An Overview of Acute Stroke Therapy Past, Present, and Future

Total Page:16

File Type:pdf, Size:1020Kb

An Overview of Acute Stroke Therapy Past, Present, and Future REVIEW ARTICLE An Overview of Acute Stroke Therapy Past, Present, and Future Marc Fisher, MD; Wolf Schaebitz, MD he effort to develop effective therapies for acute ischemic stroke achieved several im- portant successes during the past decade, but also many disappointing failures. The 2 primary successes were related to thrombolysis. The first was the NINDS rt-PA (Na- tional Institute of Neurological Disorders and Stroke Recombinant Tissue-Type Plas- Tminogen Activator) trial reported in 1995. This study demonstrated that initiation of intravenous (IV) rt-PA within 3 hours after the onset of acute ischemic stroke significantly improved outcome at 3 months.1 This study led to the approval of rt-PA initiated within 3 hours of stroke onset as the only currently available acute stroke therapy. The second major success was the demonstration that intra-arterial prourokinase initiated within 6 hours of stroke onset in patients with angio- graphically documented proximal middle cerebral artery (MCA) occlusion also improved out- come at 3 months.2 A third marginally positive acute stroke trial used ancrod, a defibrinogenating agent derived from Malaysian pit vipers.3 Ancrod initiated within 3 hours after stroke onset also improved 3-month outcome but to a lesser degree than either rt-PA initiated within 3 hours or prourokinase initiated within 6 hours. These successful acute stroke therapy trials were out- weighed by a large number of neuroprotective trial failures. Currently, not one of many purported neuroprotective therapies assessed in pivotal clinical trials has demonstrated unequivocal, statis- tically significant improvement in clinical outcome.4 The neuroprotective trials all included pa- tients who presented with a stroke 3 hours after onset, and the therapies used for each patient failed for myriad reasons that will be explored in detail. In this overview of the current status and terventions, a treatment strategy likely to future direction of acute stroke therapy, we lead to maximal improvement in the great- will discuss in detail the current situation est number of stroke patients. of thrombolytic therapy for acute ische- mic stroke, reviewing the results of pub- THROMBOLYTIC THERAPY FOR lished clinical trials, postmarketing expe- ACUTE ISCHEMIC STROKE rience with rt-PA given within the 3-hour window, and future directions of how to po- The NINDS rt-PA trial was the first acute tentially expand this window for IV throm- ischemic stroke trial to unequivocally dem- bolytic therapy. The status of various neu- onstrate that this disorder could be ben- roprotective therapies for acute ischemic efited by any therapeutic intervention.1 In stroke will be reviewed and potential new this trial, 624 carefully selected patients neuroprotective strategies previewed. were randomly and blindly assigned to Last, we attempt to envision likely ap- therapy with rt-PA (0.9 mg/kg) or pla- proaches toward multiple therapeutic in- cebo within 3 hours of stroke onset. Half of the patients were treated within 90 min- From the Departments of Neurology, University of Massachusetts Medical School, utes of onset, an accomplishment by the Worcester (Dr Fisher), and University of Heidelberg, Heidelberg, Germany investigators participating in the trial. The (Dr Schaebitz). Dr Fisher serves as a paid consultant to Bristol-Myers Squibb. patients treated with rt-PA had an abso- (REPRINTED) ARCH INTERN MED/ VOL 160, NOV 27, 2000 WWW.ARCHINTERNMED.COM 3196 ©2000 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/04/2021 Postmarketing Studies of Intravenous rt-PA Studies Compared With the NINDS Trial* NINDS Trial Modified Rankin Median Age, y, Median Time Score 0-1 at Symptomatic Study Patients, No. NIHSS Mean ± SD to Treat, min 90 Days, % Mortality, % ICH, % NINDS, placebo1 165 15 66 ± 13 90 26 21 1 NINDS, rt-PA (part 2)1 168 14 69 ± 12 90 39 17 7 Chiu et al7 30 14 ± 8 66 ± 15 157 30 23 7 Egan et al8 33 17 NA 157 36 18 9 Tanne et al9 75 NA 66 ± 15 NA 34 (At discharge) 11 3 Wang et al10 14 15.4 ± 2 (15-88) NA 57 7 7 Grond et al11 100 12 63 ± 11 124 40 12 5 Albers et al12 296 13 68 ± 13 165 35 (Day 30) 12 4 *rt-PA indicates recombinant tissue-type plasminogen activator; NINDS, National Institute of Neurological Disease and Stroke; NIHSS, National Institutes of Health Stroke Scale Score; ICH, intracerebral hemorrhage; and NA, not available. lute improvement rate of 11% to 13% this time point may not be of proven study, the median baseline NIHSSs at 90 days when compared with the efficacy. were 12 and 13, while in the NINDS placebo patients on various out- Several postmarketing studies of trial the median baseline NIHSS in the come measures that evaluated both IV rt-PA are now