (f ) A ( , )+ bI Maximum-likelihood Methods (Deterministic, σ2 Noise is spatially white with variance b, I=Identity Stochastic) matrix Adolfo INZA ( Thesis Defense ) Seismo volcano source localization May30th,2013 17/50 Extension to three components (3C) Given a time series window 3C Data of the one-snapshot, N=number of sensors X Y Z 1,m 1,m 1,m W3Cm(f )= ..
Recommended publications
  • Muon Tomography Sites for Colombian Volcanoes
    Muon Tomography sites for Colombian volcanoes A. Vesga-Ramírez Centro Internacional para Estudios de la Tierra, Comisión Nacional de Energía Atómica Buenos Aires-Argentina. D. Sierra-Porta1 Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Centro de Modelado Científico, Universidad del Zulia, Maracaibo-Venezuela, J. Peña-Rodríguez, J.D. Sanabria-Gómez, M. Valencia-Otero Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia. C. Sarmiento-Cano Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. , M. Suárez-Durán Departamento de Física y Geología, Universidad de Pamplona, Pamplona-Colombia H. Asorey Laboratorio Detección de Partículas y Radiación, Instituto Balseiro Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Bariloche-Argentina; Universidad Nacional de Río Negro, 8400, Bariloche-Argentina and Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. L. A. Núñez Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Departamento de Física, Universidad de Los Andes, Mérida-Venezuela. December 30, 2019 arXiv:1705.09884v2 [physics.geo-ph] 27 Dec 2019 1Corresponding author Abstract By using a very detailed simulation scheme, we have calculated the cosmic ray background flux at 13 active Colombian volcanoes and developed a methodology to identify the most convenient places for a muon telescope to study their inner structure. Our simulation scheme considers three critical factors with different spatial and time scales: the geo- magnetic effects, the development of extensive air showers in the atmosphere, and the detector response at ground level. The muon energy dissipation along the path crossing the geological structure is mod- eled considering the losses due to ionization, and also contributions from radiative Bremßtrahlung, nuclear interactions, and pair production.
    [Show full text]
  • Magmatic Evolution of the Nevado Del Ruiz Volcano, Central Cordillera, Colombia Minera1 Chemistry and Geochemistry
    Magmatic evolution of the Nevado del Ruiz volcano, Central Cordillera, Colombia Minera1 chemistry and geochemistry N. VATIN-PÉRIGNON “‘, P. GOEMANS “‘, R.A. OLIVER ‘*’ L. BRIQUEU 13),J.C. THOURET 14J,R. SALINAS E. 151,A. MURCIA L. ” Abstract : The Nevado del RU~‘, located 120 km west of Bogota. is one of the currently active andesitic volcanoes that lies north of the Central Cordillera of Colombia at the intersection of two dominant fault systems originating in the Palaeozoïc basement. The pre-volcanic basement is formed by Palaeozoïc gneisses intruded by pre-Cretaceous and Tertiarygranitic batholiths. They are covered by lavas and volcaniclastic rocks from an eroded volcanic chain dissected during the late Pliocene. The geologic history of the Nevado del Ruiz records two periods of building of the compound volcano. The stratigraphie relations and the K-Ar dating indicate that effusive and explosive volcanism began approximately 1 Ma ago with eruption of differentiated andesitic lava andpyroclastic flows and andesitic domes along a regional structural trend. Cataclysmic eruptions opened the second phase of activity. The Upper sequences consist of block-lavas and lava domes ranging from two pyroxene-andesites to rhyodacites. Holocene to recent volcanic eruptions, controled by the intense tectonic activity at the intersection of the Palestina fawlt with the regional fault system, are similar in eruptive style and magma composition to eruptions of the earlier stages of building of the volcano. The youngest volcanic activity is marked by lateral phreatomagmatic eruptions, voluminous debris avalanches. ash flow tuffs and pumice falls related to catastrophic collapse during the historic eruptions including the disastrous eruption of 1985.
