Captivating Perplexities of Spinareovirinae 5' RNA Caps

Total Page:16

File Type:pdf, Size:1020Kb

Captivating Perplexities of Spinareovirinae 5' RNA Caps viruses Review Captivating Perplexities of Spinareovirinae 50 RNA Caps Justine Kniert †, Qi Feng Lin † and Maya Shmulevitz * Department of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada; [email protected] (J.K.); [email protected] (Q.F.L.) * Correspondence: [email protected]; Tel.: +1-780-492-0623 † These authors contributed equally to this work. Abstract: RNAs with methylated cap structures are present throughout multiple domains of life. Given that cap structures play a myriad of important roles beyond translation, such as stability and immune recognition, it is not surprising that viruses have adopted RNA capping processes for their own benefit throughout co-evolution with their hosts. In fact, that RNAs are capped was first discovered in a member of the Spinareovirinae family, Cypovirus, before these findings were translated to other domains of life. This review revisits long-past knowledge and recent studies on RNA capping among members of Spinareovirinae to help elucidate the perplex processes of RNA capping and functions of RNA cap structures during Spinareovirinae infection. The review brings to light the many uncertainties that remain about the precise capping status, enzymes that facilitate specific steps of capping, and the functions of RNA caps during Spinareovirinae replication. Keywords: Spinareovirinae; reovirus; capping; RNA; Orthoreovirus; Aquareovirus; Cypovirus; transcrip- tion; nucleotide; virus 1. Introduction Citation: Kniert, J.; Lin, Q.F.; Shmulevitz, M. Captivating Although this review centers on RNA capping by members of the Spinareovirinae Perplexities of Spinareovirinae 50 RNA subfamily, we will first provide a brief introduction to the virus family phylogeny, basic Caps. Viruses 2021, 13, 294. https:// structure, and replication cycle. doi.org/10.3390/v13020294 Phylogeny. Reoviridae is a family of segmented, dsRNA viruses divided into two subfamilies based on the presence of “turrets/spikes” at the vertices of the viral capsid [1]. Academic Editor: John S. L. Parker The non-turreted members of the Reoviridae family form the Sedoreovirinae subfamily, while the turreted viruses form the Spinareovirinae subfamily, the focus of this review. The Received: 31 December 2020 Spinareovirinae subfamily is composed of nine genera: Orthoreovirus, Aquareovirus, Coltivirus, Accepted: 8 February 2021 Mycoreovirus, Cypovirus, Fijivirus, Dinovernavirus, Idnoreovirus, and Oryzavirus, with a wide Published: 13 February 2021 host range including vertebrates, invertebrates, plants, and fungi. Phylogenetic trees based on the amino acid (aa) sequences of the RNA-dependent RNA polymerases (RdRps) have Publisher’s Note: MDPI stays neutral been built to visualize the relationship between each virus, as depicted in Figure1. Though with regard to jurisdictional claims in structurally conserved, when comparing aa sequences of homologous proteins among published maps and institutional affil- the genera, there is often less than 26% sequence similarity. However, protein regions iations. with structural and/or enzymatic function are typically more similar than the rest of the protein [1]. Structure. All Spinareovirinae members share the same, basic virion structure: concen- tric layers of proteins with icosahedral symmetry encapsidating the segmented dsRNA Copyright: © 2021 by the authors. genomes (Figure2)[ 1]. The number of layers varies among the genera, as depicted in Licensee MDPI, Basel, Switzerland. Figure1. All Spinareovirinae members consist of a core, or innermost particle, which is This article is an open access article transcriptionally active with T = 1 symmetry. The core particle is formed by 60 asymmetric distributed under the terms and homodimers of