available.7-15 Pa- placebo group was 14 in part 1 and neurologic and functional status. tients were included in these stud- 15 in part 2. In other acute stroke tri- The patients treated with rt-PA had ies using the general guidelines for als where the baseline NIHSS was 11, a symptomatic intracerebral hem- treatment used in the NINDS trial. the percentage of patients achieving orrhage rate of 6.4% (almost half the The most important inclusion crite- a Rankin score of 0-1 approximates patients died) within 36 hours of on- rion was initiation of therapy within 37%13 and when the baseline NIHSS set, while the rate was only 0.6% in 3 hours of stroke onset. Most of the was 13, 29% achieved this out- the placebo group. Despite this early studies encompassed relatively small come.14 Comparing the outcomes in hemorrhagic risk, the 90-day mor- numbers of patients, ranging from 14 the study by Grond and colleagues tality rate was 17% in the rt-PA to 75 (Table). However, several and the STARS study with those of a group and 21% in the placebo group. larger studies are available, includ- placebo group that had a similar de- Subsequent analysis of the study data ing the study reported by Grond and gree of baseline severity demon- demonstrated that early computed colleagues11 of 100 patients and the strates an absolute improvement rate tomographic (CT) demonstration of STARS (Standard Treatment With of 3% to 6%, not the approximately extensive edema or hypodensity, his- Activase to Reverse Stroke) study of 12% absolute rate of improvement tory of diabetes mellitus, and el- 296 patients.12 The median time from observed with rt-PA treatment in the evated baseline National Institutes stroke onset to initiation of rt-PA NINDS trial. The postmarketing stud- of Health Stroke Scale Score (NIHSS) therapy ranged from 124 minutes in ies do, however, provide some en- were predictors of poor outcome.5 the study by Grond and colleagues couraging data about the rate of The use of rt-PA was associated with to 165 minutes in the STARS study. symptomatic intracerebral hemor- improved outcome in all stroke sub- The percentage of patients achiev- rhage. The percentage of patients ex- types included in the study, in pa- ing a modified Rankin score of 0-1, periencing this serious complica- tients across the broad range of base- the results defined as a favorable out- tion of thrombolysis ranged from 0% line stroke severity, and in all age come in the NINDS trial, ranged to 19% with only 2 studies observ- groups. The initial analysis of the from 34% to 57%; although, in sev- ing double-digit rates of intracere- study data did not distinguish a dif- eral of the reports, day 90 data were bral hemorrhage. In the 2 largest ference in benefit of rt-PA related to not provided. studies, the intracerebral hemor- time-of-treatment initiation. How- On the surface, the rates of rhage rates were only 4% to 5%. It ever, in a subsequent analysis that favorable functional outcome dem- therefore appears that expanding IV adjusted for baseline severity of the onstrated in these postmarketing rt-PA use into general practice is not neurologic impairment, an earlier studies appear to be quite good, sur- associated with a substantially in- time to initiation of therapy was as- passing in some studies the 39% 0-1 creased risk of intracerebral hemor- sociated with a more favorable out- Rankin rate at 90 days seen in the rhage, if the guidelines for patient se- come, demonstrating an inverse lin- NINDS trial. These results must be lection used in the NINDS trial are ear relationship between time to treat interpreted cautiously because the followed. and the odds ratio of a favorable out- baseline severity of the patients Studies evaluating the efficacy of come.6 The confidence interval for treated in these postmarketing stud- IV rt-PA beyond the 3-hour time win- a favorable outcome crossed 1 in pa- ies were not as severe as in the NINDS dow were conducted. The first clini- tients treated beyond 2 hours 40 trial. For example, in the 2 largest cal trial to evaluate IV rt-PA up to 6 minutes after stroke onset, suggest- postmarketing studies, the study by hours after stroke onset was the Eu- ing that treatment initiated beyond Grond and colleagues and the STARS ropean Cooperative Acute Stroke (REPRINTED) ARCH INTERN MED/ VOL 160, NOV 27, 2000 WWW.ARCHINTERNMED.COM 3197 ©2000 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/04/2021 Study (ECASS-1).14 Patients were ran- One other large IV rt-PA study, the fully selected patients and should ini- domly and blindly assigned to rt-PA Alteplase Thrombolysis for Acute tiate additional attempts to success- (1.1 mg/kg) or placebo within the Non-Interventional Therapy in Is- fully expand the time window for IV 6-hour period after acute stroke on- chemic Stroke (ATLANTIS), evalu- thrombolysis in acute ischemic set in the MCA territory.