    [Show full text]
  • Review and Reassessment of Hazards Owing to Volcano–Glacier Interactions in Colombia
    128 Annals of Glaciology 45 2007 Review and reassessment of hazards owing to volcano–glacier interactions in Colombia Christian HUGGEL,1 Jorge Luis CEBALLOS,2 Bernardo PULGARI´N,3 Jair RAMI´REZ,3 Jean-Claude THOURET4 1Glaciology and Geomorphodynamics Group, Department of Geography, University of Zurich, 8057 Zurich, Switzerland E-mail: [email protected] 2Instituto de Meteorologı´a, Hidrologı´a y Estudios Ambientales, Bogota´, Colombia 3Instituto Colombiano de Geologı´a y Minerı´a, Bogota´, Colombia 4Laboratoire Magmas et Volcans UMR 6524 CNRS, Universite´ Blaise-Pascal, Clermont-Ferrand, France ABSTRACT. The Cordillera Central in Colombia hosts four important glacier-clad volcanoes, namely Nevado del Ruiz, Nevado de Santa Isabel, Nevado del Tolima and Nevado del Huila. Public and scientific attention has been focused on volcano–glacier hazards in Colombia and worldwide by the 1985 Nevado del Ruiz/Armero catastrophe, the world’s largest volcano–glacier disaster. Important volcanological and glaciological studies were undertaken after 1985. However, recent decades have brought strong changes in ice mass extent, volume and structure as a result of atmospheric warming. Population has grown and with it the sizes of numerous communities located around the volcanoes. This study reviews and reassesses the current conditions of and changes in the glaciers, the interaction processes between ice and volcanic activity and the resulting hazards. Results show a considerable hazard potential from Nevados del Ruiz, Tolima and Huila. Explosive activity within environments of snow and ice as well as non-eruption-related mass movements induced by unstable slopes, or steep and fractured glaciers, can produce avalanches that are likely to be transformed into highly mobile debris flows.
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Seasonal Patterns of Atmospheric Mercury in Tropical South America As Inferred by a Continuous Total Gaseous Mercury Record at Chacaltaya Station (5240 M) in Bolivia
    Atmos. Chem. Phys., 21, 3447–3472, 2021 https://doi.org/10.5194/acp-21-3447-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia Alkuin Maximilian Koenig1, Olivier Magand1, Paolo Laj1, Marcos Andrade2,7, Isabel Moreno2, Fernando Velarde2, Grover Salvatierra2, René Gutierrez2, Luis Blacutt2, Diego Aliaga3, Thomas Reichler4, Karine Sellegri5, Olivier Laurent6, Michel Ramonet6, and Aurélien Dommergue1 1Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France 2Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland 4Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA 5Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, Clermont-Ferrand, France 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France 7Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA Correspondence: Alkuin Maximilian Koenig ([email protected]) Received: 22 September 2020 – Discussion started: 28 October 2020 Revised: 20 January 2021 – Accepted: 21 January 2021 – Published: 5 March 2021 Abstract. High-quality atmospheric mercury (Hg) data are concentrations were linked to either westerly Altiplanic air rare for South America, especially for its tropical region. As a masses or those originating from the lowlands to the south- consequence, mercury dynamics are still highly uncertain in east of CHC.
    [Show full text]
  • Scale Deformation of Volcanic Centres in the Central Andes
    letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth.
    [Show full text]
  • The Central Cordillera of Colombia Evelio Echevarria 49
    DE TAL EMERGENCIES I THE MO NTAINS Scarr, J. 1966. FOllr lIIiles bigb. Gollancz. Sreele, P. R. 1971. Tbe Lancet, 11, 33. Sreele, P. R. 1972. Doctor 011 Hverest. Ifodder and Sroughron. Wall, D. 1965. Hondoy. Murray. The Central Cordillera of Colombia Evelio Echevarria Perhaps the only counterpart that could be found in our world for the ndes of Central Colombia is the high volcanoes of Africa. Judging from pictures, Kilimanjaro has a number of duplications in Colombian peaks like Ruiz and Tolima, and the Virunga, in the Purace group. The wildlife habitat of Mount Elgon is imitated by some Colombian volcanoes around Tuqucrres. The strik­ ing plants of E Africa, like groundsels and lobelias, have also close equivalents in these parts of the Andes. And to round out the similarities, it is not unusual in the Colombian highlands to meet at times a hillman with undoubted e­ groid features - the legacy of the slave trade, handed down from colonial times. The Central Cordillera of Colombia is born in the heart of the country and heads along the continental divide of S merica in a SSW direction, until reach­ ing the international border with Ecuador. It is not a continuous range but rather it is composed of several isolated high massifs, separated by wide para­ mos, or rolling moorland, rising above deep tropical valleys that drain E and W. In spite of much recent aerophotogrammerry undertaken in the last few years by the Colombian air force, the range still lacks an accurate survey. De­ tail on existing maps is good for the inhabited country, but poor for the high­ er areas.