the major-core structural protein, λ1 of Mammalian Orthoreovirus (MRV, conditions of the Creative Commons or “reovirus” henceforth) [2,3]. All proteins discussed hereafter will be given the MRV Attribution (CC BY) license (https:// designation; however, it is important to recognize that homologous proteins of the other creativecommons.org/licenses/by/ genera may have different names. Enforcing this backbone structure are the “clamp” σ2 4.0/). Viruses 2021, 13, 294. https://doi.org/10.3390/v13020294 https://www.mdpi.com/journal/viruses Viruses 2021, 13, x FOR PEER REVIEW 2 of 27 distributed about the 5-, 3-, and 2-fold axes [2]. At the twelve 5-fold axes sits the pentameric “turrets”, formed by the λ2 protein [2,5]. These turrets form hollow cylinders and possess both methyl- and guanylyl-transferase activity (MTase and GTase, respectively), discussed in detail in later sections. Among all the genera, there are always 12 turrets; however, their shapes and configurations vary. For example, Oryzavirus has both wider and taller turrets compared to MRV [4]. The shape of the λ2 turrets may reflect differences in infection and transcriptional mechanisms; when the outercapsid of MRV is cleaved away, the λ2 turrets take on a more “open” conformation, potentially facilitating the release of mRNA into the host cytoplasm [6]. Viruses 2021, 13, 294 2 of 26 Some Spinareovirinae members, such as Oryzavirus, Cypovirus, and Dinovernavirus, do not have additional layers beyond the core particle. In contrast, Orthoreovirus, Aquareovirus, Coltivirus, Mycoreovirus, Fijivirus, and Idnoreovirus have layers of outercapsid proteins with considerable structuralproteins, similarity which are that only surro presentund the among innermostSpinareovirinae core particle,[2,4]. forming MRV contains a T = 150 copies of 13 symmetrical thestructure. clamp protein,(Figure 2) distributed [1]. Two major about theoutercapsid 5-, 3-, and proteins, 2-fold axes μ1 [and2]. Atσ3, the form twelve 5-fold axes heterohexamerssits (200 the units pentameric for MRV) “turrets”, that attach formed onto the by core the λparticles,2 protein forming [2,5]. These the T turrets = 13 form hollow lattice [3,7]. Thecylinders μ1 proteins and found possess within both thes methyl-e complexes and guanylyl-transferase contact both the σ2 activityclamps and (MTase and GTase, λ2 turrets to anchorrespectively), the outercapsid discussed onto in the detail core in[2,3]. later In sections.the case of Among MRV, allthere the is genera, an addi- there are always tional outercapsid12 turrets;receptor however, binding pr theirotein shapes that is and absent configurations among the other vary. Spinareovirinae For example, Oryzavirus has λ genera, σ1, knownboth to wider bind andboth taller junctional turrets adhesion compared molecule to MRV A [4 ].(JAM-A) The shape and of sialic the acids2 turrets may reflect (SAs) on the surfacedifferences of mammalian in infection cells and [1,8]. transcriptional mechanisms; when the outercapsid of MRV is cleaved away, the λ2 turrets take on a more “open” conformation, potentially facilitating the release of mRNA into the host cytoplasm [6]. Figure 1. Spinareovirinae phylogenetic tree. A phylogenetic tree (neighbour joining) of the Reoviridae Figure 1. Spinareovirinae phylogenetic tree. A phylogenetic tree (neighbour joining) of the Reoviridae subfamily, Spinareoviri- subfamily, Spinareovirinae. Clustering is determined by sequence homology between the RNA-de- nae. Clustering is determined by sequence homology between the RNA-dependent RNA polymerase protein sequences. pendent RNA polymerase protein sequences. Capsid layers found among each genus are indicated. Capsid layers*Oryzavirus found among contains each a complete genus are core indicated. particle, *Oryzavirus and a partialcontains outercapsid a complete more closely core particle, resembling and a