Recommended publications
  • Nitrate Prodrugs Able to Release Nitric Oxide in a Controlled and Selective
    Europäisches Patentamt *EP001336602A1* (19) European Patent Office Office européen des brevets (11) EP 1 336 602 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C07C 205/00, A61K 31/00 20.08.2003 Bulletin 2003/34 (21) Application number: 02425075.5 (22) Date of filing: 13.02.2002 (84) Designated Contracting States: (71) Applicant: Scaramuzzino, Giovanni AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU 20052 Monza (Milano) (IT) MC NL PT SE TR Designated Extension States: (72) Inventor: Scaramuzzino, Giovanni AL LT LV MK RO SI 20052 Monza (Milano) (IT) (54) Nitrate prodrugs able to release nitric oxide in a controlled and selective way and their use for prevention and treatment of inflammatory, ischemic and proliferative diseases (57) New pharmaceutical compounds of general effects and for this reason they are useful for the prep- formula (I): F-(X)q where q is an integer from 1 to 5, pref- aration of medicines for prevention and treatment of in- erably 1; -F is chosen among drugs described in the text, flammatory, ischemic, degenerative and proliferative -X is chosen among 4 groups -M, -T, -V and -Y as de- diseases of musculoskeletal, tegumental, respiratory, scribed in the text. gastrointestinal, genito-urinary and central nervous sys- The compounds of general formula (I) are nitrate tems. prodrugs which can release nitric oxide in vivo in a con- trolled and selective way and without hypotensive side EP 1 336 602 A1 Printed by Jouve, 75001 PARIS (FR) EP 1 336 602 A1 Description [0001] The present invention relates to new nitrate prodrugs which can release nitric oxide in vivo in a controlled and selective way and without the side effects typical of nitrate vasodilators drugs.
