Channel Flow of Electrorheological Fluids Under an Inhomogeneous Electric Field

Total Page:16

File Type:pdf, Size:1020Kb

Channel Flow of Electrorheological Fluids Under an Inhomogeneous Electric Field Channel flow of electrorheological fluids under an inhomogeneous electric field Vom Fachbereich Mechanik der Technischen Universit¨atDarmstadt zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation vorgelgt von Ana Ursescu, M. Sc. aus Cˆampina, Romania Referent: Prof. K. Hutter, Ph.D. Korreferent: Prof. Dr. M. R˚uˇziˇcka Tag der Einreichung: 16. September 2004 Tag der m¨undlichen Pr¨ufung: 21. Januar 2005 D 17 Aknowledgments This work was done during my stay at the Institute of Mechanics of the Darmstadt University of Technology within the framework of the Graduiertenkolleg “Modelling and Numerical Description of Technical Flows” with the financial support of DFG. I express my sincere gratitude to my supervisor, Professor Kolumban Hutter, for his instructive guidance, for his generous advice, for his constant encouragement and his continuous care to provide me everything I need for my research work, especially for the financial support for conferences and graduate schools and also for his prompt effort and his precious time spent to correct my manuscripts. Thank you for the fresh spirit which made the work at the University to be sunny. I would like to thank my co-referee, Professor Michael R˚uˇziˇcka for his interest in my work, for his kind invitation at his department for discussing the modeling of the ER- fluids under inhomogeneous electric fields. I gained a lot of insight from these meetings. I am grateful to him for accepting to be co-referee and for the effort to come in Darmstadt for my examination. I am very much thankful to Dr. Winfried Eckart for initiating me in the domain of electrorheological fluids, for introducing me in this fascinating subject and for helpful discussions and suggestions during my study. He offered me valuable support to find a flat and to go through all the formalities at the beginning of my stay in Darmstadt. I am grateful to Dr. Hubert Marschall for fruitful discussions concerning the analytical solution of the electrical problem, for helping me to get rid of the difficulties I encountered in applying the Wiener-Hopf technique and for providing me access to a Femlab license. The author is indebted also to Prof. Dr. J. Boersma from Eindhoven University of Technology (The Netherlands) for his careful examination and constructive criticism as a referee of a paper containing an earlier version of the actual Chapter 3 which have resulted in the removal of several inaccuracies. Special thanks go to my colleagues: Dr. Bernd Muegge, Dr. Shiva Prasad Pudasaini, Dr. Angelika Humbert, Mahmoud Reza Maneshkarimi, Dr. Sergio Faria, Dr. Nina Kirchner, Dr. Harald Ehrentraut, Dr. Ralf Greve, Dr. Yongqi Wang, Dr. Agnieszka Chrzanowska, Niklas Mellgren, Timo Schary, Dr. Vasily Vlasenko and the whole AG3 for their constant help. I will always remember the stimulating working atmosphere from our group and the nice time spent together. I want to thank further Dr. Steffen Eckert and his colleagues from AG4 for answer- ing my questions about Matlab and related stuff, Dr. Magnus Weiss and Dr. Thomas 4 Zwinger for providing me useful references about Finite Element Method. I express my appreciation to Dr. Thomas Wunderlich for providing me his doctoral work. Thanks are due also to Professor Corneliu Balan for sharing me his experience as a former PhD student in the same department, for teaching me important notions of rheol- ogy and giving me the opportunity to visit a laboratory of rheology and to see interesting experiments, for his instructive guidance during the European Rheology Conferences I attended twice and for the useful advice he gave me during my stay here in Darmstadt. I am grateful to my friend, Dr. Agnieszka Swierczewska for her constant help, espe- cially in understanding some matters of not standard mathematics and to her colleagues from the Mathematics Department, AG6, Dr. Andreas Frohlich, Dr. Piotr Gwiazda and Dr. Stefan Ebenfeld for the fruitful discussions we had about the formulation of the electrical problem. I must thank Dr. Amsini Sadiki for his interest in my work and for valuable discussions. Special thanks go to Professor Paul Flondor and Dr. Laurentiu Leustean for con- tributing to the demonstration from Appendix C.2. I