Laevicaudata Catalogus (Crustacea: Branchiopoda): an Overview of Diversity and Terminology

Total Page:16

File Type:pdf, Size:1020Kb

Laevicaudata Catalogus (Crustacea: Branchiopoda): an Overview of Diversity and Terminology Laevicaudata catalogus (Crustacea: Branchiopoda) an overview of diversity and terminology Rogers, D. Christopher; Olesen, Jørgen Published in: arthropod systematics & phylogeny Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: Other Citation for published version (APA): Rogers, D. C., & Olesen, J. (2016). Laevicaudata catalogus (Crustacea: Branchiopoda): an overview of diversity and terminology. arthropod systematics & phylogeny, 74(3), 221-240. http://www.senckenberg.de/files/content/forschung/publikationen/arthropodsystematics/asp_74_3/01_asp_74_3 _rogers_221-240.pdf Download date: 28. Sep. 2021 74 (3): 221 – 240 13.12.2016 © Senckenberg Gesellschaft für Naturforschung, 2016. Laevicaudata catalogus (Crustacea: Branchiopoda): an overview of diversity and terminology D. Christopher Rogers *, 1 & Jørgen Olesen 2 1 Kansas Biological Survey, Kansas University, Higuchi Hall, 2101 Constant Avenue, Lawrence, KS 66047-3759 USA; D. Christopher Rogers [[email protected]] — 2 Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Jørgen Olesen [[email protected]] — * Corresponding author Accepted 19.ix.2016. Published online at www.senckenberg.de/arthropod-systematics on 02.xii.2016. Editor in charge: Stefan Richter Abstract The Laevicaudata (smooth clam shrimp) are a small group of freshwater bivalved branchiopod crustaceans in need of taxonomic revision. Here the extant Laevicaudata are defined and diagnosed according to modern standards, and synapomorphies are listed, discussed, and illustrated. A catalogue of the Laevicaudata is presented with synonyms and some taxa are partially revised. One hundred and three recent laevicaudatan taxa are presented, of which 39 are considered valid species. Chresonyms are provided for taxa redescribed according to modern standards. Furthermore we designate a neotype for Lynceus brachyurus Müller, 1776. This species catalogue will provide a basis for further taxonomic revision and phylogenetic work within the Laevicaudata. Key words Lynceus, Paralimnetis, Lynceiopsis, checklist, synapomorphies. 1. Introduction The Laevicaudata (smooth clam shrimp; Figs. 7, 8) are sidered only 34 valid species in three genera. None of a small group of freshwater dwelling bivalved branchio- these studies addressed fossil forms. Since that time the pod crustaceans long grouped with other bivalved bran- only important revisionary work on the genus was TIMMS chiopods (Spinicaudata and Cyclestherida), but mor- (2004) revision of the Australian species. phological and molecular studies have recognized them Current laevicaudatan taxonomy is confusing in sev- as distinct from these (e.g., LINDER 1945; FRYER 1987; eral regions and is clearly in need of a revision, initiated OLESEN 1998; RICHTER et al. 2007). Laevicaudatans have already (e.g., ROGERS et al. 2016). In many cases the been well known since the 1700s with the first species descriptions are ultrabrief or poorly illustrated, which, (Lynceus brachyurus) described by the Danish naturalist combined with the occasional apparent absence of ac- O.F. Müller in 1776 from temporary spring pools, and cessible type material, make the group difficult to handle with very few comprehensive reviews or revisions since. taxonomically (ROGERS et al. 2016). As a basis for fur- DADAY (1913c, 1927) presented 17 species in two genera, ther work with laevicaudatan taxonomy, we provide here however six species presented as new in his 1913c key a checklist, or catalogue, of the recent species that we were not described until his 1927 monograph. MARTIN & consider valid prior to an eventual larger revision of the BELK (1988) revising the New World forms, reported 37 taxonomy in various parts of the world. species in three genera globally. BRTEK (1997) reported In total there are 103 recent taxa presented in this 35 species in three genera as valid, and then in 2002, con- catalogue under the order Laevicaudata, including one ISSN 1863-7221 (print) | eISSN 1864-8312 (online) 221 Rogers & Olesen: Laevicaudata