inter- partial outercap- sid more closelymediate resembling subviral particles intermediate (ISVPs) subviral seen with particles Mammalian (ISVPs) Orthoreovirus seen with (MRV),Mammalian Figure Orthoreovirus2. Figure generated(MRV), Figure2. Figure generatedusing BLOSUM62 using BLOSUM62 and re-illustrated and re-illustrated using Biorende usingr.com. Biorender.com. Accession Accessionnumbers: (AKG65873, numbers: (AKG65873, ALK02203 ALK02203 for Orthoreovirusfor Orthoreovirus), (AGR34045,), (AGR34045, AAM92745, AAM92745, AAL31497 AAL31497 for Aquareovirus for Aquareovirus), (AAM18342,), (AAM18342, 690891, 690891, AAK00595 AAK00595 for Coltivirus), (001936004,for BAC98431 Coltivirus for), (001936004,Mycoreovirus BAC98431), (AEC32904, for Mycoreovirus AAC36456 for), (AEC32904,Oryzavirus), AAC36456 (AAN46860, for AAK73087 Oryzavirus for), Cypovirus), (Q8JYK1, BAA08542(AAN46860, for AAK73087Fijivirus), (ABB17205 for Cypovirus for),Idnoreovirus (Q8JYK1, BAA08542) and (AAZ94068 for Fijivirus for Dinovernavirus), (ABB17205 ).for Idnoreovi- rus) and (AAZ94068 for Dinovernavirus). Some Spinareovirinae members, such as Oryzavirus, Cypovirus, and Dinovernavirus, do not have additional layers beyond the core particle. In contrast, Orthoreovirus, Aquareovirus, Coltivirus, Mycoreovirus, Fijivirus, and Idnoreovirus have layers of outercapsid proteins with considerable structural similarity that surround the innermost core particle, forming a T = 13 symmetrical structure. (Figure2)[ 1]. Two major outercapsid proteins, µ1 and σ3, form heterohexamers (200 units for MRV) that attach onto the core particles, forming the T = 13 lattice [3,7]. The µ1 proteins found within these complexes contact both the σ2 clamps and λ2 turrets to anchor the outercapsid onto the core [2,3]. In the case of MRV, there is an additional outercapsid receptor binding protein that is absent among the other Spinareovirinae
Recommended publications
  • Characterization of a Replicating Mammalian Orthoreovirus with Tetracysteine Tagged Μns for Live Cell Visualization of Viral Fa
    bioRxiv preprint doi: https://doi.org/10.1101/174235; this version posted August 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Characterization of a replicating mammalian 2 orthoreovirus with tetracysteine tagged μNS for live cell 3 visualization of viral factories 4 5 Luke D. Bussiere1,2, Promisree Choudhury1, Bryan Bellaire1,2, Cathy L. Miller1,2,* 6 7 From the Department of Veterinary Microbiology and Preventive Medicine, College of 8 Veterinary Medicine1 and Interdepartmental Microbiology Program2, Iowa State 9 University, Ames, Iowa 50011, USA 10 11 Running title: Live cell imaging of mammalian orthoreovirus factories 12 13 Keywords: Mammalian orthoreovirus, virus factories, tetracysteine tag, live cell imaging, 14 nonstructural μNS protein 15 16 17 18 *Corresponding author. Mailing address: Department of Veterinary Microbiology and 19 Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1907 ISU 20 C Drive, VMRI Building 3, Ames, IA 50011. Phone: (515) 294-4797. Email: 21 [email protected] 22 bioRxiv preprint doi: https://doi.org/10.1101/174235; this version posted August 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 Abstract 24 Within infected host cells, mammalian orthoreovirus (MRV) forms viral factories 25 (VFs) which are sites of viral transcription, translation, assembly, and replication. MRV 26 non-structural protein, μNS, comprises the structural matrix of VFs and is involved in 27 recruiting other viral proteins to VF structures.
    [Show full text]
  • A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses
    A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, Corinne Maufrais, Valérie Caro, Hervé Bourhy To cite this version: Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, et al.. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses.. PLoS ONE, Public Library of Science, 2014, 9 (1), pp.e87194. 10.1371/journal.pone.0087194.s006. pasteur-01430485 HAL Id: pasteur-01430485 https://hal-pasteur.archives-ouvertes.fr/pasteur-01430485 Submitted on 9 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses Laurent Dacheux1*, Minerva Cervantes-Gonzalez1,
    [Show full text]
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,096,585 B2 Shaw Et Al
    US009096585B2 (12) United States Patent (10) Patent No.: US 9,096,585 B2 Shaw et al. (45) Date of Patent: Aug. 4, 2015 (54) ANTIVIRAL COMPOUNDS AND USES (2013.01); C07D 413/10 (2013.01); C07D THEREOF 413/12 (2013.01); A61 K 3 1/5377 (2013.01); A61 K3I/55 (2013.01) (75) Inventors: Megan Shaw, New York, NY (US); (58) Field of Classification Search Hans-Heinrich Hoffmann, New York, CPC. A61K 31/4245; A61K31/5377; A61K31/55 NY (US); Adolfo Garcia-Sastre, New USPC .................................... 514/364, 217.1, 236.2 York, NY (US); Peter Palese, Leonia, NJ See application file for complete search history. US (US) (56) References Cited (73) Assignee: Icahn School of Medicine at Mount Sinai, New York, NY (US) U.S. PATENT DOCUMENTS 6,384,064 B2 5, 2002 Camden (*) Notice: Subject to any disclaimer, the term of this 8,278,342 B2 10/2012 Ricciardi patent is extended or adjusted under 35 Continued U.S.C. 154(b) by 210 days. (Continued) (21) Appl. No.: 13? 700,049 FOREIGN PATENT DOCUMENTS y x- - - 9 (22) PCT Filed1C Mavay 31,51, 2011 WO WO 2009,136979 A2 11/2009 OTHER PUBLICATIONS (86). PCT No.: PCT/US2011/038515 Chu et al. "Analysis of the endocytic pathway mediating the infec S371 (c)(1), tious entry of mosquito-borne flavivirus West Nile into Aedes (2), (4) Date: Feb. 14, 2013 albopictus mosquito (C6/36) cells.” Virology, 2006, vol. 349, pp. 463-475. (87) PCT Pub. No.: WO2011/150413 (Continued) PCT Pub. Date: Dec. 1, 2011 Primary Examiner — Shengjun Wang (65) Prior Publication Data (74) Attorney, Agent, or Firm — Jones Day US 2013/O137678A1 May 30, 2013 (57) ABSTRACT O O Described herein are Compounds, compositions comprising Related U.S.
    [Show full text]
  • Viral Gastroenteritis
    viral gastroenteritis What causes viral gastroenteritis? y Rotaviruses y Caliciviruses y Astroviruses y SRV (Small Round Viruses) y Toroviruses y Adenoviruses 40 , 41 Diarrhea Causing Agents in World ROTAVIRUS Family Reoviridae Genus Segments Host Vector Orthoreovirus 10 Mammals None Orbivirus 11 Mammals Mosquitoes, flies Rotavirus 11 Mammals None Coltivirus 12 Mammals Ticks Seadornavirus 12 Mammals Ticks Aquareovirus 11 Fish None Idnoreovirus 10 Mammals None Cypovirus 10 Insect None Fijivirus 10 Plant Planthopper Phytoreovirus 12 Plant Leafhopper OiOryzavirus 10 Plan t Plan thopper Mycoreovirus 11 or 12 Fungi None? REOVIRUS y REO: respiratory enteric orphan, y early recognition that the viruses caused respiratory and enteric infections y incorrect belief they were not associated with disease, hence they were considered "orphan " viruses ROTAVIRUS‐ PROPERTIES y Virus is stable in the environment (months) y Relatively resistant to hand washing agents y Susceptible to disinfection with 95% ethanol, ‘Lyy,sol’, formalin STRUCTURAL FEATURES OF ROTAVIRUS y 60‐80nm in size y Non‐enveloped virus y EM appearance of a wheel with radiating spokes y Icosahedral symmetry y Double capsid y Double stranded (ds) RNA in 11 segments Rotavirus structure y The rotavirus genome consists of 11 segments of double- stranded RNA, which code for 6 structural viral proteins, VP1, VP2, VP3, VP4, VP6 and VP7 and 6 non-structural proteins, NSP1-NSP6 , where gene segment 11 encodes both NSP5 and 6. y Genome is encompassed by an inner core consisting of VP2, VP1 and VP3 proteins. Intermediate layer or inner capsid is made of VP6 determining group and subgroup specifici ti es. y The outer capsid layer is composed of two proteins, VP7 and VP4 eliciting neutralizing antibody responses.