gratefully appreciate the help gained in numerous discussions from Dr. Ioana Luca, guest scientist in our group. Besides, I would like to thank the people who taught me and encouraged me before I started the doctoral work: Dr. Victor Tigoiu, Professor Cristian Dascalu and all my colleagues from the Applied Mathematical Institute from Bucharest. Special thanks go to the directorate of the institute who allowed me to interrupt my research activity there and to accomplish these doctoral studies. I am extremely grateful to my husband Daniel for his support, but also for helpful discussions and suggestions. Further I want to thank my two mothers (who left their duties in Romania in order to come here and take care of their granddaughter) and my whole family for helping me in my efforts to finish the thesis and for their encouragement. Abstract This thesis is a theoretical study of the steady pressure driven channel flow of electrorhe- ological fluids (ERF) under a space dependent electric field generated by finite electrodes. Chapter 1 consists in a general description of ERF and their engineering applications and presents also the motivation, the goal and the borders of this work. Chapter 2 summarizes the governing equations of electrorheology (based on the phe- nomenological approach presented in [28, 29] with the corresponding jump conditions. It is assumed that the flow does not affect the electric field and consequently, the electrical problem is decoupled from the mechanical one. Both electrical and mechanical boundary value problems are formulated for various configurations of finite electrodes with different potentials placed along the channel walls. The simple case of two infinite electrodes which generate a homogeneous electric field is solved analytically. In Chapter 3 analytical solutions for different mixed boundary value problems arising from the electrical problem formulated in Chapter 2 are found by use of the Wiener- Hopf method. The solutions are given in terms of infinite series involving Gamma func- tions. The results can be used to describe the electric field generated between two infinite grounded electrodes by either one long electrode or two long electrodes charged in an anti-symmetric or a non-symmetric way. The electric field in the vicinity of the electrode edges is asymptotically evaluated. Some parametric studies are made with respect to the ratio between the permittivity of the electrorheological fluid and the permittivity of the isolating material outside the channel. We compare the analytical with numerical solutions and find good agreement which is considered as a validation of the numerical method. Chapter 4 treats the mechanical problem in more detail. First a review of the constitu- tive models used to describe the ER fluids in the literature is given. Then two-dimensional alternative constitutive laws appropriate for numerical simulations originating from the Casson-like and power law models are introduced using a parameter δ. In the end we non-dimensionalize the problem in both cases. In the last Chapter, we simulate numerically the flow of the Rheobay TP AI 3565 ER-fluid using the alternative Casson-like model and the EPS 3301 ER-fluid using the alternative power-law model by applying a finite element program. The behaviour of different fields such as velocity, pressure, generalized viscosity and the second invariant of the strain rate tensor near the electrode edges is studied for both fluids. A comparison with the experimental data is performed, validating the simulations. In order to investigate how 6 the numerical solution depends on the constitutive model we perform a parallel analysis of the two rheological models by applying them to the same material (Rheobay). Then we optimize the configuration of the electrodes by using the inhomogeneities caused by the end effects of the electrodes in order to obtain an enhancement of the ER-effect. Zusammenfassung Diese Arbeit ist eine theoretische Studie einer durch station¨aren Druck angetriebenen ebenen Poiseuille Str¨omung von elektrorheologischen Fl¨ussigkeiten (ERF) zwischen zwei parallelen Platten in einem r¨aumlich variablen elektrischen Feld, das durch endliche Elek- troden generiert wird. Kapitel 1 besteht aus einer generellen Beschreibung von ERFs und ihren technischen Anwendungen und pr¨asentiert die Motivation, das Ziel und die Grenzen dieser Arbeit. Kapitel 2 fasst die