catalogus valid family, three valid genera, and 39 valid recent spe- 3. Laevicaudata synapomorphies cies. Some 61 taxa are considered synonyms, homonyms, nomina nuda, or nomina dubia. Chresonyms are provided for taxon redescriptions to facilitate identification and Laevicaudatans are a morphologically distinct group of evolutionary relationships. clam shrimps within the Branchiopoda. Laevicaudata We did not include fossil forms. Branchiopod crusta- shares with other clam shrimps (Spinicaudata and ceans do not preserve well, being very soft bodied (TASCH Cyclestherida) the presence of a large bivalve carapace 1969; SCHRAM 1986), and the fossil laevicaudatan taxa which encloses the body, and, at least at the general level, are very poorly understood and described (TASCH 1956, similarly shaped phyllopodous thoracopods of which the 1969). first pair(s) in males is modified as claspers composed of We also provide a diagnosis of the Laevicaudata and quite similar parts. SARS (1867) grouped all clam shrimps give a preliminary discussion of some important morpho- in the taxon ‘Conchostraca’, one of the four higher level logical variation within the group as a basis for future categories in which he divided the Branchiopoda, the phylogenetic considerations, all primarily based on re- other three being Anostraca, Notostraca, and Cladocera. cent papers on laevicaudatan taxonomy and morphology LINDER (1945) was the first to point out that ‘Conchostraca’ in which the authors have been involved (OLESEN 2005; masked significant differences between two groupings PESSACQ et al. 2011; OLESEN et al. 2013, 2016; KAJI et of clam shrimps which he named Laevicaudata and al. 2014; SIGVARDT & OLESEN 2014; ROGERS et al. 2015, Spinicaudata (in which Cyclestheria was included). A 2016). first (but not full) step in abandoning ‘Conchostraca’ was taken by FRYER (1987), who supported further LINDER’s (1945) distinction between two separate groups of clam shrimps (Laevicaudata and Spinicaudata, again without 2. Catalogue structure separating Cyclestheria). Later phylogenetic approaches involving both morphological and molecular data have indeed shown no basis for upholding ‘Conchostraca’ as a The catalog portion follows the format of the recent taxon of branchiopod clam shrimps, but instead that these catalogs on branchiopod (ROGERS 2013) and decapod are better treated taxonomically as three separate groups, crustaceans (e.g., NG et al. 2008; DE GRAVE & FRANSEN Laevicaudata, Spinicaudata, Cyclestherida (OLESEN 2011). Supraspecific taxa are presented in bold. Genera 1998, 2000, 2007; BRABAND et al. 2000; STENDERUP et al. and species are presented alphabetically. Subgenera and 2002; RICHTER et al. 2007). subspecies are presented with the nominate taxon listed Since the first characterization of Laevicaudata first. Synonyms are presented following an equal sign by LINDER (1945) no serious concerns about its valid- (=). Where an important analysis is presented for a syno­ ity or monophyly has been expressed, probably due to nymy, a reference is provided as “fide” the synonymizer. the shared distinct morphology of its members. In the For example: = Lynceus caeca (Joseph, 1882) (attributed few phylogenetic treatments involving molecular data to L. brachyurus, fideB RTEK 1997). Chresonyms are pre- there is always support for the Laevicaudata, but only sented parenthetically after the original author and date, rather few species of Lynceus have been included (e.g., and are referred to as “in the sense of” the redescriber. three in RICHTER et al. 2007), and never any species of For example: Lynceus tatei (Brady, 1886) (sensu TIMMS Paralimnetis or Lynceiopsis. 