    [Show full text]
  • Dirección De Preparación Cepig
    DIRECCIÓN DE PREPARACIÓN CEPIG INFORME DE POBLACIÓN EXPUESTA ANTE CAÍDA DE CENIZAS Y GASES, PRODUCTO DE LA ACTIVIDAD DEL VOLCÁN UBINAS PARA ADOPTAR MEDIDAS DE PREPARACIÓN Fuente: La República ABRIL, 2015 1 INSTITUTO NACIONAL DE DEFENSA CIVIL (INDECI) CEPIG Informe de población expuesta ante caída de cenizas y gases, producto de la actividad del volcán Ubinas para adoptar medidas de preparación. Instituto Nacional de Defensa Civil. Lima: INDECI. Dirección de Preparación, 2015. Calle Dr. Ricardo Angulo Ramírez Nº 694 Urb. Corpac, San Isidro Lima-Perú, San Isidro, Lima Perú. Teléfono: (511) 2243600 Sitio web: www.indeci.gob.pe Gral. E.P (r) Oscar Iparraguirre Basauri Director de Preparación del INDECI Ing. Juber Ruiz Pahuacho Coordinador del CEPIG - INDECI Equipo Técnico CEPIG: Lic. Silvia Passuni Pineda Lic. Beneff Zuñiga Cruz Colaboradores: Pierre Ancajima Estudiante de Ing. Geológica 2 I. JUSTIFICACIÓN En el territorio nacional existen alrededor de 400 volcanes, la mayoría de ellos no presentan actividad. Los volcanes activos se encuentran hacia el sur del país en las regiones de Arequipa, Moquegua y Tacna, en parte de la zona volcánica de los Andes (ZVA), estos son: Coropuna, Valle de Andagua, Hualca Hualca, Sabancaya, Ampato, Misti en la Región Arequipa; Ubinas, Ticsani y Huaynaputina en la región Moquegua, y el Yucamani y Casiri en la región Tacna. El Volcán Ubinas es considerado el volcán más activo que tiene el Perú. Desde el año 1550, se han registrado 24 erupciones aprox. (Rivera, 2010). Estos eventos se presentan como emisiones intensas de gases y ceniza precedidos, en algunas oportunidades, de fuertes explosiones. Los registros históricos señalan que el Volcán Ubinas ha presentado un Índice máximo de Explosividad Volcánica (IEV) (Newhall & Self, 1982) de 3, considerado como moderado a grande.
    [Show full text]
  • Processes Culminating in the 2015 Phreatic Explosion at Lascar Volcano, Chile, Monitored by Multiparametric Data Ayleen Gaete1, Thomas R
    https://doi.org/10.5194/nhess-2019-189 Preprint. Discussion started: 25 June 2019 c Author(s) 2019. CC BY 4.0 License. Processes culminating in the 2015 phreatic explosion at Lascar volcano, Chile, monitored by multiparametric data Ayleen Gaete1, Thomas R. Walter1, Stefan Bredemeyer1,2, Martin Zimmer1, Christian Kujawa1, Luis Franco3, Juan San Martin4, Claudia Bucarey Parra3 5 1 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 2 GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany 3 Observatorio Volcanológico de Los Andes del Sur (OVDAS), Servicio Nacional de Geología y Minería (SERNAGEOMIN), Temuco, Chile. 4 Physics Science Department, Universidad de la Frontera, Casilla 54-D, Temuco, Chile. 10 Correspondence to: Ayleen Gaete ([email protected]) Abstract. Small steam-driven volcanic explosions are common at volcanoes worldwide but are rarely documented or monitored; therefore, these events still put residents and tourists at risk every year. Steam-driven explosions also occur frequently (once every 2-5 years on average) at Lascar volcano, Chile, where they are often spontaneous and lack any identifiable precursor activity. Here, for the first time at Lascar, we describe the processes culminating in such a sudden 15 volcanic explosion that occurred on October 30, 2015, which was thoroughly monitored by cameras, a seismic network, and gas (SO2 and CO2) and temperature sensors. Prior to the eruption, we retrospectively identified unrest manifesting as a gradual increase in the number of long-period (LP) seismic events in 2014, indicating an augmented level of activity at the volcano. Additionally, SO2 flux and thermal anomalies were detected before the eruption.
