Computational Statistics & Data Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Computational Statistics & Data Analysis COMPUTATIONAL STATISTICS & DATA ANALYSIS AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.2 • Impact Factor p.2 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.7 ISSN: 0167-9473 DESCRIPTION . Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. Statistical methodology includes, but not limited to: bootstrapping, classification techniques, clinical trials, data exploration, density estimation, design of experiments, pattern recognition/image analysis, parametric and nonparametric methods, statistical genetics, Bayesian modeling, outlier detection, robust procedures, cross-validation, functional data, fuzzy statistical analysis, mixture models, model selection and assessment, nonlinear models, partial least squares, latent variable models, structural equation models, supervised learning, signal extraction and filtering, time-series modelling, longitudinal analysis, multilevel analysis and quality control. III) Special Applications - Manuscripts at the interface of statistics and computing (e.g., comparison of statistical methodologies, computer-assisted instruction for statistics, simulation experiments). Advanced statistical analysis with real applications (social sciences, marketing, psychometrics, chemometrics, signal processing, medical statistics, environmentrics, statistical physics). AUTHOR INFORMATION PACK 23 Sep 2021 www.elsevier.com/locate/csda 1 IV) Annals of Statistical Data Science - The manuscripts concern with well-founded theoretical and applied data-driven research, with a significant computational or statistical methodological component for data analytics. Emphasis is given to comprehensive and reproducible research, including data- driven methodology, algorithms and software. AUDIENCE . Statisticians (university, government, business, industry), Statistical Software users. IMPACT FACTOR . 2020: 1.681 © Clarivate Analytics Journal Citation Reports 2021 ABSTRACTING AND INDEXING . ACM Computing Reviews Engineering Index Current Index to Statistics Mathematical Reviews Statistical Theory and Method Abstracts INSPEC QCAS OR/MS CompuMath Citation Index Research Alert Science Citation Index Expanded Zentralblatt MATH Science Citation Index Scopus EDITORIAL BOARD . Co-Editors Ana Maria Colubi, University of Giessen, 35390, Gießen, Germany Erricos Kontoghiorghes, Birkbeck University of London, WC1E 7HX, London, United Kingdom and Cyprus University of Technology, Malet Street, 3036, Lemesos, Cyprus Byeong Park, Seoul National University Department of Statistics, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea Advisory Board Peter Bühlmann, ETH Zurich, Zurich, Switzerland Statistics, machine learning, computational biology Manfred Gilli, University of Geneva, Geneva, Switzerland Numerical Methods with Applications to Statistics and Econometric; Algorithms for Statistical Model Selection Techniques; Heuristic Optimization Methods in Statistics; and High Performance Computing Jae Chang Lee, Korea University Department of Statistics, Seongbuk-gu, South Korea Nonparametric change point problems, multivariate categorical analysis, data matching and classification tree methods Joyce Niland, City of Hope, Duarte, California, United States of America (Managing Co-Editor - IASC News) Stephen Pollock, Queen Mary University of London, London, United Kingdom Statistical analysis in the frequency domain, filtering methods, wavelets, econometric methods, time series analysis, functional analysis Jane-Ling Wang, University of California Davis, Davis, California, United States of America Dimension reduction methods, Functional data analysis, Longitudinal data analysis, Survival analysis, Joint modeling of survival/longitudinal data and neuroimaging data AUTHOR INFORMATION PACK 23 Sep 2021 www.elsevier.com/locate/csda 2 Associate Editors Julyan Arbel, Inria Research Centre Grenoble Rhône-Alpes, Montbonnot St Martin, France Bayesian Statistics and Machine Learning with applications Andreas Artemiou, Cardiff University School of Mathematics, Dimension Reduction, High-dimensional Statistics, Kernel methods, Machine Learning, Regression, Classification, , , , Eric Beutner, VU Amsterdam, Amsterdam, Netherlands Dependent data, Differentiability in statistics, Empirical processes, Non- and semi-parametric methods in reliability/survival analysis, Statistical functionals Enea Bongiorno, University of Eastern Piedmont, Vercelli, Italy Small Ball Probability, Functional Statistics, High dimensional data Antonio Canale, University of Padua, Padova, Italy Bayesian computation, Bayesian inference, Bayesian nonparametrics, mixture models, skew distributions Eva Cantoni, University of Geneva, Geneva, Switzerland Robust statistics, generalized linear and additive (mixed) models, zero-inflated and zero-altered models, variable / model selection Miguel de Carvalho, The University of Edinburgh, Edinburgh, United Kingdom Bayesian nonparametrics; Biometrics and medical