grundlegenden Gleichungen der Elektrorheologie (basierend auf ph¨anomenologischen Ans¨atzen, die in [28, 29] pr¨asentiert wurden mit den dazugeh¨orenden Sprungbedingungen) zusammen. Es wurde angenommen, dass die Str¨omung nicht das elektrische Feld beeinflusst und folglich das elektrische Problem vom mechanischen Prob- lem entkoppelt ist. Beide, elektrische und mechanische Randwertprobleme, sind in ver- schiedenen Konfigurationen von endlichen Elektroden mit unterschiedlichen Potentialen entlang der Kanalw¨ande formuliert. Der einfache Fall von zwei unendlichen Elektroden, die ein homogenes elektrisches Feld generieren, ist analytisch gel¨ost. In Kapitel 3 wurden analytische L¨osungen f¨urunterschiedliche gemischte Randwert- probleme, die durch das in Kapitel 2 formulierte elektrische Problem auftreten, durch die Anwendung der Wiener-Hopf Methode gefunden. Die L¨osung wurde mittels un- endlicher
Recommended publications
  • Lecture 18 Ocean General Circulation Modeling
    Lecture 18 Ocean General Circulation Modeling 9.1 The equations of motion: Navier-Stokes The governing equations for a real fluid are the Navier-Stokes equations (con­ servation of linear momentum and mass mass) along with conservation of salt, conservation of heat (the first law of thermodynamics) and an equation of state. However, these equations support fast acoustic modes and involve nonlinearities in many terms that makes solving them both difficult and ex­ pensive and particularly ill suited for long time scale calculations. Instead we make a series of approximations to simplify the Navier-Stokes equations to yield the “primitive equations” which are the basis of most general circu­ lations models. In a rotating frame of reference and in the absence of sources and sinks of mass or salt the Navier-Stokes equations are @ �~v + �~v~v + 2�~ �~v + g�kˆ + p = ~ρ (9.1) t r · ^ r r · @ � + �~v = 0 (9.2) t r · @ �S + �S~v = 0 (9.3) t r · 1 @t �ζ + �ζ~v = ω (9.4) r · cpS r · F � = �(ζ; S; p) (9.5) Where � is the fluid density, ~v is the velocity, p is the pressure, S is the salinity and ζ is the potential temperature which add up to seven dependent variables. 115 12.950 Atmospheric and Oceanic Modeling, Spring '04 116 The constants are �~ the rotation vector of the sphere, g the gravitational acceleration and cp the specific heat capacity at constant pressure. ~ρ is the stress tensor and ω are non-advective heat fluxes (such as heat exchange across the sea-surface).F 9.2 Acoustic modes Notice that there is no prognostic equation for pressure, p, but there are two equations for density, �; one prognostic and one diagnostic.
    [Show full text]
  • Vortex Stretching in Incompressible and Compressible Fluids
    Vortex stretching in incompressible and compressible fluids Esteban G. Tabak, Fluid Dynamics II, Spring 2002 1 Introduction The primitive form of the incompressible Euler equations is given by du P = ut + u · ∇u = −∇ + gz (1) dt ρ ∇ · u = 0 (2) representing conservation of momentum and mass respectively. Here u is the velocity vector, P the pressure, ρ the constant density, g the acceleration of gravity and z the vertical coordinate. In this form, the physical meaning of the equations is very clear and intuitive. An alternative formulation may be written in terms of the vorticity vector ω = ∇× u , (3) namely dω = ω + u · ∇ω = (ω · ∇)u (4) dt t where u is determined from ω nonlocally, through the solution of the elliptic system given by (2) and (3). A similar formulation applies to smooth isentropic compressible flows, if one replaces the vorticity ω in (4) by ω/ρ. This formulation is very convenient for many theoretical purposes, as well as for better understanding a variety of fluid phenomena. At an intuitive level, it reflects the fact that rotation is a fundamental element of fluid flow, as exem- plified by hurricanes, tornados and the swirling of water near a bathtub sink. Its derivation from the primitive form of the equations, however, often relies on complex vector identities, which render obscure the intuitive meaning of (4). My purpose here is to present a more intuitive derivation, which follows the tra- ditional physical wisdom of looking for integral principles first, and only then deriving their corresponding differential form. The integral principles associ- ated to (4) are conservation of mass, circulation–angular momentum (Kelvin’s theorem) and vortex filaments (Helmholtz’ theorem).
