Mt. Rainier Ascent – Kautz Glacier

Total Page:16

File Type:pdf, Size:1020Kb

Mt. Rainier Ascent – Kautz Glacier Mt. Rainier Ascent – Kautz Glacier © Copyright 2009, American Alpine Institute Meeting Time and Location: 7pm on the night before the trip at the Ramada Inn in SeaTac, Washington (close to the Seattle-Tacoma airport) Day 0 – The group will meet at 7 in the evening on the day before the trip starts at the hotel. At this time, the guides will complete a thorough gear check and hand out any group equipment that needs to be distributed. Day 1 – The team will leave the hotel at 7 in the morning and drive to Ashford, Washington, just outside of Mount Rainier National Park. There is a small gear shop in Ashford for last minute purchases. We will then drive to the Paradise parking lot within Mt. Rainier National Park and hike in to our first camp. We will cross the lower Nisqually Glacier and work our way up onto the arm beneath the Kautz Glacier. The team will then establish a camp somewhere between 7,200 and 7,700 feet. Day 2 – We wake, pack camp, and cross the Nisqually glacier in the morning. We will then ascend the western edge of the Wilson Glacier and camp beneath Camp Hazard at 10,700 feet, in position for our summit bid via the Kautz Glacier. Day 3 – We wake up early and begin our climb to the summit. The climb begins with a rappel down onto the Kautz Glacier. From there, we will ascend a short and steep icy headwall. After the headwall, the climbing eases to the summit at 14,411 feet. Day 4 – On the last day of the trip, we will wake early again, pack up camp and hike out. The descent back to Paradise takes approximately 6 hours. Once we are down, we will go out for a late lunch and then drop you back off at the hotel. .
Recommended publications
  • Outline for Thesis
    THESIS APPROVAL The abstract and thesis of Thomas H. Nylen for the Master of Science in Geology presented October 25, 2001, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: _______________________________________ Andrew G. Fountain, Chair _______________________________________ Scott F. Burns _______________________________________ Christina L. Hulbe _______________________________________ Keith S. Hadley Representative of the Office of Graduate Studies DEPARTMENTAL APPROVAL: _______________________________________ Michael L. Cummings, Chair Department of Geology ABSTRACT An abstract of the thesis of Thomas H. Nylen for the Master of Science in Geology presented October 25, 2001. Title: Spatial and Temporal Variations of Glaciers (1913-1994) on Mt. Rainier and the Relation with Climate Databases have been constructed for the purpose of studying glacier changes at Mt. Rainier. Glacier cover on Mt. Rainier decreased 18.5% (112.3 km2 to 88.1 km2) between 1913 and 1971 at a rate of about -0.36 km2 a-1. The total area in 1994 was 87.4 km2, which equates to a rate of -0.03 km2 a-1 since 1971. Glaciers with southerly aspect lost significantly more area than those with a northerly aspect, 26.5% and 17.5% of the total area, respectively. Measured and estimated total volumes for Mt. Rainier glaciers also decreased. From 1913 to 1971 the total volume decreased 22.7% from 5.62 km3 to 4.34 km3 and from 1971 to 1994 decreased 3.1% to 4.21 km3. Nisqually Glacier shows three cycles of retreat and advance but an overall loss of 0.44 km2 since 1931. Cross-correlation with snowfall suggests about a decade response time for the glaciers.
    [Show full text]
  • The Recession of Glaciers in Mount Rainier National Park, Washington
    THE RECESSION OF GLACIERS IN MOUNT RAINIER NATIONAL PARK, WASHINGTON C. FRANK BROCKMAN Mount Rainier National Park FOREWORD One of the most outstanding features of interest in Mount Rainier National Park is the extensive glacier system which lies, almost entirely, upon the broad flanks of Mount Rainier, the summit of which is 14,408 feet above sea-level. This glacier system, numbering 28 glaciers and aggregating approximately 40-45 square miles of ice, is recognized as the most extensive single peak glacier system in continental United States.' Recession data taken annually over a period of years at the termini of six representative glaciers of varying type and size which are located on different sides of Mount Rainier are indicative of the rela- tive rate of retreat of the entire glacier system here. At the present time the glaciers included in this study are retreating at an average rate of from 22.1 to 70.4 feet per year.2 HISTORY OF INVESTIGATIONS CONDUCTED ON THE GLACIERS OF MOUNT RAINIER Previous to 1900 glacial investigation in this area was combined with general geological reconnaissance surveys on the part of the United States Geological Survey. Thus, the activities of S. F. Em- mons and A. D. Wilson, of the Fortieth Parallel Corps, under Clarence King, was productive of a brief publication dealing in part with the glaciers of Mount Rainier.3 Twenty-six years later, in 1896, another United States Geological Survey party, which included Bailey Willis, I. C. Russell, and George Otis Smith, made additional SCircular of General Information, Mount Rainier National Park (U.S.