statistics; Data science and statistical learning; Statistics of extremes; Visualization and graphical methods Stefano Castruccio, University of Notre Dame, Notre Dame, Indiana, United States of America Spatio-temporal statistics, environmental statistics, global models, spectral methods, time series, climate model emulation Shih-Kang Chao, University of Missouri, Columbia, Missouri, United States of America Statistical Procedures for big data, quantile regression, high-dimensional model inference, statistical inference for weakly dependent data (with high dimensionality) Ray-bin Chen, National Cheng Kung University, Tainan, Taiwan Experimental design, computer experiment, machine learning, Bayesian variable selection Taeryon Choi, Korea University Department of Statistics, Seongbuk-gu, South Korea Bayesian methods, Bayesian hierarchical models, Bayesian model selection, Bayesian nonparametric inference, Non/Semiparametric regression models Bertrand Clarke, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America Data mining and machine learning, prediction,statistical techniques for complex or high-dimensional data, model bias and uncertainty Radu Craiu, University of Toronto, Toronto, Ontario, Canada Bayesian inference, Copula modelling, Markov chain Monte Carlo, Model choice, Statistical Genetics Christophe Croux, EDHEC Business School, Roubaix, France Data science in business and economics, Time series analysis, Outlier Detection Fabrizio Durante, University of Salento, Lecce, Italy Dependence Models, Copulas, Multivariate Analysis Takeshi Emura, Kurume University, Kurume, Japan Copulas, Cox regression, Dependent censoring/truncation, Double-truncation, Dynamic prediction, Meta-analysis, Multivariate survival analysis, High-dimensional data analysis, Joint models, Survival prediction Maria Brigida Ferraro, University of Rome La Sapienza, Roma, Italy Clustering and Classification, Imprecise Data, Bootstrap Frédéric Ferraty, Paul Sabatier University, Toulouse, France Functional data analysis, high dimensional data, non/semi-parametric modelling, model selection, theory and practice Cristian Gatu, Alexandru Ioan Cuza University, Iasi, Romania Algorithms for model selection, Combinatorial Algorithms, Parallel Computing Armelle Guillou, University of Strasbourg, Strasbourg, France Bootstrap methods, extreme value, censoring Michele Guindani, University of California Irvine, Irvine, California, United States of America Bayesian Analysis, Bayesian Nonparametrics, Biostatistics, Statistical decision making, multiple hypotheses testing Xuming He, University of Michigan, Ann Arbor, Michigan, United States of America Robust statistics, quantile regression, subgroup analysis, model selection Daniel Henderson, Newcastle University, Newcastle Upon Tyne, United Kingdom Bayesian inference and computation, Rank ordered data, Mixture models, computer models, Model selection, General applications including sports analytics
Recommended publications
  • BIOGRAPHICAL SKETCH Garrett M. Fitzmaurice Associate Professor Of
    Principal Investigator/Program Director (Last, First, Middle): BIOGRAPHICAL SKETCH Provide the following information for the key personnel and other significant contributors in the order listed on Form Page 2. Follow this format for each person. DO NOT EXCEED FOUR PAGES. NAME POSITION TITLE Garrett M. Fitzmaurice Associate Professor of Biostatistics eRA COMMONS USER NAME EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.) DEGREE INSTITUTION AND LOCATION YEAR(s) FIELD OF STUDY (if applicable) National University of Ireland BA, MA 1983, 1987 Psychology University of London MSc 1986 Quantitative Methods Harvard University ScD 1993 Biostatistics Professional Experience: 1986-1989 Statistician, Department of Psychology, New York University 1989-1990 Teaching Assistant, Department of Biostatistics, Harvard School of Public Health 1990-1993 Teaching Fellow in Biostatistics, Department of Biostatistics, Harvard SPH 1993-1994 Post-doctoral Research Fellow, Department of Biostatistics, Harvard SPH 1994-1997 Research Fellow, Nuffield College, Oxford University, United Kingdom 1997-1999 Assistant Professor of Biostatistics, Harvard School of Public Health 1999-present Associate Professor of Biostatistics, Harvard School of Public Health 2004-present Associate Professor of Medicine (Biostatistics), Harvard Medical School 2004-present Biostatistician, Division of General Medicine, Brigham and Women’s Hospital, Boston 2006-present Foreign Adjunct Professor of Biostatistics,
    [Show full text]
  • TUTORIAL in BIOSTATISTICS: the Self-Controlled Case Series Method