    [Show full text]
  • Novel Reovirus Associated with Epidemic Mortality in Wild Largemouth Bass
    Journal of General Virology (2016), 97, 2482–2487 DOI 10.1099/jgv.0.000568 Short Novel reovirus associated with epidemic mortality Communication in wild largemouth bass (Micropterus salmoides) Samuel D. Sibley,1† Megan A. Finley,2† Bridget B. Baker,2 Corey Puzach,3 Aníbal G. Armien, 4 David Giehtbrock2 and Tony L. Goldberg1,5 Correspondence 1Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, USA Tony L. Goldberg 2Wisconsin Department of Natural Resources, Bureau of Fisheries Management, Madison, WI, [email protected] USA 3United States Fish and Wildlife Service, La Crosse Fish Health Center, Onalaska, WI, USA 4Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA 5Global Health Institute, University of Wisconsin–Madison, Madison, Wisconsin, USA Reoviruses (family Reoviridae) infect vertebrate and invertebrate hosts with clinical effects ranging from inapparent to lethal. Here, we describe the discovery and characterization of Largemouth bass reovirus (LMBRV), found during investigation of a mortality event in wild largemouth bass (Micropterus salmoides) in 2015 in WI, USA. LMBRV has spherical virions of approximately 80 nm diameter containing 10 segments of linear dsRNA, aligning it with members of the genus Orthoreovirus, which infect mammals and birds, rather than members of the genus Aquareovirus, which contain 11 segments and infect teleost fishes. LMBRV is only between 24 % and 68 % similar at the amino acid level to its closest relative, Piscine reovirus (PRV), the putative cause of heart and skeletal muscle inflammation of farmed salmon. LMBRV expands the Received 11 May 2016 known diversity and host range of its lineage, which suggests that an undiscovered diversity of Accepted 1 August 2016 related pathogenic reoviruses may exist in wild fishes.
    [Show full text]
  • Genetic and Pathogenic Characterisation of 11 Avian
    www.nature.com/scientificreports OPEN Genetic and pathogenic characterisation of 11 avian reovirus isolates from northern Received: 01 July 2016 Accepted: 26 September 2016 China suggests continued evolution Published: 18 October 2016 of virulence Li Zhong*, Li Gao*, Yongzhen Liu, Kai Li, Miao Wang, Xiaole Qi, Yulong Gao & Xiaomei Wang Avian reovirus (ARV) infections characterised by severe arthritis, tenosynovitis, pericarditis, and depressed growth have become increasingly frequent in recent years. In this study, we isolated and identified 11 ARV field strains from chickens with viral arthritis and reduced growth in northern China. Comparative analysis of the σC nucleotide and amino acid sequences demonstrated that all isolates, except LN05 and JS01, were closely related to ARV S1133 and clustered in the first genetic lineage. LN05 and JS01 strains were clustered in the third lineage with the ARV 138 strain. Using S1133 as a reference, five isolates were selected to infect specific-pathogen-free chickens, and we found that the recent isolated Chinese ARV strains had higher replication ability in vivo and caused enhanced mortality than the S1133 strain. These findings suggest that the pathogenicity of Chinese ARVs has been changing in recent years and disease control may become more difficult. This study provides genetic and pathogenic characterisations of ARV strains isolated in northern China and calls for a sustained surveillance of ARV infection in China in order to support a better prevention and control of the disease. Avian reoviruses (ARVs) are important poultry pathogens that cause considerable economic losses in poultry husbandry1. ARVs were first described and isolated as the pathogenic agents responsible for tenosynovitis in young chickens in 19592.
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • Molecular Studies of Piscine Orthoreovirus Proteins
    Piscine orthoreovirus Series of dissertations at the Norwegian University of Life Sciences Thesis number 79 Viruses, not lions, tigers or bears, sit masterfully above us on the food chain of life, occupying a role as alpha predators who prey on everything and are preyed upon by nothing Claus Wilke and Sara Sawyer, 2016 1.1. Background............................................................................................................................................... 1 1.2. Piscine orthoreovirus................................................................................................................................ 2 1.3. Replication of orthoreoviruses................................................................................................................ 10 1.4. Orthoreoviruses and effects on host cells ............................................................................................... 18 1.5. PRV distribution and disease associations ............................................................................................. 24 1.6. Vaccine against HSMI ............................................................................................................................ 29 4.1. The non ......................................................37 4.2. PRV causes an acute infection in blood cells ..........................................................................................40 4.3. DNA
    [Show full text]
  • Diversity and Classification of Reoviruses in Crustaceans: a Proposal
    Journal of Invertebrate Pathology 182 (2021) 107568 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity and classification of reoviruses in crustaceans: A proposal Mingli Zhao a, Camila Prestes dos Santos Tavares b, Eric J. Schott c,* a Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD 21202, USA b Integrated Group of Aquaculture and Environmental Studies, Federal University of Parana,´ Rua dos Funcionarios´ 1540, Curitiba, PR 80035-050, Brazil c Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA ARTICLE INFO ABSTRACT Keywords: A variety of reoviruses have been described in crustacean hosts, including shrimp, crayfish,prawn, and especially P virus in crabs. However, only one genus of crustacean reovirus - Cardoreovirus - has been formally recognized by ICTV CsRV1 (International Committee on Taxonomy of Viruses) and most crustacean reoviruses remain unclassified. This Cardoreovirus arises in part from ambiguous or incomplete information on which to categorize them. In recent years, increased Crabreovirus availability of crustacean reovirus genomic sequences is making the discovery and classification of crustacean Brachyuran Phylogenetic analysis reoviruses faster and more certain. This minireview describes the properties of the reoviruses infecting crusta­ ceans and suggests an overall classification of brachyuran crustacean reoviruses based on a combination of morphology, host, genome organization pattern and phylogenetic sequence analysis. 1. Introduction fish, crustaceans, marine protists, insects, ticks, arachnids, plants and fungi (Attoui et al., 2005; Shields et al., 2015). Host range and disease 1.1. Genera of Reoviridae family symptoms are also important indicators that help to identify viruses of different genera (Attoui et al., 2012).