    [Show full text]
  • Evidence of a Changing Climate Impacting the Fluvial Geomorphology of the Kautz Creek on Mt
    EVIDENCE OF A CHANGING CLIMATE IMPACTING THE FLUVIAL GEOMORPHOLOGY OF THE KAUTZ CREEK ON MT. RAINIER by Melanie R. Graeff A Thesis Submitted in partial fulfillment of the requirements for the degree Master of Environmental Studies The Evergreen State College June, 2017 ©2017 by Melanie R. Graeff. All rights reserved. This Thesis for the Master of Environmental Studies Degree by Melanie R. Graeff has been approved for The Evergreen State College by ________________________ Michael Ruth, M.Sc Member of the Faculty ________________________ Date ABSTRACT Evidence of a Changing Climate Impacting the Fluvial Geomorphology of the Kautz Creek on Mt. Rainier Melanie Graeff Carbon dioxide emissions have stimulated the warming of air and ocean temperatures worldwide. These conditions have fueled the intensity of El Nino-Southern Oscillation and Atmospheric River events by supplying increased water vapor into the atmosphere. These precipitation events have impacted the fluvial geomorphology of a creek on the southwestern flank of the Kautz Creek on Mt. Rainier, Washington. Using GIS software was the primary means of obtaining data due to the lack of publications published on the Kautz Creek. Time periods of study were set up from a 2012 publication written by Jonathan Czuba and others, that mentioned observations of the creek that dated from 1960 to 2008. In combining those observations of the Kautz and weather data from the weather station in Longmire, Washington, this allowed for a further understanding of how climate change has affected the fluvial geomorphology of the Kautz Creek over time. GIS software mapping showed numerous changes on the creek since 2008.
    [Show full text]
  • 1 Trip Report; Mt. Rainier Via Kautz Glacier. on July 25 , 2010, Mick
    Trip report; Mt. Rainier via Kautz Glacier. On July 25th, 2010, Mick Pearson, Nasa Koski and I began a three-day trip up Mt. Rainier, which included an ascent up the Nisqually, Wilson and Kautz Glaciers, and then a descent via the traditional, Disappointment Cleaver (DC) Route. During my eleven year mountaineering “career”, I never had the urge to climb Mt. Rainier, mostly because of trip reports that spoke of endless ropes of climbers ascending (read: clogging) the traditional route. I had experienced such crowds on Mt. Shasta in California and on the Nadelhorn in Switzerland and simply had no desire to be a part of another endless train of climbers up a mountain. My interests changed during a flight to the Northwest in 2008. I was visiting Seattle on my way to Mt. Baker when I caught a glimpse of Mt. Rainier from about 15,000 feet from the jet’s window. Although I was well aware of the often crowded situation on Rainier, the view of the mountain was fascinating and initiated thoughts of potentially ascending a less popular route, one with far fewer climbers and more challenge than the traditional route. In spring of 2010, I contacted Mick Pearson of Kaf Adventures, to inquire about the possibility of climbing Mt. Rainier together. Mick is an accomplished mountain/rock guide with experiences on many of the world’s famous mountain ranges. More importantly, he also was willing to establish a climbing partnership that included as much education and willingness to teach as it did desire to touch the top.
    [Show full text]
  • Mt. Rainier Where & Why Accidents Happen the Majestic, 14,410-Foot Volcano of Mt
    AAC Publications Danger Zones: Mt. Rainier Where & Why Accidents Happen The majestic, 14,410-foot volcano of Mt. Rainier, just 55 miles from Seattle, is one of the most popular mountaineering destinations in North America. Lined by massive glaciers on all sides, the mountain is attempted by about 10,000 people a year. It’s also the site of numerous accidents and close calls. More than 95 mountaineers have died on Rainier’s slopes, including the tragic loss of six climbers in late May 2014 after an avalanche high on Liberty Ridge. This article aims to prevent future tragedies by analyzing the accident history of popular routes. We reviewed more than 110 reports from Mt. Rainier in Accidents in North American Mountaineering over the past 20 years. In addition, we examined the causes of climbing fatalities from 1984 through 2013, as tracked by Mountrainierclimbing.us. The data reveal accident trends on specific routes, suggesting how climbers might best prepare to avoid future incidents. Geologically, Mt. Rainier sits on the Ring of Fire around the Pacific Ocean basin. Geologists consider Mt. Rainier to be an active, potentially dangerous volcano. More immediately, heavy snowfall and highly active glaciers shape the challenging terrain of the mountain. Although there are more than 40 routes and variations up Mt. Rainier, the vast majority of climbers follow two lines: 1) up the Muir Snowfield to Camp Muir, followed by a summit attempt via the Ingraham Glacier or Disappointment Cleaver, or 2) the Emmons/Winthrop Glaciers route above Camp Schurman. With one prominent exception—Liberty Ridge—most accidents occur along these routes.