    STATISTICS IN MEDICINE Statist. Med. 2005; 0:1–31 Prepared using simauth.cls [Version: 2002/09/18 v1.11] TUTORIAL IN BIOSTATISTICS: The self-controlled case series method Heather J. Whitaker1, C. Paddy Farrington1, Bart Spiessens2 and Patrick Musonda1 1 Department of Statistics, The Open University, Milton Keynes, MK7 6AA, UK. 2 GlaxoSmithKline Biologicals, Rue de l’Institut 89, B-1330 Rixensart, Belgium. SUMMARY The self-controlled case series method was developed to investigate associations between acute outcomes and transient exposures, using only data on cases, that is, on individuals who have experienced the outcome of interest. Inference is within individuals, and hence fixed covariates effects are implicitly controlled for within a proportional incidence framework. We describe the origins, assumptions, limitations, and uses of the method. The rationale for the model and the derivation of the likelihood are explained in detail using a worked example on vaccine safety. Code for fitting the model in the statistical package STATA is described. Two further vaccine safety data sets are used to illustrate a range of modelling issues and extensions of the basic model. Some brief pointers on the design of case series studies are provided. The data sets, STATA code, and further implementation details in SAS, GENSTAT and GLIM are available from an associated website. key words: case series; conditional likelihood; control; epidemiology; modelling; proportional incidence Copyright c 2005 John Wiley & Sons, Ltd. 1. Introduction The self-controlled case series method, or case series method for short, provides an alternative to more established cohort or case-control methods for investigating the association between a time-varying exposure and an outcome event.
    [Show full text]
  • Applications of Computational Statistics with Multiple Regressions
    International Journal of Computational and Applied Mathematics. ISSN 1819-4966 Volume 12, Number 3 (2017), pp. 923-934 © Research India Publications http://www.ripublication.com Applications of Computational Statistics with Multiple Regressions S MD Riyaz Ahmed Research Scholar, Department of Mathematics, Rayalaseema University, A.P, India Abstract Applications of Computational Statistics with Multiple Regression through the use of Excel, MATLAB and SPSS. It has been widely used for a long time in various fields, such as operations research and analysis, automatic control, probability statistics, statistics, digital signal processing, dynamic system mutilation, etc. The regress function command in MATLAB toolbox provides a helpful tool for multiple linear regression analysis and model checking. Multiple regression analysis is additionally extremely helpful in experimental scenario wherever the experimenter will management the predictor variables. Keywords - Multiple Linear Regression, Excel, MATLAB, SPSS, least square, Matrix notations 1. INTRODUCTION Multiple linear regressions are one of the foremost wide used of all applied mathematics strategies. Multiple regression analysis is additionally extremely helpful in experimental scenario wherever the experimenter will management the predictor variables [1]. A single variable quantity within the model would have provided an inadequate description since a number of key variables have an effect on the response variable in necessary and distinctive ways that [2]. It makes an attempt to model the link between two or more variables and a response variable by fitting a equation to determined information. Each value of the independent variable x is related to a value of the dependent variable y. The population regression line for p informative variables 924 S MD Riyaz Ahmed x1, x 2 , x 3 ......
    [Show full text]
  • Biometrics & Biostatistics
    Hanley and Moodie, J Biomet Biostat 2011, 2:5 Biometrics & Biostatistics http://dx.doi.org/10.4172/2155-6180.1000124 Research Article Article OpenOpen Access Access Sample Size, Precision and Power Calculations: A Unified Approach James A Hanley* and Erica EM Moodie Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Canada Abstract The sample size formulae given in elementary biostatistics textbooks deal only with simple situations: estimation of one, or a comparison of at most two, mean(s) or proportion(s). While many specialized textbooks give sample formulae/tables for analyses involving odds and rate ratios, few deal explicitly with statistical considera tions for slopes (regression coefficients), for analyses involving confounding variables or with the fact that most analyses rely on some type of generalized linear model. Thus, the investigator is typically forced to use “black-box” computer programs or tables, or to borrow from tables in the social sciences, where the emphasis is on cor- relation coefficients. The concern in the – usually very separate – modules or stand alone software programs is more with user friendly input and output. The emphasis on numerical exactness is particularly unfortunate, given the rough, prospective, and thus uncertain, nature of the exercise, and that different textbooks and software may give different sample sizes for the same design. In addition, some programs focus on required numbers per group, others on an overall number. We present users with a single universal (though sometimes approximate) formula that explicitly isolates the impacts of the various factors one from another, and gives some insight into the determinants for each factor.