    [Show full text]
  • Studies on Blood Viscosity During Extracorporeal Circulation
    Nagoya ]. med. Sci. 31: 25-50, 1967. STUDIES ON BLOOD VISCOSITY DURING EXTRACORPOREAL CIRCULATION HrsASHI NAGASHIMA 1st Department of Surgery, Nagoya University School of Medicine (Director: Prof Yoshio Hashimoto) ABSTRACT Blood viscosity was studied during extracorporeal circulation by means of a cone in cone viscometer. This rotational viscometer provides sixteen kinds of shear rate, ranging from 0.05 to 250.2 sec-1 • Merits and demerits of the equipment were described comparing with the capillary viscometer. In experimental study it was well demonstrated that the whole blood viscosity showed the shear rate dependency at all hematocrit levels. The influence of the temperature change on the whole blood viscosity was clearly seen when hemato· crit was high and shear rate low. The plasma viscosity was 1.8 cp. at 37°C and Newtonianlike behavior was observed at the same temperature. ·In the hypothermic condition plasma showed shear rate dependency. Viscosity of 10% LMWD was over 2.2 fold as high as that of plasma. The increase of COz content resulted in a constant increase in whole blood viscosity and the increased whole blood viscosity after C02 insufflation, rapidly decreased returning to a little higher level than that in untreated group within 3 minutes. Clinical data were obtained from 27 patients who underwent hypothermic hemodilution perfusion. In the cyanotic group, w hole blood was much more viscous than in the non­ cyanotic. During bypass, hemodilution had greater influence upon whole blood viscosity than hypothermia, but it went inversely upon the plasma viscosity. The whole blood viscosity was more dependent on dilution rate than amount of diluent in mljkg.
    [Show full text]
  • The Influence of Negative Viscosity on Wind-Driven, Barotropic Ocean
    916 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 30 The In¯uence of Negative Viscosity on Wind-Driven, Barotropic Ocean Circulation in a Subtropical Basin DEHAI LUO AND YAN LU Department of Atmospheric and Oceanic Sciences, Ocean University of Qingdao, Key Laboratory of Marine Science and Numerical Modeling, State Oceanic Administration, Qingdao, China (Manuscript received 3 April 1998, in ®nal form 12 May 1999) ABSTRACT In this paper, a new barotropic wind-driven circulation model is proposed to explain the enhanced transport of the western boundary current and the establishment of the recirculation gyre. In this model the harmonic Laplacian viscosity including the second-order term (the negative viscosity term) in the Prandtl mixing length theory is regarded as a tentative subgrid-scale parameterization of the boundary layer near the wall. First, for the linear Munk model with weak negative viscosity its analytical solution can be obtained with the help of a perturbation expansion method. It can be shown that the negative viscosity can result in the intensi®cation of the western boundary current. Second, the fully nonlinear model is solved numerically in some parameter space. It is found that for the ®nite Reynolds numbers the negative viscosity can strengthen both the western boundary current and the recirculation gyre in the northwest corner of the basin. The drastic increase of the mean and eddy kinetic energies can be observed in this case. In addition, the analysis of the time-mean potential vorticity indicates that the negative relative vorticity advection, the negative planetary vorticity advection, and the negative viscosity term become rather important in the western boundary layer in the presence of the negative viscosity.
    [Show full text]
  • Circulation, Lecture 4
    4. Circulation A key integral conservation property of fluids is the circulation. For convenience, we derive Kelvin’s circulation theorem in an inertial coordinate system and later transform back to Earth coordinates. In inertial coordinates, the vector form of the momentum equation may be written dV = −α∇p − gkˆ + F, (4.1) dt where kˆ is the unit vector in the z direction and F represents the vector frictional acceleration. Now define a material curve that, however, is constrained to lie at all times on a surface along which some state variable, which we shall refer to for now as s,is a constant. (A state variable is a variable that can be expressed as a function of temperature and pressure.) The picture we have in mind is shown in Figure 3.1. 10 The arrows represent the projection of the velocity vector onto the s surface, and the curve is a material curve in the specific sense that each point on the curve moves with the vector velocity, projected onto the s surface, at that point. Now the circulation is defined as C ≡ V · dl, (4.2) where dl is an incremental length along the curve and V is the vector velocity. The integral is a closed integral around the curve. Differentiation of (4.2) with respect to this gives dC dV dl = · dl + V · . (4.3) dt dt dt Since the curve is a material curve, dl = dV, dt so the integrand of the last term in (4.3) can be written as a perfect derivative and so the term itself vanishes.