    [Show full text]
  • Application of INSAR Interferometry and Geodetic Surveys for Monitoring Andean Volcanic Activity : First Results from ASAR-ENVISAT Data
    6th International Symposi um on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts: 115-118 Application of INSAR interferometry and geodetic surveys for monitoring Andean volcanic activity : First results from ASAR-ENVISAT data S. Bonvalot (1,2,4), J.-L. Froger (1,3,4), D. Rémy (1,2,4), K. Bataille (5), V. Cayol (3), J. Clavera (6), D. Comte (4), G. Gabalda (1,2,4), K. Gonzales (7), L. Lara (6), D. Legrand (4), O. Macedo (8), J. Naranjo (6), P. Mothes (9), A. Pavez (1,10), & C. Robin (1,3,4) (1) IRD (Institut de Recherche pour le Développement) - [email protected], [email protected], [email protected] ; (2) UMR5563 Toulouse, France; (3) UMR6524 Clermont-Ferrand, France; (4) Deptos de Geofisica / Geologia, Facultad de Ciensas y Matematicas, Universidad de Chile , Blanco Encalada 2002, Santiago, Chile ; (5) Universidad de Concepcion, Chile; (6) SERNAGEOMIN, Santiago, Chile ; (7) CON IDA, Lima, Perù, (8) Instituto Geofisico dei Perù, Arequipa, Perù ; (9) Instituto Geofisico, Escuela Politecnica Nacional, Quito, Ecuador ; (10) Institut de Physique du Globe de Paris, Lab. de Gravimétrie et Géodynamique KEYWORDS : Radar interferometry, geodetic surveys, ground deformations, Andes, volcanoes INTRODUCTION Within the last few years, several SAR interferometry studies mostly based on ERS-IIERS-2 radar data have been conducted to monitor the volcanic deformations along the South American volcanic arc. They allowed a first evaluation of the potentialities of INSAR imaging in the northern, central and southern volcanic zones (respectively NVZ, CVZ and SVZ) as weil as the first quantitative satellite measurements of volcanic unrest since the initial launch of ERS-l satellite (1992) to nowdays.
    [Show full text]
  • Glacier Evolution in the South West Slope of Nevado Coropuna
    Glacier evolution in the South West slope of Nevado Coropuna (Cordillera Ampato, Perú) Néstor Campos Oset Master Project Master en Tecnologías de la Información Geográfica (TIG) Universidad Complutense de Madrid Director: Prof. David Palacios (UCM) Departamento de Análisis Geográfico Regional y Geografía Física Grupo de Investigación en Geografía Física de Alta Montaña (GFAM) ACKNOWLEDGEMENTS I would like to gratefully and sincerely thank Dr. David Palacios for his help and guidance during the realization of this master thesis. I would also like to thank Dr. José Úbeda for his assistance and support. Thanks to GFAM-GEM for providing materials used for the analysis. And last but not least, a special thanks to my family, for their encouragement during this project and their unwavering support in all that I do. 2 TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 4 1.1 Geographic settings ................................................................................................ 4 1.2 Geologic settings .................................................................................................... 6 1.3 Climatic setting....................................................................................................... 8 1.4 Glacier hazards ..................................................................................................... 10 1.5 Glacier evolution .................................................................................................
    [Show full text]
  • The Volcano Disaster Assistance Program—Helping to Save Lives Worldwide for More Than 30 Years
    The Volcano Disaster Assistance Program—Helping to Save Lives Worldwide for More Than 30 Years What do you do when a sleeping volcano roars back to have allowed warnings to be received, understood, and acted life? For more than three decades, countries around the world upon prior to the disaster. have called upon the U.S. Geological Survey’s (USGS) Volcano VDAP strives to ensure that such a tragedy will never hap- Disaster Assistance Program (VDAP) to contribute expertise and pen again. The program’s mission is to assist foreign partners, equipment in times of crisis. Co-funded by the USGS and the at their request, in volcano monitoring and empower them to U.S. Agency for International Development’s Office of U.S. For- take the lead in mitigating hazards at their country’s threaten- eign Disaster Assistance (USAID/OFDA), VDAP has evolved ing volcanoes. Since 1986, team members have responded to and grown over the years, adding newly developed monitoring over 70 major volcanic crises at more than 50 volcanoes and technologies, training and exchange programs, and eruption have strengthened response capacity in 12 countries. The VDAP forecasting methodologies to greatly expand global capabilities team consists of approximately 20 geologists, geophysicists, and that mitigate the impacts of volcanic hazards. These advances, in engineers, who are based out of the USGS Cascades Volcano turn, strengthen the ability of the United States to respond to its Observatory in Vancouver, Washington. In 2016, VDAP was a own volcanic events. finalist for the Samuel J. Heyman Service to America Medal for VDAP was formed in 1986 in response to the devastating its work in improving volcano readiness and warning systems volcanic mudflow triggered by an eruption of Nevado del Ruiz worldwide, helping countries to forecast eruptions, save lives, volcano in Colombia.
    [Show full text]