2013). We present the more obvious of the many synapo- morphies of the Laevicaudata mostly relating to external Acronyms of institutions: AM – Australian Museum, Sydney, morphology of both adults and larvae. We treat some of NSW, Australia; BMNH – British Museum (Natural History), the known variation within Laevicaudata in order to iden- London, United Kingdom; HNHM – Hungarian Natural History tify possible character systems for a future morphology Museum, Budapest, Hungary; LACM – Natural History Museum based laevicaudatan phylogeny. We also will consider the of Los Angeles County, Los Angeles, USA; MACN – Museo morphological origin within the Branchiopoda of some Argentino de Ciencias Naturales, Invertebrate Division Collection; MLPA – Museo de La Plata, Buenos Aires, Argentina; MNHB aspects of the unusual laevicaudatan morphology. – Museum für Naturkunde – Leibniz Institut für Evolutions­ und Biodiversitätsforschung an der Humboldt­Universität zu Berlin; MNHN – Muséum national d’Histoire naturelle, Paris, France; 3.1. Carapace: smooth, globular, true hinge dorsally. NMW – Naturhistorisches Museum, Wien (Vienna); NRS – Several aspects of the bivalved laevicuadatan qualify as Naturhistoriska riksmuseet, Stockholm, Sweden; SAM – Izikio Museum, Cape Town, South Africa; SAMA – South Australia putative separate synapomorphies: (1) It is smooth (Figs. Museum, Adelaide, South Australia, Australia; SNM – Slovenské 1D,E, 2M – O), e.g., without growth lines as those seen in národné múzeum, Bratislava, Slovakia; USNM – US Natural Spinicaudata, Cyclestherida, and some cladocerans (see History Museum, Washington D.C., USA; WAM – Western OLESEN 1998). LINDER (1945) reported on an undescribed Australian Museum, Perth, WA, Australia; YPM – Yale Peabody laevicaudatan
Recommended publications
  • Phylogenetic Analysis of Anostracans (Branchiopoda: Anostraca) Inferred from Nuclear 18S Ribosomal DNA (18S Rdna) Sequences
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 25 (2002) 535–544 www.academicpress.com Phylogenetic analysis of anostracans (Branchiopoda: Anostraca) inferred from nuclear 18S ribosomal DNA (18S rDNA) sequences Peter H.H. Weekers,a,* Gopal Murugan,a,1 Jacques R. Vanfleteren,a Denton Belk,b and Henri J. Dumonta a Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium b Biology Department, Our Lady of the Lake University of San Antonio, San Antonio, TX 78207, USA Received 20 February 2001; received in revised form 18 June 2002 Abstract The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Ta- nymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata (‘‘Family’’ Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae (‘‘Family’’ Linderiellidae), which has 11 pairs of trunk limbs.
    [Show full text]
  • Crustacea: Branchiopoda) from the Island of Olkhon (Lake Baikal, Russia) and the Zoogeography of East Asian Spinicaudata
    Jpn. J. Limnol., 60 : 585-606, 1999 A New Spinicaudatan (Crustacea: Branchiopoda) from the Island of Olkhon (Lake Baikal, Russia) and the Zoogeography of East Asian Spinicaudata Hidetoshi NAGANAWA ABSTRACT A spinicaudatan branchiopod crustacean, Baikalolkhonia tatianae gen. et sp. nov., is described from the Baikal region in Russia. The genus is assigned to the family Cyzicidae STEBBING,1910, based on the absence of a frontal organ on the head, the absence of triangular epipodal laminae on the thoracopods, and the presence of a pair of large frontal spines on the telson. The main distinguishing characteris- tic is that the epipodal upper corners of many anterior thoracopods (including even the first pair) are transformed into "sausage-like organs." Since such epipodal processes have been until now unknown in the Cyzicidae, the diagnosis of the family is emended, and 2 newly defined subfamilies, Baikalolkhoniinae and Cyzicinae, are proposed. Up to the present, 11 species belonging to 7 genera in 4 families of Spinicaudata (Cyclestheriidae, Cyzicidae, Leptestheriidae, and Lim- nadiidae) are known from the neighboring regions of East Asia, includ- ing the Russian Far East, Mongolia, China, Korea, and Japan. The list of species and the key to the species are provided. Their distribution defines 4 zoogeographical provinces, and the species diversity clearly shows a latitudinal gradient in a similar pattern to the European fauna. Key words : Baikalolkhoniinae, Lake Baikal, Spinicaudata, zoo- geography INTRODUCTION The "Large Branchiopods" of the order Spinicaudata of the freshwater fauna of Asia were partly treated by HU (1989). In total, 19 nominal species are known from China (UENO, 1927b, 1940; ZHANG et al., 1976; HU, 1985- 1993 ; SHEN and DAI, 1987 ; SHU et al., 1990), including several synonymic taxa (more details are given below in the section List of East Asian Spinicaudata).