    [Show full text]
  • Profil D'effets Indésirables Des Antagonistes R-NMDA
    Profil d’effets indésirables des antagonistes R-NMDA : analyse de clusters des signaux de disproportionnalité extraits de Vigibase® Nhan-Taï Pierre Ly To cite this version: Nhan-Taï Pierre Ly. Profil d’effets indésirables des antagonistes R-NMDA : analyse de clusters des signaux de disproportionnalité extraits de Vigibase®. Sciences pharmaceutiques. 2019. dumas- 03039996 HAL Id: dumas-03039996 https://dumas.ccsd.cnrs.fr/dumas-03039996 Submitted on 4 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il n’a pas été réévalué depuis la date de soutenance. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D’autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact au SID de Grenoble : [email protected] LIENS LIENS Code
    [Show full text]
  • Interactions Between Nitrous Oxide and Tissue Plasminogen Activator in a Rat Model of Thromboembolic Stroke
    Interactions between Nitrous Oxide and Tissue Plasminogen Activator in a Rat Model of Thromboembolic Stroke Benoît Haelewyn, Ph.D.,* He´le` ne N. David, Ph.D.,† Nathalie Colloc’h, Ph.D., D.Sc.,‡ Denis G. Colomb, Jr., Ph.D.,§ Jean-Jacques Risso, Ph.D., D.Sc.,ʈ Jacques H. Abraini, Ph.D., D.Sc., Psy.D.# Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/115/5/1044/452771/0000542-201111000-00027.pdf by guest on 25 September 2021 ABSTRACT What We Already Know about This Topic • Whether nitrous oxide, like xenon, reduces of ischemic brain Background: Preclinical evidence in rodents has suggested damage in the setting of thrombolysis for thromboembolic that inert gases, such as xenon or nitrous oxide, may be prom- stroke is unknown. ising neuroprotective agents for treating acute ischemic stroke. This has led to many thinking that clinical trials could be initiated in the near future. However, a recent study has What This Article Tells Us That Is New shown that xenon interacts with tissue-type plasminogen ac- • In rats, when administrated during the ischemic period, nitrous tivator (tPA), a well-recognized approved therapy of acute oxide dose-dependently inhibited tPa-induced thrombolysis and subsequent reduction of ischemic brain damage. How- * Research Engineer and Head, Universite´ de Caen - Basse Nor- ever, in contrast to xenon, postischemic nitrous oxide in- mandie, Centre Universitaire de Ressources Biologiques, Caen, France. creased brain hemorrhage and barrier dysfunction. † Research Scientist, Universite´ Laval, Centre Hospitalier Universitaire Affilie´Hoˆtel-Dieu Le´vis, Le´vis, Que´bec, Canada; Universite´ Laval, Cen- tre de Recherche Universite´ Laval Robert-Giffard, Que´bec, Que´bec, Canada.
    [Show full text]
  • From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J
    REVIEW The Neuropsychopharmacology of Phencyclidine: From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J. David Jentsch, Ph.D., and Robert H. Roth, Ph.D. Administration of noncompetitive NMDA/glutamate effects of these drugs are discussed, especially with regard to receptor antagonists, such as phencyclidine (PCP) and differing profiles following single-dose and long-term ketamine, to humans induces a broad range of exposure. The neurochemical effects of NMDA receptor schizophrenic-like symptomatology, findings that have antagonist administration are argued to support a contributed to a hypoglutamatergic hypothesis of neurobiological hypothesis of schizophrenia, which includes schizophrenia. Moreover, a history of experimental pathophysiology within several neurotransmitter systems, investigations of the effects of these drugs in animals manifested in behavioral pathology. Future directions for suggests that NMDA receptor antagonists may model some the application of NMDA receptor antagonist models of behavioral symptoms of schizophrenia in nonhuman schizophrenia to preclinical and pathophysiological research subjects. In this review, the usefulness of PCP are offered. [Neuropsychopharmacology 20:201–225, administration as a potential animal model of schizophrenia 1999] © 1999 American College of is considered. To support the contention that NMDA Neuropsychopharmacology. Published by Elsevier receptor antagonist administration represents a viable Science Inc. model of schizophrenia, the behavioral and neurobiological KEY WORDS: Ketamine; Phencyclidine; Psychotomimetic; widely from the administration of purportedly psychot- Memory; Catecholamine; Schizophrenia; Prefrontal cortex; omimetic drugs (Snyder 1988; Javitt and Zukin 1991; Cognition; Dopamine; Glutamate Jentsch et al. 1998a), to perinatal insults (Lipska et al. Biological psychiatric research has seen the develop- 1993; El-Khodor and Boksa 1997; Moore and Grace ment of many putative animal models of schizophrenia.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,902,815 Olney Et Al