    [Show full text]
  • The Road to Paradise Tour
    Road to Paradise Experience the grandeur of Mount Rainier. Witness old-growth temperate rainforests, waterfalls, and impressive vistas. Whether you venture and sightsee by car, or choose to get outdoors and enjoy the many stops along the way, it's all pure Rainier. An excellent introduction to the beauty, majesty and mystique of Mt. Rainier National Park. Length: 83 miles | Driving Time: 2 1/2 hours (allow extra time for stops) Open Season: The entire loop is usually drivable and snow-free by mid-June and remains open through late October. The road between Ashford and Paradise remains open year-round. Driving Directions: From Ashford, travel east on State Route (SR) 706, six miles to the entrance of Mt. Rainier National Park. Continue into the park on Paradise Road and travel 17 miles to Paradise where the road becomes Paradise Valley Road. Travel 2.6 miles on Paradise Valley Road to Stevens Canyon Road. Turn left on Stevens Canyon Road and travel south 18.8 miles to Highway 123, Cayuse Pass. Turn right on Highway 123 and travel 5.5 miles to US Highway 12. Turn right on Highway 12 and travel 7.3 miles to Skate Creek Rd. Turn right on Skate Creek Rd. and travel 23 miles to SR 706. Turn left on SR 706 and travel 2.4 miles to Ashford. 2010 Visit Rainier | [email protected] | www.VisitRainier.com Road to Paradise Start: Ashford Begin this mountain adventure in the mountain community of Ashford located on State Route 706. A basecamp for recreation at Mt. Rainier, restaurants, car services, lodging, and campgrounds are available.
    [Show full text]
  • Mount Rainier National Park, Washington
    MOUNT RAINIER NATIONAL PARK \ //c^^^ Mount Rainier NATIONAL PARK WASHINGTON Medical Service 18 OPEN ALL YEAR Gasoline Service 18 What To Wear 18 Contents Trails 18 "The Mountain" 6 Fishing 20 Wealth of Gorgeous Flowers 8 Mount Rainier Summit Climb 20 The Forests 10 Accommodations and Expenses .... 21 How To Reach the Park 12 Ohanapecosh Hot Springs 23 Administration 14 Horseback Trips and Guide Service ... 24 Free Public Campgrounds 15 Transportation 24 Post Offices 18 Principal Points of Interest 26 Communication and Express Service ... 18 References 30 Events OF HISTORICAL IMPORTANCE I792 May 8. Capt. George Vancouver, of the Royal British Navy, first white 1899 March 2. Mount Rainier National Park established by act of Congress. man to record sight of "The Mountain"; named it Mount Rainier in honor of his friend Admiral Peter Rainier. I909 Regular (horse-drawn) stage service was started between Ashford and Longmire. I°33 September 2. Dr. William Eraser Tolmie entered northwest corner of what is now the park. First white man to penetrate this region. 1911 October 8. President Taft visited the park. I057 July 16- Lt. A. V. Kautz, of the United States Army, and four companions I9I3 Government surveyors of the United States Geological Survey established made first attempt to scale Mount Rainier but did not reach summit. the elevation of Mount Rainier as 14,408 feet above sea level. 1870 August 17. Hazard Stevens and P. B. Van Trump, of Olympia, Wash., 1 made the first successful ascent of Mount Rainier via Gibraltar route. J93 March 24. Mather Memorial Parkway established.