    [Show full text]
  • Updated Status of Anostraca in Pakistan
    Int. J. Biol. Res., 2(1): 1-7, 2014. UPDATED STATUS OF ANOSTRACA IN PAKISTAN Quddusi B. Kazmi1* and Razia Sultana2 1Marine Reference Collection and Resource Center; University of Karachi, Karachi-75270, Pakistan 2Food & Marine Resources Research Center, PCSIR Laboratories Complex Karachi; Karachi-75270, Pakistan *Corresponding author e-mail: [email protected] ABSTRACT Previously, nine species of the order Anostraca have been reported from Pakistan viz, Branchinella hardingi (Qadri and Baqai, 1956), B. spinosa (H. Milne Edwards, 1840) (now Phallocryptus spinosa), Streptocephalus simplex, 1906, S. dichotomus Baird, 1860, S. maliricus Qadri and Baqai, 1956, S. lahorensis Ghauri and Mahoon, 1980, Branchipus schaefferi Fischer, 1834, Chirocephalus priscus Daday, 1910 and Artemia sp. In the present report these Pakistani species are reviewed. Streptocephalus dichotomus collected from Pasni (Mekran), housed in the Smithsonian National Museum of Natural History, USA (cat no. 213712) is inserted herein and another specimen of Streptocephalus sp., from a new locality, collected from Kalat not yet reported, is illustrated and described in this report, thus extending genus range further Northward. The need for further surveys directed towards getting the knowledge necessary in order to correctly understand and manage temporary pools- the elective habitat of large branchiopods is stressed. KEYWORDS: Anostraca, Brianchiopoda, Pakistan, Present status INTRODUCTION Anostraca is one of the four orders of Crustacea in the Class Branchiopoda. It is the most
    [Show full text]
  • Zootaxa 208: 1-12 (2003) ISSN 1175-5326 (Print Edition) ZOOTAXA 208 Copyright © 2003 Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 208: 1-12 (2003) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 208 Copyright © 2003 Magnolia Press ISSN 1175-5334 (online edition) A review of the clam shrimp family Leptestheriidae (Crustacea: Branchiopoda: Spinicaudata) from Venezuela, with descriptions of two new species JOSE VICENTE GARCIA & GUIDO PEREIRA Instituto de Zoología Tropical, Universidad Central de Venezuela, Aptdo. 47058, Caracas 1041-A, Venezuela ([email protected]; [email protected]) Abstract The clam shrimps of the family Leptestheriidae from Venezuela are reviewed. Leptestheria venezu- elica Daday, 1923, and two new species (L. cristata n. sp.andL. brevispina n. sp.) are presented. A redescription of L. venezuelica, descriptions of the new species, and comparisons with other South American species are included. A checklist of world Leptestheriiidae is included. Key words: Crustacea, Conchostraca, taxonomy, clam shrimp, Leptestheria, new species Introduction The clam shrimps are comprised of three orders and five families of large branchiopod crustaceans collectively called conchostracans (see Belk 1996, for terminology, and Mar- tin and Davis 2001, for a discussion of alternate classifications). The group is character- ized by the presence of a bivalve carapace that encloses the entire body, with (Orders Spinicaudata and Cyclestherida) or without (Order Laevicaudata) a variable number of growth lines. Approximately 200 species have been described world-wide in five families: Cyclestheriidae (Cyclestherida), Cyzicidae, Leptestheriidae, Limnadiidae (Spinicaudata), and Lynceidae (Laevicaudata) (Belk 1982, Martin 1992, Martin and Davis 2001). Ameri- can conchostracans are diverse, but there are relatively few studies on these rare and inter- esting species. North American species are better known than South American forms.