    [Show full text]
  • 4. Circulation and Vorticity This Chapter Is Mainly Concerned With
    4. Circulation and vorticity This chapter is mainly concerned with vorticity. This particular flow property is hard to overestimate as an aid to understanding fluid dynamics, essentially because it is difficult to mod- ify. To provide some context, the chapter begins by classifying all different kinds of motion in a two-dimensional velocity field. Equations are then developed for the evolution of vorticity in three dimensions. The prize at the end of the chapter is a fluid property that is related to vorticity but is even more conservative and therefore more powerful as a theoretical tool. 4.1 Two-dimensional flows According to a theorem of Helmholtz, any two-dimensional flowV()x, y can be decom- posed as V= zˆ × ∇ψ+ ∇χ , (4.1) where the “streamfunction”ψ()x, y and “velocity potential”χ()x, y are scalar functions. The first part of the decomposition is non-divergent and the second part is irrotational. If we writeV = uxˆ + v yˆ for the flow in the horizontal plane, then 4.1 says that u = –∂ψ⁄ ∂y + ∂χ ∂⁄ x andv = ∂ψ⁄ ∂x + ∂χ⁄ ∂y . We define the vertical vorticity ζ and the divergence D as follows: ∂v ∂u 2 ζ =zˆ ⋅ ()∇ × V =------ – ------ = ∇ ψ , (4.2) ∂x ∂y ∂u ∂v 2 D =∇ ⋅ V =------ + ----- = ∇ χ . (4.3) ∂x ∂y Determination of the velocity field givenζ and D requires boundary conditions onψ andχ . Contours ofψ are called “streamlines”. The vorticity is proportional to the local angular velocity aboutzˆ . It is known entirely fromψ()x, y or the first term on the rhs of 4.1.
    [Show full text]
  • Rheometry CM4650 4/27/2018
    Rheometry CM4650 4/27/2018 Chapter 10: Rheometry Capillary Rheometer piston CM4650 F entrance region Polymer Rheology r A barrel z 2Rb polymer melt L 2R reservoir B exit region Q Professor Faith A. Morrison Department of Chemical Engineering Michigan Technological University 1 © Faith A. Morrison, Michigan Tech U. Rheometry (Chapter 10) measurement All the comparisons we have discussed require that we somehow measure the material functions on actual fluids. 2 © Faith A. Morrison, Michigan Tech U. 1 Rheometry CM4650 4/27/2018 Rheological Measurements (Rheometry) – Chapter 10 Tactic: Divide the Problem in half Modeling Calculations Experiments Dream up models RHEOMETRY Calculate model Build experimental predictions for Standard Flows apparatuses that stresses in standard allow measurements flows in standard flows Calculate material Calculate material functions from Compare functions from model stresses measured stresses Pass judgment on models U. A. Morrison,© Tech Faith Michigan Collect models and their report 3 cards for future use Chapter 10: Rheometry Capillary Rheometer piston CM4650 F entrance region Polymer Rheology r A barrel z 2Rb polymer melt L 2R reservoir B exit region Q Professor Faith A. Morrison Department of Chemical Engineering Michigan Technological University 4 © Faith A. Morrison, Michigan Tech U. 2 Rheometry CM4650 4/27/2018 Rheological Measurements (Rheometry) – Chapter 10 Tactic: Divide the Problem in half Modeling Calculations Experiments Dream up models RHEOMETRY Calculate model Build experimental predictions for Standard Flows apparatuses that stresses in standard allow measurements in standard flows As withflows Advanced Rheology,Calculate material there is way Calculate material functions from Compare functions from too muchmodel stresseshere to cover in measured stresses the time we have.