    [Show full text]
  • The Multi-Functional Reovirus Σ3 Protein Is a Virulence Factor That Suppresses Stress Granule Formation to Allow Viral Replicat
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436456; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The multi-functional reovirus σ3 protein is a 2 virulence factor that suppresses stress granule 3 formation to allow viral replication and myocardial 4 injury 5 6 Yingying Guo1, Meleana Hinchman1, Mercedes Lewandrowski1, Shaun Cross1,2, Danica 7 M. Sutherland3,4, Olivia L. Welsh3, Terence S. Dermody3,4,5, and John S. L. Parker1* 8 9 1Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 10 Ithaca, New York 14853; 2Cornell Institute of Host-Microbe Interactions and Disease, 11 Cornell University, Ithaca, New York 14853; Departments of 3Pediatrics and 12 4Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 13 Pittsburgh, PA 15224; and 5Institute of Infection, Inflammation, and Immunity, UPMC 14 Children’s Hospital of Pittsburgh, PA 15224 15 16 17 Running head: REOVIRUS SIGMA3 PROTEIN SUPPRESSES STRESS GRANULES 18 DURING INFECTION 19 20 * Corresponding author. Mailing address: Baker Institute for Animal Health, College 21 of Veterinary Medicine, Cornell University, Hungerford Hill Road; Ithaca, NY 14853. 22 Phone: (607) 256-5626. Fax: (607) 256-5608. E-mail: [email protected] 23 Word count for abstract: 261 24 Word count for text: 12282 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436456; this version posted March 22, 2021.
    [Show full text]
  • Mammalian Orthoreovirus (MRV) Is Widespread in Wild Ungulates of Northern Italy
    viruses Article Mammalian Orthoreovirus (MRV) Is Widespread in Wild Ungulates of Northern Italy Sara Arnaboldi 1,2,† , Francesco Righi 1,2,†, Virginia Filipello 1,2,* , Tiziana Trogu 1, Davide Lelli 1 , Alessandro Bianchi 3, Silvia Bonardi 4, Enrico Pavoni 1,2, Barbara Bertasi 1,2 and Antonio Lavazza 1 1 Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; [email protected] (S.A.); [email protected] (F.R.); [email protected] (T.T.); [email protected] (D.L.); [email protected] (E.P.); [email protected] (B.B.); [email protected] (A.L.) 2 National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy 3 Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 23100 Sondrio, Italy; [email protected] 4 Veterinary Science Department, Università degli Studi di Parma, 43100 Parma, Italy; [email protected] * Correspondence: virginia.fi[email protected]; Tel.: +39-0302290781 † These authors contributed equally to this work. Abstract: Mammalian orthoreoviruses (MRVs) are emerging infectious agents that may affect wild animals. MRVs are usually associated with asymptomatic or mild respiratory and enteric infections. However, severe clinical manifestations have been occasionally reported in human and animal hosts. An insight into their circulation is essential to minimize the risk of diffusion to farmed animals and possibly to humans. The aim of this study was to investigate the presence of likely zoonotic MRVs in wild ungulates. Liver samples were collected from wild boar, red deer, roe deer, and chamois.
    [Show full text]