    USOO5902815A United States Patent (19) 11 Patent Number: 5,902,815 Olney et al. (45) Date of Patent: May 11, 1999 54 USE OF 5HT2A SEROTONIN AGONISTS TO Hougaku, H. et al., “Therapeutic effect of lisuride maleate on PREVENT ADVERSE EFFECTS OF NMDA post-stroke depression” Nippon Ronen Igakkai ZaSShi 31: RECEPTOR HYPOFUNCTION 52-9 (1994) (abstract). Kehne, J.H. et al., “Preclinical Characterization of the Poten 75 Inventors: John W. Olney, Ladue; Nuri B. tial of the Putative Atypical Antipsychotic MDL 100,907 as Farber, University City, both of Mo. a Potent 5-HT2A Antagonist with a Favorable CNS Saftey Profile.” The Journal of Pharmacology and Experimental 73 Assignee: Washington University, St. Louis, Mo. Therapuetics 277: 968–981 (1996). Maurel-Remy, S. et al., “Blockade of phencyclidine-induced 21 Appl. No.: 08/709,222 hyperlocomotion by clozapine and MDL 100,907 in rats reflects antagonism of 5-HT2A receptors' European Jour 22 Filed: Sep. 3, 1996 nal of Pharmacology 280: R9–R11 (1995). 51) Int. Cl. ........................ A61K 31/445; A61K 31/54; Olney, J.W., et al., “NMDAantagonist neurotoxicity: Mecha A61K 31/135 nism and prevention,” Science 254: 1515–1518 (1991). 52 U.S. Cl. .......................... 514/285; 514/315; 514/318; Olney, J.W., et al., “Glutamate receptor dysfunction and 514/646 schizophrenia.” Arch. Gen. Psychiatry 52:998-1007 (1995). 58 Field of Search ............................. 514/285; 314/315, Pulvirenti, L. et al., “Dopamine receptor agonists, partial 314/318, 646 agonists and psychostimulant addiction' Trends Pharmacol Sci 15: 374-9 (1994). 56) References Cited Robles, R.G. et al., “Natriuretic Effects of Dopamine Agonist Drugs in Models of Reduced Renal Mass” Journal of U.S.
    [Show full text]
  • A Radical Approach to Stroke Therapy
    Commentary A radical approach to stroke therapy James McCulloch* and Deborah Dewar Wellcome Surgical Institute and Hugh Fraser Neuroscience Laboratories, University of Glasgow, Glasgow G61 1QH, United Kingdom troke is a major cause of death and readily crosses the blood–brain barrier, (mitogen-activated protein kinases͞ Sdisability throughout the developed to augment endogenous brain ascorbic ERK1͞2). During ischemia, ERK1͞2 are world. Cerebrovascular disease ranks acid levels by up to 2 mM. However, in dephosphorylated, and there is a signif- third after cancer and heart disease as a the brain, ascorbic acid levels are heter- icant increase in ERK1͞2 phosphoryla- cause of death in the European Union ogeneous and highly compartmental- tion during reperfusion after forebrain and the U.S. The economic and social ized. In the rat, normal neuronal, glial, ischemia. Neurons and oligodendrocytes burdens of stroke are not consequences and cerebrospinal fluid levels of ascorbic at the margin of a focal ischemic lesion of mortality; they are imposed by the acid are Ϸ10 mM, 1 mM, and 0.5 mM, display increased MEK1͞2, indicating large majority of stroke patients who respectively (3). The antioxidant effects that this signaling pathway is activated survive but are physically and mentally of ascorbic acid at all of these sites within after ischemia and reperfusion in vivo disabled by stroke-induced brain dam- the brain could contribute to the efficacy (8). If MEK1͞2 is inhibited by the novel age. In the U.S., less than 2% of stroke of this agent in ischemia. Brain ascorbic agent, U0126, the extent of brain damage patients benefit from access to early acid levels are highly dynamic (although is reduced after either forebrain or focal thrombolysis, which removes the primary under rigorous homeostatic control), ischemia (2).