    [Show full text]
  • The American Statistician
    This article was downloaded by: [T&F Internal Users], [Rob Calver] On: 01 September 2015, At: 02:24 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London, SW1P 1WG The American Statistician Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/utas20 Reviews of Books and Teaching Materials Published online: 27 Aug 2015. Click for updates To cite this article: (2015) Reviews of Books and Teaching Materials, The American Statistician, 69:3, 244-252, DOI: 10.1080/00031305.2015.1068616 To link to this article: http://dx.doi.org/10.1080/00031305.2015.1068616 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes.
    [Show full text]
  • Econometrica 0012-9682 Biostatistics 1465-4644 J R
    ECONOMETRICA 0012-9682 BIOSTATISTICS 1465-4644 J R STAT SOC B 1369-7412 ANN APPL STAT 1932-6157 J AM STAT ASSOC 0162-1459 ANN STAT 0090-5364 STAT METHODS MED RES 0962-2802 STAT SCI 0883-4237 STAT MED 0277-6715 BIOMETRICS 0006-341X CHEMOMETR INTELL LAB 0169-7439 IEEE ACM T COMPUT BI 1545-5963 J BUS ECON STAT 0735-0015 J QUAL TECHNOL 0022-4065 FUZZY SET SYST 0165-0114 STAT APPL GENET MOL 1544-6115 PHARM STAT 1539-1604 MULTIVAR BEHAV RES 0027-3171 PROBAB THEORY REL 0178-8051 J COMPUT BIOL 1066-5277 STATA J 1536-867X J COMPUT GRAPH STAT 1061-8600 J R STAT SOC A STAT 0964-1998 INSUR MATH ECON 0167-6687 J CHEMOMETR 0886-9383 BIOMETRIKA 0006-3444 BRIT J MATH STAT PSY 0007-1102 STAT COMPUT 0960-3174 J AGR BIOL ENVIR ST 1085-7117 ANN APPL PROBAB 1050-5164 ANN PROBAB 0091-1798 SCAND J STAT 0303-6898 AM STAT 0003-1305 ECONOMET REV 0747-4938 FINANC STOCH 0949-2984 ELECTRON J PROBAB 1083-6489 OPEN SYST INF DYN 1230-1612 COMPUT STAT DATA AN 0167-9473 BIOMETRICAL J 0323-3847 PROBABILIST ENG MECH 0266-8920 TECHNOMETRICS 0040-1706 STOCH PROC APPL 0304-4149 J R STAT SOC C-APPL 0035-9254 ENVIRON ECOL STAT 1352-8505 J STAT SOFTW 1548-7660 BERNOULLI 1350-7265 INFIN DIMENS ANAL QU 0219-0257 J BIOPHARM STAT 1054-3406 STOCH ENV RES RISK A 1436-3240 TEST 1133-0686 ASTIN BULL 0515-0361 ADV APPL PROBAB 0001-8678 J TIME SER ANAL 0143-9782 MATH POPUL STUD 0889-8480 COMB PROBAB COMPUT 0963-5483 LIFETIME DATA ANAL 1380-7870 METHODOL COMPUT APPL 1387-5841 ECONOMET J 1368-4221 STATISTICS 0233-1888 J APPL PROBAB 0021-9002 J MULTIVARIATE ANAL 0047-259X ENVIRONMETRICS 1180-4009
    [Show full text]
  • Biostatistics Student Paper Competition the Department of Biostatistics at BUSPH Is Soliciting Applications for the 2013 Student Paper Competition
    Biostatistics Student Paper Competition The Department of Biostatistics at BUSPH is soliciting applications for the 2013 student paper competition. The competition is open to all students enrolled in the Biostatistics Program at Boston University in the spring term of 2013. The winner of the competition will receive $750 as a travel award to attend the summer Joint Statistical Meetings. Travel to other conferences (i.e. ENAR, Society for Clinical Trials, American Society of Human Genetics, International Genetic Epidemiology Society) is possible in negotiation with the award committee. All students are strongly encouraged to submit the abstracts from their papers to the Joint Statistical Meetings, which has a deadline of February 4th. Students would also be encouraged to consider entering the competitions sponsored by sections of the Joint Statistical Meetings (e.g. The Biometrics section Byar Young Investigator award, for details see http://www.bio.ri.ccf.org/Biometrics/winner.html). TIMETABLE: January 11th, 2013 at noon: Deadline for students to submit pdf of manuscript January 25th, 2013: Announcement of awards REQUIREMENTS: The paper should be prepared double spaced, in manuscript format, using guidelines for authors typical of a biostatistical journal (e.g. Biometrics, Statistics in Medicine, or Biostatistics). A pdf copy of the manuscript should be submitted to the chair of the award committee, Ching-Ti Liu ([email protected]). The reported work should be relevant to biostatistics and must be the work of the student, although the manuscript can be co-authored with a faculty advisor or a small number of collaborators. The student must be the first author of the manuscript.