    [Show full text]
  • Mount Rainier, Washington Portland State University GEOG 592 Spring 2014
    A Slow End: Tracking Glacier Loss on Mount Rainier, Washington Portland State University GEOG 592 Spring 2014 Jonathan Skloven-Gill and Marilyn Daum Seattle How to Calculate Glacier Length? Glacial ice is the largest reservoir of freshwater on Predicted Change in Mt. Rainier's Glaciers over Time Hydrology Flow Length Minimum Bounding Rectangle Length Tacoma Puyallup - White Applying NCAR's moderate A1B climate change scenario earth, and Mount Rainier is the most heavily glaci- generally shorter longer and closer match to other sources Olympia to Oerleman's model for glacier length change ated peak in the lower 48 states(1). We have heard Nisqually Centralia that climate change is shrinking glaciers, but what Mount Rainier Glaciers as of 2006 Percent remaining in 2050 Percent Remaining in 2099 Impacted Cities does this mean for Mt. Rainier's glaciers during the Washington Counties Pop per Cowlitz SQMile next 50 or 100 years? Specically, what is the risk >474 of losing the freshwater supply from Mt. Rainier's <24.5 Longview Watersheds Kilometers . 010 20 40 60 0% 0% glaciers? 0% 0% 0% 0% Why Mt. Rainier’s 45% 0% 0% Our investigation includes 3 approaches to analyz- 79% 12% 0% 78% Glaciers Matter 0% 0% 10% ing glacial recession. Using one of these, a signi- $ 60% 0% 0% 0% 0 1 2 3 4 24% cant relationship between glacier length and Correlation r=0.95, p-value=0.000 25% 76% 0% 0% Kilometers Projection: NAD 1927 UTM Zone 10 0% 0% 67% 0% 0% 0% 50% 0% 0% 0% long-term temperature changes, we present a plau- 0% 0% 0% 0% 55% 0% Fitted Line Plot 0% Hydrology Flow Length = - 235.3 + 0.9981 Bounding Rectangle Length 0% 75% 44% 0% sible future scenario based on moderate climate 75% 33% 0% 0% 0% 9000 0% S 820.842 70% R-Sq 90.2% 56% 0% (3) 8000 0% 0% 67% 0% change .
    [Show full text]
  • Mount Rainier and Its Glaciers Mount Rainier National Park
    UNITED STATES DEPARTMENT OF THE INTERIOR HUBERT WORK, SECRETARY NATIONAL PARK SERVICE STEPHEN T. MATHER. DIRECTOR MOUNT RAINIER AND ITS GLACIERS MOUNT RAINIER NATIONAL PARK UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON 1928 OTHER PUBLICATIONS ON MOUNT RAINIER NATIONAL PARK SOLD BY THE SUPERINTENDENT OF DOCUMENTS. Remittances for these publications should be by money order, payable to the Superintendent of Documents, Government Printing Office, Washington, D. C, or in cash. Checks and postage stamps can not be accepted. Features of the Flora of Mount Rainier National Park, by J. B. Flett. 1922. 48 pages, including 40 illustrations. 25 cents. Contains descriptions of the flowering trees and shrubs in the park. Forests of Mount Rainier National Park, by G. F. Allen. 1922. 32 pages, including 27 illustrations. 20 cents. Contains descriptions of the forest cover and the principal species. Panoramic view of Mount Rainier National Park, 20 by 19 inclies, scale 1 mile to the inch. 25 cents. ADDITIONAL COPIES 01' THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 15 CENTS PER COPY MOUNT RAINIER AND ITS GLACIERS.1 By F. E. MATTIIES, United States Geological Survey. INTRODUCTION. The impression still prevails in many quarters that true glaciers, such as are found in the Swiss Alps, do not exist within the confines of the United States, and that to behold one of these rare scenic features one must go to Switzerland, or else to the less accessible Canadian Rockies or the inhospitable Alaskan coast. As a matter of fact, permanent bodies of snow and ice, large enough to deserve the name of glaciers, occur on many of our western mountain chains, notably in the Rocky Mountains, where a national reservation— Glacier National Park—is named for its ice fields; in the Sierra Nevada of California, and farther north, in the Cascade Range.