    [Show full text]
  • Cardiac Glycosides Provide Neuroprotection Against Ischemic Stroke: Discovery by a Brain Slice-Based Compound Screening Platform
    Cardiac glycosides provide neuroprotection against ischemic stroke: Discovery by a brain slice-based compound screening platform James K. T. Wang*†, Stuart Portbury*‡, Mary Beth Thomas*§, Shawn Barney*, Daniel J. Ricca*, Dexter L. Morris*¶, David S. Warnerʈ, and Donald C. Lo*,**†† *Cogent Neuroscience, Inc., Durham, NC 27704; ʈMultidisciplinary Neuroprotection Laboratories and Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710; and **Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC 27704 Edited by Charles F. Stevens, The Salk Institute for Biological Studies, La Jolla, CA, and approved May 17, 2006 (received for review February 3, 2006) We report here the results of a chemical genetic screen using small intrinsically problematic for a number of reasons, including inher- molecules with known pharmacologies coupled with a cortical ent limitations on therapeutic time window and clinically limiting brain slice-based model for ischemic stroke. We identified a small- side-effect profiles. Consequently, much attention has been focused molecule compound not previously appreciated to have neuropro- in recent years on using genomic, proteomic, and other systems tective action in ischemic stroke, the cardiac glycoside neriifolin, biology approaches in identifying new drug target candidates for and demonstrated that its properties in the brain slice assay stroke drug intervention (see review in ref. 5). included delayed therapeutic potential exceeding 6 h. Neriifolin is In this context we developed a tissue-based, high-content assay structurally related to the digitalis class of cardiac glycosides, and model for ischemic stroke based on biolistic transfection of visual ؉ ؉ its putative target is the Na ͞K -ATPase.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Neu2000, an NR2B-Selective, Moderate NMDA Receptor
    Drug News & Perspectives 2010, 23(9): 549-556 THOMSON REUTERS LOOKING AHEAD Targeting both NMDA receptors and free NEU2000, AN NR2B-SELECTIVE, radicals may provide MODERATE NMDA RECEPTOR enhanced ANTAGONIST AND POTENT SPIN neuroprotection against TRAPPING MOLECULE FOR hypoxic-ischemic injury. STROKE confer substantial neuroprotection in ani- by Sung Ig Cho, Ui Jin Park, mal models of stroke have failed to show SUMMARY Jun-Mo Chung and Byoung Joo Gwag beneficial effects in clinical trials for stroke. Excess activation of ionotropic gluta- Free radicals mediate an additional route of mate receptors, primarily N-methyl-D- Stroke is a cerebrovascular injury caused by neuronal cell death after ischemia and aspartate (NMDA) receptors and free the interruption of blood flow to the brain reperfusion. Several antioxidants have radicals, evoke nerve cell death follow- due to thrombosis, embolic particles or advanced to clinical trials including edar- ing hypoxic-ischemic brain injury in var- blood vessel bursts. Stroke is the leading avone, a hydroxyl radical scavenger that has ious animal models. However, clinical cause of serious, long-term disability in shown beneficial effects in patients with trials in stroke patients using NMDA adults and the second leading cause of transient ischemia and which was approved receptor antagonists have failed to death in the U.S. and Europe (1). Rates of as a neuroprotective drug in Japan and show efficacy primarily due to the limit- stroke mortality and burden are more China. ed therapeutic time window for neuro- affected in low-income countries including protection and a narrow therapeutic NMDA receptor antagonists and antioxi- eastern Europe, northern Asia and central index.
    [Show full text]
  • NIDA Drug Supply Program Catalog, 25Th Edition
    RESEARCH RESOURCES DRUG SUPPLY PROGRAM CATALOG 25TH EDITION MAY 2016 CHEMISTRY AND PHARMACEUTICS BRANCH DIVISION OF THERAPEUTICS AND MEDICAL CONSEQUENCES NATIONAL INSTITUTE ON DRUG ABUSE NATIONAL INSTITUTES OF HEALTH DEPARTMENT OF HEALTH AND HUMAN SERVICES 6001 EXECUTIVE BOULEVARD ROCKVILLE, MARYLAND 20852 160524 On the cover: CPK rendering of nalfurafine. TABLE OF CONTENTS A. Introduction ................................................................................................1 B. NIDA Drug Supply Program (DSP) Ordering Guidelines ..........................3 C. Drug Request Checklist .............................................................................8 