    [Show full text]
  • A Revised Identification Guide to the Fairy Shrimps (Crustacea: Anostraca: Anostracina) of Australia
    Museum Victoria Science Reports 19: 1-44 (2015) ISSN 1833-0290 https://doi.org/10.24199/j.mvsr.2015.19 A revised identification guide to the fairy shrimps (Crustacea: Anostraca: Anostracina) of Australia BRIAN V. TIMMS 1,2 1 Honorary Research Associate, Australian Museum, 6-9 College St., Sydney, 2000, NSW. 2 Visiting Professorial Fellow, Centre for Ecosystem Science, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW, 2052. Abstract Timms, B.V. 2015. A revised identification guide to the fairy shrimps (Crustacea: Anostraca: Anostracina) of Australia. Museum Victoria Science Reports 19: 1–44. Following an introduction to the anatomy and ecology of fairy shrimps living in Australian fresh waters, identification keys are provided for males of two species of Australobranchipus, one species of Streptocephalus and 39 f species o Branchinella. o A key t females of the three genera is also provided, though identification to species is not always possible. Keywords Australobranchipus, Branchinella, Streptocephalus, distributions Index (Notostraca, Laevicaudata, Spinicaudata, Cyclestherida (last three o used t be the Conchostraca) and Cladocera) that they Introduction 2 are placed within their own subclass, the Sarsostraca. Classification and Taxonomic Features 2 Anostracans are divided into two suborders: the Artemiina Biology of Fairy Shrimps 5 containing two genera Artemia and Parartemia and which live Collection and Preservation 6 in saline waters and hence are called brine shrimps (Timms, Key to Families 7 2012), and the Anostracina which accommodate the freshwater Family Branchiopodidae 10 fairy shrimps (though some live in saline waters) arranged in Family Streptocephalidae 12 six extant families.
    [Show full text]
  • Factors Affecting the Distribution and Co-Occurrence of Two Southern Californian Anostracans (Branchiopoda), Branchinecta Sandiegonensis and Streptocephalus Woo1toni
    JOURNAL O f' CRUSTAC EA N BIOL OGY . 16(4) : 669 - 677, 1996 FACTORS AFFECTING THE DISTRIBUTION AND CO-OCCURRENCE OF TWO SOUTHERN CALIFORNIAN ANOSTRACANS (BRANCHIOPODA), BRANCHINECTA SANDIEGONENSIS AND STREPTOCEPHALUS WOO1TONI Stacie A. Hathaway and Marie A. Simovicn ABSTRACT We address the role of temp erature and maturation rate in limiting the distribution and co-o c­ currence of 2 ephemeral pool branchiopods, Branchinecta sandiegon ensis and Streptocephalus wool/ani (Anostraca), in southern California. Branchinecta sandiegon ensis occurs in pools of variable depth (fro m < S em to > 30 em) and duration, while Streptocephalus wool/ani is found only in deeper pool s (>30 ern) of longer duration. These 2 species co-occur in a few pools, but their adults are never observed simultaneously. To bett er understand these patt erns, field­ collected cysts of both species wer e hatched at an array of constant and 12-h fluctuating tem ­ peratures. Maturation rates were compared in aquaria at room temperature (-20- 22°C) and by field observation. Both species hatched best at cooler temperatures ( lOOC and fluctuating S­ IYC), but S. WOOl/an i was more eurythermal. Both were inhibited at higher temperatures unless these temperatures were included in a fluctuating regime. After hatching, B. sandiegon ensis did not mature at soc. In laboratory and field observations, B. sandiegonensis matured quickly ( 1­ 2 week s) at moderate temperatures and died before S. WOOl/ani rea ched maturity. These results indi cate that temperature play s a role in re stri cting the distribution of the se species to the coast, where temperatures are favorable.