    [Show full text]
  • Mixture Models with Grouping Structure: Retail Analytics Applications Haidar Almohri Wayne State University
    Wayne State University Wayne State University Dissertations 1-1-2018 Mixture Models With Grouping Structure: Retail Analytics Applications Haidar Almohri Wayne State University, Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Business Administration, Management, and Operations Commons, Engineering Commons, and the Statistics and Probability Commons Recommended Citation Almohri, Haidar, "Mixture Models With Grouping Structure: Retail Analytics Applications" (2018). Wayne State University Dissertations. 1911. https://digitalcommons.wayne.edu/oa_dissertations/1911 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. MIXTURE MODELS WITH GROUPING STRUCTURE: RETAIL ANALYTICS APLICATIONS by HAIDAR ALMOHRI DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2018 MAJOR: INDUSTRIAL ENGINEERING Approved By: Advisor Date © COPYRIGHT BY HAIDAR ALMOHRI 2018 All Rights Reserved DEDICATION To my lovely daughter Nour. ii ACKNOWLEDGMENTS I would like to thank my advisor Dr. Ratna Babu Chinnam for introducing me to this fascinating research topic and for his guidance, technical advise, and support throughout this research. I am also grateful to my committee members, Dr. Alper Murat, Dr. Evrim Dalkiran for their time and interest in this thesis and for providing helpful comments for my research. Special thanks go to Dr. Arash Ali Amini for providing valuable suggestions to improve this work. I also thank my family and friends for their continuous support. iii TABLE OF CONTENTS DEDICATION .
    [Show full text]
  • Biometrical Applications in Biological Sciences-A Review on the Agony for Their Practical Efficiency- Problems and Perspectives
    Biometrics & Biostatistics International Journal Review Article Open Access Biometrical applications in biological sciences-A review on the agony for their practical efficiency- Problems and perspectives Abstract Volume 7 Issue 5 - 2018 The effect of the three biological sciences- agriculture, environment and medicine S Tzortzios in the people’s life is of the greatest importance. The chain of the influence of the University of Thessaly, Greece environment to the form and quality of the agricultural production and the effect of both of them to the people’s health and welfare consists in an integrated system Correspondence: S Tzortzios, University of Thessaly, Greece, that is the basic substance of the human life. Agriculture has a great importance in Email [email protected] the World’s economy; however, the available resources for research and technology development are limited. Moreover, the environmental and productive conditions are Received: August 12, 2018 | Published: October 05, 2018 very different from one country to another, restricting the generalized transferring of technology. The statistical methods should play a paramount role to insure both the objectivity of the results of agricultural research as well as the optimum usage of the limited resources. An inadequate or improper use of statistical methods may result in wrong conclusions and in misuse of the available resources with important scientific and economic consequences. Many times, Statistics is used as a basis to justify conclusions of research work without considering in advance the suitability of the statistical methods to be used. The obvious question is: What importance do biological researchers give to the statistical methods? The answer is out of any doubt and the fact that most of the results published in specialized journals includes statistical considerations, confirms its importance.
    [Show full text]
  • Isye 6416: Computational Statistics Lecture 1: Introduction
    ISyE 6416: Computational Statistics Lecture 1: Introduction Prof. Yao Xie H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology What this course is about I Interface between statistics and computer science I Closely related to data mining, machine learning and data analytics I Aim at the design of algorithm for implementing statistical methods on computers I computationally intensive statistical methods including resampling methods, Markov chain Monte Carlo methods, local regression, kernel density estimation, artificial neural networks and generalized additive models. Statistics data: images, video, audio, text, etc. sensor networks, social networks, internet, genome. statistics provide tools to I model data e.g. distributions, Gaussian mixture models, hidden Markov models I formulate problems or ask questions e.g. maximum likelihood, Bayesian methods, point estimators, hypothesis tests, how to design experiments Computing I how do we solve these problems? I computing: find efficient algorithms to solve them e.g. maximum likelihood requires finding maximum of a cost function I \Before there were computers, there were algorithms. But now that there are computers, there are even more algorithms, and algorithms lie at the heart of computing. " I an algorithm: a tool for solving a well-specified computational problem I examples: I The Internet enables people all around the world to quickly access and retrieve large amounts of information. With the aid of clever algorithms, sites on the Internet are able to manage and manipulate this large volume of data. I The Human Genome Project has made great progress toward the goals of identifying all the 100,000 genes in human DNA, determining the sequences of the 3 billion chemical base pairs that make up human DNA, storing this information in databases, and developing tools for data analysis.