D. Sample DEA Order Form 222 ....................................................................9 E. Supply & Analysis of Standard Solutions of Δ9-THC ..............................10 F. Alternate Sources for Peptides ...............................................................11 G. Instructions for Analytical Services .........................................................12 H. X-Ray Diffraction Analysis of Compounds .............................................13 I. Nicotine Research Cigarettes Drug Supply Program .............................16 J. Ordering Guidelines for Nicotine Research Cigarettes (NRCs)..............18 K. Ordering Guidelines for Marijuana and Marijuana Cigarettes ................21 L. Important Addresses, Telephone & Fax Numbers ..................................24 M. Available Drugs, Compounds, and Dosage Forms ..............................25
    [Show full text]
  • Marrakesh Agreement Establishing the World Trade Organization
    No. 31874 Multilateral Marrakesh Agreement establishing the World Trade Organ ization (with final act, annexes and protocol). Concluded at Marrakesh on 15 April 1994 Authentic texts: English, French and Spanish. Registered by the Director-General of the World Trade Organization, acting on behalf of the Parties, on 1 June 1995. Multilat ral Accord de Marrakech instituant l©Organisation mondiale du commerce (avec acte final, annexes et protocole). Conclu Marrakech le 15 avril 1994 Textes authentiques : anglais, français et espagnol. Enregistré par le Directeur général de l'Organisation mondiale du com merce, agissant au nom des Parties, le 1er juin 1995. Vol. 1867, 1-31874 4_________United Nations — Treaty Series • Nations Unies — Recueil des Traités 1995 Table of contents Table des matières Indice [Volume 1867] FINAL ACT EMBODYING THE RESULTS OF THE URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS ACTE FINAL REPRENANT LES RESULTATS DES NEGOCIATIONS COMMERCIALES MULTILATERALES DU CYCLE D©URUGUAY ACTA FINAL EN QUE SE INCORPOR N LOS RESULTADOS DE LA RONDA URUGUAY DE NEGOCIACIONES COMERCIALES MULTILATERALES SIGNATURES - SIGNATURES - FIRMAS MINISTERIAL DECISIONS, DECLARATIONS AND UNDERSTANDING DECISIONS, DECLARATIONS ET MEMORANDUM D©ACCORD MINISTERIELS DECISIONES, DECLARACIONES Y ENTEND MIENTO MINISTERIALES MARRAKESH AGREEMENT ESTABLISHING THE WORLD TRADE ORGANIZATION ACCORD DE MARRAKECH INSTITUANT L©ORGANISATION MONDIALE DU COMMERCE ACUERDO DE MARRAKECH POR EL QUE SE ESTABLECE LA ORGANIZACI N MUND1AL DEL COMERCIO ANNEX 1 ANNEXE 1 ANEXO 1 ANNEX
    [Show full text]
  • Understanding History, and Not Repeating It. Neuroprotection For
    Clinical Neurology and Neurosurgery 129 (2015) 1–9 Contents lists available at ScienceDirect Clinical Neurology and Neurosurgery jo urnal homepage: www.elsevier.com/locate/clineuro Review Understanding history, and not repeating it. Neuroprotection for acute ischemic stroke: From review to preview a a b b,c a,b,c,d,∗ Stephen Grupke , Jason Hall , Michael Dobbs , Gregory J. Bix , Justin F. Fraser a Department of Neurosurgery, University of Kentucky, Lexington, USA b Department of Neurology, University of Kentucky, Lexington, USA c Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA d Department of Radiology, University of Kentucky, Lexington, USA a r t i c l e i n f o a b s t r a c t Article history: Background: Neuroprotection for ischemic stroke is a growing field, built upon the elucidation of the Received 17 April 2014 biochemical pathways of ischemia first studied in the 1970s. Beginning in the early 1990s, means by Received in revised form 7 November 2014 which to pharmacologically intervene and counteract these pathways have been sought, though with Accepted 13 November 2014 little clinical success. Through a comprehensive review of translations from laboratory to clinic, we aim Available online 3 December 2014 to evaluate individual mechanisms of action, while highlighting potential barriers to success that will guide future research. Keywords: Methods: The MEDLINE database and The Internet Stroke Center clinical trials registry were queried Acute stroke Angiography for trials involving the use of neuroprotective agents in acute ischemic stroke in human subjects. For the purpose of the review, neuroprotective agents refer to medications used to preserve or protect the Brain ischemia Drug trials potentially ischemic tissue after an acute stroke, excluding treatments designed to re-establish perfusion.
    [Show full text]