    [Show full text]
  • Potential Development of Fairy Shrimp Streptocephalus Spp. As Aquaculture Live Feed in Indonesia Indra Pratama, Hatim Albasri, Abinawanto Abinawanto
    Potential development of fairy shrimp Streptocephalus spp. as aquaculture live feed in Indonesia Indra Pratama, Hatim Albasri, Abinawanto Abinawanto To cite this version: Indra Pratama, Hatim Albasri, Abinawanto Abinawanto. Potential development of fairy shrimp Strep- tocephalus spp. as aquaculture live feed in Indonesia. Ecological intensification: A new paragon for sustainable aquaculture, Oct 2019, Bogor, Indonesia. pp.012026, 10.1088/1755-1315/521/1/012026. halshs-02911535 HAL Id: halshs-02911535 https://halshs.archives-ouvertes.fr/halshs-02911535 Submitted on 3 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecological intensification: A new paragon for sustainable aquaculture IOP Publishing IOP Conf. Series: Earth and Environmental Science 521 (2020) 012026 doi:10.1088/1755-1315/521/1/012026 Potential development of fairy shrimp Streptocephalus spp. as aquaculture live feed in Indonesia I Pratama1*, H Albasri1 and Abinawanto2 1Research Center for Fisheries, Agency for Marine and Fisheries Research and Human Resources, Ministry of Marine Affairs and Fisheries, Pasir Putih II Street, Jakarta, 14430, Indonesia 2Department of Biology, University of Indonesia, Gedung E Jalan Lingkar Kampus Raya, Depok, 16424, Indonesia. *Corresponding author: [email protected] Abstract.
    [Show full text]
  • Riverside Fairy Shrimp (Streptocephalus Woottoni)
    Riverside Fairy Shrimp (Streptocephalus woottoni) 5-Year Review: Summary and Evaluation Photograph: C. Brown, USGS U.S. Fish and Wildlife Service Carlsbad Office Carlsbad, California September 2008 1 5-YEAR REVIEW Riverside Fairy Shrimp (Streptocephalus woottoni) I. GENERAL INFORMATION Purpose of 5-Year Reviews: The U.S. Fish and Wildlife Service (Service) is required by section 4(c)(2) of the Endangered Species Act (Act) to conduct a status review of each listed species at least once every 5 years. The purpose of a 5-year review is to evaluate whether or not the species’ status has changed since it was listed (or since the most recent 5-year review). Based on the 5-year review, we recommend whether the species should be removed from the list of endangered and threatened species, be changed in status from endangered to threatened, or be changed in status from threatened to endangered. Our original listing of a species as endangered or threatened is based on the existence of threats attributable to one or more of the five threat factors described in section 4(a)(1) of the Act, and we must consider these same five factors in any subsequent consideration of reclassification or delisting of a species. In the 5-year review, we consider the best available scientific and commercial data on the species, and focus on new information available since the species was listed or last reviewed. If we recommend a change in listing status based on the results of the 5-year review, we must propose to do so through a separate rule-making process defined in the Act that includes public review and comment.
    [Show full text]
  • Crustacea: Branchiopoda: Anostraca
    N. 97 Oct. 12,2002 ~ V) l n Biology and Geology ~ ~ V) Z ~ ~ 0 ~ Minnesota and Wisconsin Fairy Shrimps (Crustacea: U Branchiopoda: Anostraca) ~ •.......• including information on .......l other species of the Midwest o::l :::J By Joan Jass and Barbara Klausmeier Zoology Section ~ ~ Milwaukee Public Museum p.., 800 West Wells Street ~ ~ Milwaukee, WI 53233 Illustrated by Dale A. Chelberg ~ ~ ~ ~ ~ ~ -< Z ~ .......l - 0 Milwaukee Public ~ U MUSEUM Milwaukee Public Museum Contributions in Biology and Geology Paul Mayer, Editor This publication is priced at $6.00 and may be obtained by writing to the Museum Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum, Inc. Wisconsin residents please add 5% sales tax. ISBN 0-89326-210-2 ©2002 Milwaukee Public Museum, Inc. Sponsored by Milwaukee County Abstract Fieldwork in Minnesota and Wisconsin is summarized, providing new distribution information for the fairy shrimps in these states. Each species found in the field surveys is illustrated in a Picture Key. Maps present Minnesota and Wisconsin locality records from specimens in the collections of the Milwaukee Public Museum (MPM) and the Science Museum of Minnesota (SMM). Distribution and natural history information for anostra- cans from other states in the Midwestern region are also included. By far the most common fairy shrimp in Minnesota and Wisconsin is Eubranchipus bundyi. Hatching phenomena and records of predators are discussed.