    [Show full text]
  • Nisqually Glacial Velocity GSA2013
    SURFICIAL ICE VELOCITIES OF THE LOWER NISQUALLY GLACIER AND THEIR RELATIONSHIP TO OUTBURST FLOOD HAZARDS AT MOUNT RAINIER NATIONAL PARK, WASHINGTON, UNITED STATES WALKUP, Laura C.1, BEASON, Scott R.1, KENNARD, Paul M.1 , OHLSCHLAGER, Justin G.2, and STIFTER, Anna C.1 (1) Mount Rainier National Park, 55210 238th Ave E, Ashford, WA 98304, [email protected], (2) Geology, Portland State University, 17 Cramer Hall, 1721 SW Broadway, Portland, OR 97201 I. ABSTRACT II. LOCATION III. BACKGROUND IV. HISTORIC OUTBURST FLOODS V. METHODS 592,000 593,000 594,000 595,000 596,000 597,000 598,000 Mount Rainier, Washington is the tallest of a number of glacier-clad The Nisqually Glacier has one of the longest histories of scientific examination of any glacier in the Pictured: Scott Beason Pictured: Paul Kennard and Laura German Pictured: Jeff Fortner and Paul Kennard Emmons Photo by: Paul Kennard Photo by: Laura Walkup Photo by: Laura Walkup Glacier United States, having been studied since the 1850s. Most historic studies on the Nisqually look at volcanic peaks within the Cascade Range. Standing at 4,392 m (14,411 ft) Columbia Columbia Bellingham A C Crest Crest Little Tahoma Glacier Tahoma mass balance, glacial extent, or surface elevation while few have examined glacial velocity. Past and having 25 major glaciers, it contains more glacial ice than any other Glacier Peak Disappointment 5 Washington Cleaver Spokane single peak in the continental United States. Glaciers are the headwaters of 5,189,000 Seattle 5,189,000 research indicates that the lower Nisqually glacier has displayed varied glacial velocities throughout Point Gibraltar its measurement history.
    [Show full text]
  • Field Mapping Glacier Extents at Mount Rainier for Hazard Recognition
    Field Mapping Glacier Extents at Mount Rainier for Hazard Recognition Steve Wilson1, Andrew Fountain1 Portland State University, Department of Geology, Portland, OR Introduction The goal of this report is to describe the role glaciers play in the local and regional hydrology and the impact they may have on the environment and infrastructure of Mount Rainier National Park. Methods included field verification of the spatial extent of debris-covered ice, observing the velocity of debris-covered ice using both field techniques as well as remote sensing techniques, and estimating volume change of glacier ice using airborne LiDAR digital elevation models. Background Mount Rainier is a 4,395 m high stratovolcano that supports the largest concentration of glacier ice in the United States exclusive of Alaska (Krimmel, 2002). There are 143 glaciers and permanent snowfields on Mount Rainier with a total area of 83.3 km2, 27 of these are named glaciers (82.1 km2) (Nylen, 2004). With glacier ice spanning from the summit down to 1,075 m, Mount Rainier is home to the largest glacier (Emmons Glacier, 11.2 km2), the longest glacier (Carbon Glacier, 8.2 km), and the lowest glacier terminus (Carbon Glacier, 1,070 m) in the coterminous United States (Krimmel, 2002). The glaciers on Mount Rainier have a total ice volume of 4.4 km3 (Driedger and Kennard, 1987). Nylen (2004), among others, recognized the importance of quantifying the spatial extent of debris-covered ice as it is a major influence on ablation and can contribute to glaciers extending further down valley than if they were clean.
    [Show full text]
  • Sluskin: Yakima Guide to Mount Rainier Columbia Magazine, Spring 1991: Vol
    Sluskin: Yakima Guide to Mount Rainier Columbia Magazine, Spring 1991: Vol. 5, No. 1 By Michael F. Turek & Robert H. Keller Jr. THE SCENE STARTLED THEM. In the late summer of 1915 two federal rangers, Leonard Rosso and Arthur White, had hiked into Yakima Park on Mount Rainier and found about 30 Indians occupying an alpine meadow. According to Rosso and White, the band was "ek[e]ing out an existence in the manner of their kind before the coming of the white man." In other words, hunting. The Indians were members of the Yakima tribe, and they called the meadow Me~yah~ah Pah, Place of the Chief. The Yakimas had met there for generations to race horses, hunt, gather food and conduct ceremonies. Me~yah~ah Pah was a native summer encampment similar to southern camps on Klickitat or Pah To (Mount Adams). Above this alpine meadow Mount Rainier rose nearly another 10,000 feet to dominate the Puget Sound country skyline. Indians west and east of the Cascade range had given the mountain different names, but the most common one was Tahoma, or White Mountain - a Yakima word. The tribe's winter villages were located southeast of the peak. With the onset of summer and the melting of snow in the high meadows, the Yakimas, Klickitats and other Columbia Plateau tribes would return to Me~yah~ah Pah. Their hunters approached the montane parks through an ancient forest in the Ohanapecosh valley. At 4,500 feet the conifers began to thin and a lush green carpet appeared.
    [Show full text]