    [Show full text]
  • Department of Statistics and Data Science Promotion and Tenure Guidelines
    Approved by Department 12/05/2013 Approved by Faculty Relations May 20, 2014 UFF Notified May 21, 2014 Effective Spring 2016 2016-17 Promotion Cycle Department of Statistics and Data Science Promotion and Tenure Guidelines The purpose of these guidelines is to give explicit definitions of what constitutes excellence in teaching, research and service for tenure-earning and tenured faculty. Research: The most common outlet for scholarly research in statistics is in journal articles appearing in refereed publications. Based on the five-year Impact Factor (IF) from the ISI Web of Knowledge Journal Citation Reports, the top 50 journals in Probability and Statistics are: 1. Journal of Statistical Software 26. Journal of Computational Biology 2. Econometrica 27. Annals of Probability 3. Journal of the Royal Statistical Society 28. Statistical Applications in Genetics and Series B – Statistical Methodology Molecular Biology 4. Annals of Statistics 29. Biometrical Journal 5. Statistical Science 30. Journal of Computational and Graphical Statistics 6. Stata Journal 31. Journal of Quality Technology 7. Biostatistics 32. Finance and Stochastics 8. Multivariate Behavioral Research 33. Probability Theory and Related Fields 9. Statistical Methods in Medical Research 34. British Journal of Mathematical & Statistical Psychology 10. Journal of the American Statistical 35. Econometric Theory Association 11. Annals of Applied Statistics 36. Environmental and Ecological Statistics 12. Statistics in Medicine 37. Journal of the Royal Statistical Society Series C – Applied Statistics 13. Statistics and Computing 38. Annals of Applied Probability 14. Biometrika 39. Computational Statistics & Data Analysis 15. Chemometrics and Intelligent Laboratory 40. Probabilistic Engineering Mechanics Systems 16. Journal of Business & Economic Statistics 41.
    [Show full text]
  • Curriculum Vitae
    Daniele Durante: Curriculum Vitae Contact Department of Decision Sciences B: [email protected] Information Bocconi University web: https://danieledurante.github.io/web/ Via R¨ontgen, 1, 20136 Milan Research Network Science, Computational Social Science, Latent Variables Models, Complex Data, Bayesian Interests Methods & Computation, Demography, Statistical Learning in High Dimension, Categorical Data Current Assistant Professor Academic Bocconi University, Department of Decision Sciences 09/2017 | Present Positions Research Affiliate • Bocconi Institute for Data Science and Analytics [bidsa] • Dondena Centre for Research on Social Dynamics and Public Policy • Laboratory for Coronavirus Crisis Research [covid crisis lab] Past Post{Doctoral Research Fellow 02/2016 | 08/2017 Academic University of Padova, Department of Statistical Sciences Positions Adjunct Professor 12/2015 | 12/2016 Ca' Foscari University, Department of Economics and Management Visiting Research Scholar 03/2014 | 02/2015 Duke University, Department of Statistical Sciences Education University of Padova, Department of Statistical Sciences Ph.D. in Statistics. Department of Statistical Sciences 2013 | 2016 • Ph.D. Thesis Topic: Bayesian nonparametric modeling of network data • Advisor: Bruno Scarpa. Co-advisor: David B. Dunson M.Sc. in Statistical Sciences. Department of Statistical Sciences 2010 | 2012 B.Sc. in Statistics, Economics and Finance. Department of Statistics 2007 | 2010 Awards Early{Career Scholar Award for Contributions to Statistics. Italian Statistical Society 2021 Bocconi Research Excellence Award. Bocconi University 2021 Leonardo da Vinci Medal. Italian Ministry of University and Research 2020 Bocconi Research Excellence Award. Bocconi University 2020 Bocconi Innovation in Teaching Award. Bocconi University 2020 National Scientific Qualification for Associate Professor in Statistics [13/D1] 2018 Doctoral Thesis Award in Statistics.
    [Show full text]