    [Show full text]
  • Keys to the Australian Clam Shrimps (Crustacea: Branchiopoda: Laevicaudata, Spinicaudata, Cyclestherida)
    Museum Victoria Science Reports 20: 1-25 (2018) ISSN 1833-0290 https://museumsvictoria.com.au/collections-research/journals/museum-victoria-science-reports/ https://doi.org/10.24199/j.mvsr.2018.20 Keys to the Australian clam shrimps (Crustacea: Branchiopoda: Laevicaudata, Spinicaudata, Cyclestherida) Brian V. Timms Honorary Research Associate, Australian Museum, 1 William Street, Sydney 2001; and Centre for Ecosystem Science, School of Biology, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2052 Brian V. Timms. 2018. Keys to the Australian clam shrimps (Crustacea: Branchiopoda: Laevicau- data, Spinicaudata, Cyclestherida). Museum Victoria Science Reports 20: 1-25. Abstract The morphology and systematics of clam shrimps is described followed by a key to genera. Each genus is treated, including diagnostic features, list of species with distributions, and references provided to papers with keys or if these are not available preliminary keys to species within that genus are included. Keywords gnammas, freshwater, crustaceans, morphology Figure 1: Limnadopsis birchii – Worlds largest clam shrimp. Keys to the Australian clam shrimps Introduction Australia has a diverse clam shrimp fauna with about 78 species in nine genera recognised in 2017 (Rogers et al., 2012; Timms, 2012, 2013; Schwentner et al., 2012a,b, 2013a,b, 2015b,a; Timms & Schwentner, 2017; Tippelt & Schwent- ner, 2018) . This is an explosion from 26 species in 2008 (Richter & Timms, 2005; Brendonck et al., 2008) when Australia‘s proportion of the world fauna was about 15%; now it is about 30%. It is anticipated another five species will be described before 2020. There have been two periods of active re- search on Australian clam shrimps, the first Figure 2: Number of known species of Aus- from 1855 to 1927 with a peak around the turn tralian clam shrimps over time.
    [Show full text]
  • Androdioecy and Hermaphroditism in Five Species of Clam Shrimps
    Invertebrate Biology x(x): 1–11. © 2013, The American Microscopical Society, Inc. DOI: 10.1111/ivb.12012 1 2 3 Androdioecy and hermaphroditism in five species of clam shrimps 4 (Crustacea: Branchiopoda: Spinicaudata) from India and Thailand 5 6 Justin S. Brantner,1 Donald W. Ott,1 R. Joel Duff,1 La-orsri Sanoamuang,2 7 3 4 1,a 8 Gulli Palli Simhachalam, K. K. Subhash Babu, and Stephen C. Weeks 9 1 Integrated Bioscience Program, Department of Biology, The University of Akron, 10 Akron, Ohio 44325-3908, USA 11 2 Applied Taxonomic Research Center, Department of Biology, Khon Kaen University, 12 Khon Kaen 40002, Thailand 13 3 Department of Zoology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India 14 4 Department of Marine Sciences, Biochemistry and Microbiology, Cochin University of Science and Technology, 15 Lakeside Campus, Cochin, Kerala, 16, India 16 17 18 Abstract. Crustaceans in the order Spinicaudata display a broad range of reproductive 19 types, ranging from pure hermaphroditism to pure dioecy (separate males and females), and 20 mixes in between. One particularly interesting genus of these “clam shrimps” is Eulimnadia. 21 Based on offspring sex ratios, it has been suggested that all members of the genus are 22 androdioecious: populations consist of mixtures of males and hermaphrodites. However, 23 only two of the ~40 species in this genus have been examined histologically to confirm the 24 presence of ovotestes in the purported hermaphrodites of this group. Here, we report both 25 sex ratio and histological evidence that populations of five additional Eulimnadia species 26 from India and Thailand are indeed mixes of males and hermaphrodites (four species) or 27 hermaphrodite only (one species).
    [Show full text]
  • Fossil Calibrations for the Arthropod Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration.
    [Show full text]