    [Show full text]
  • Circulation and Vorticity
    Lecture 4: Circulation and Vorticity • Circulation •Bjerknes Circulation Theorem • Vorticity • Potential Vorticity • Conservation of Potential Vorticity ESS227 Prof. Jin-Yi Yu Measurement of Rotation • Circulation and vorticity are the two primary measures of rotation in a fluid. • Circul ati on, whi ch i s a scal ar i nt egral quantit y, i s a macroscopic measure of rotation for a finite area of the fluid. • Vorticity, however, is a vector field that gives a microscopic measure of the rotation at any point in the fluid. ESS227 Prof. Jin-Yi Yu Circulation • The circulation, C, about a closed contour in a fluid is defined as thliihe line integral eval uated dl along th e contour of fh the component of the velocity vector that is locally tangent to the contour. C > 0 Î Counterclockwise C < 0 Î Clockwise ESS227 Prof. Jin-Yi Yu Example • That circulation is a measure of rotation is demonstrated readily by considering a circular ring of fluid of radius R in solid-body rotation at angular velocity Ω about the z axis . • In this case, U = Ω × R, where R is the distance from the axis of rotation to the ring of fluid. Thus the circulation about the ring is given by: • In this case the circulation is just 2π times the angular momentum of the fluid ring about the axis of rotation. Alternatively, note that C/(πR2) = 2Ω so that the circulation divided by the area enclosed by the loop is just twice thlhe angular spee dfifhid of rotation of the ring. • Unlike angular momentum or angular velocity, circulation can be computed without reference to an axis of rotation; it can thus be used to characterize fluid rotation in situations where “angular velocity” is not defined easily.
    [Show full text]
  • Modeling the General Circulation of the Atmosphere. Topic 1: a Hierarchy of Models
    Modeling the General Circulation of the Atmosphere. Topic 1: A Hierarchy of Models DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES TOPIC 1: 1-7-16 Modeling the General Circulation In this class… We’ll study: ¡ The “general circulation” of the atmosphere ¡ Large scale features of the climate Questions like… What determines the precipitation distribution on Earth? GPCP Climatology (1979-2006) Questions like… What determines the precipitation distribution on Earth? GPCP (1979-2006) Questions like… What determines the north-south temperature distribution on Earth? Questions like… What determines the vertical temperature structure on Earth? 350 200 340 ] 330 mb 400 [ 320 310 290 600 290 Pressure 270 280 800 260 280 270 300 300 1000 90˚S 60˚S 30˚S 0˚ 30˚N 60˚N 90˚N Latitude Dry static energy from NCEP reanalysis Questions like… What determines the vertical temperature structure on Earth? 310 320 300 310 400 290 ] 330 280 300 mb 320 [ 600 270 Pressure 290 800 260 280 330 270 1000 90˚S 60˚S 30˚S 0˚ 30˚N 60˚N 90˚N Latitude Moist static energy from NCEP reanalysis Questions like… What determines the location/intensity of the jet streams? -10 -5 0 0 200 ] 25 20 5 mb 400 0 [ 20 15 5 600 10 Pressure 15 5 10 800 1000 90˚S 60˚S 30˚S 0˚ 30˚N 60˚N 90˚N Latitude Zonally averaged zonal winds from NCEP reanalysis Questions like… What determines the intensity of eddies? Questions like… How will these change with global warming? Rainy regions get rainier, dry regions get drier From Lu et al 2006 First: General Circulation
    [Show full text]
  • 6 Fundamental Theorems: Vorticity and Circulation
    EOSC 512 2019 6 Fundamental Theorems: Vorticity and Circulation In GFD, and especially the study of the large-scale motions of the atmosphere and ocean, we are particularly interested in the rotation of the fluid. As a consequence, again assuming the motions are of large enough scale to feel the e↵ects of (in particular, the di↵erential) rotation of the outer shell of rotating, spherical planets: The e↵ects of rotation play a central role in the general dynamics of the fluid flow. This means that vorticity (rotation or spin of fluid elements) and circulation (related to a conserved quantity...) play an important role in governing the behaviour of large-scale atmospheric and oceanic motions. This can give us important insight into fluid behaviour that is deeper than what is derived from solving the equations of motion (which is challenging enough in the first place). In this section, we will develop two such theorems and principles related to the conservation of vorticity and circulation that are particularly useful in gaining insight into ocean and atmospheric flows. 6.1 Review: What is vorticity? Vorticity was previously defined as: @uk !i = ✏ijk (6.1) @xj Or, in vector notation: ~! = ~u r⇥ ˆi ˆj kˆ @ @ @ = (6.2) @x @y @z uvw @w @v @u @w @v @u = ˆi + ˆj + ˆi @y − @z @z − @x @x − @y ✓ ◆ ✓ ◆ ✓ ◆ Physically, the vorticity is two times the local rate of rotation (or “spin”) of a fluid element. Here, it is important to distinguish between circular motion and the rotation of the element. Here, the fluid element moving from A to B on the circular path has no vorticity, while the fluid element moving from C to D has non-zero vorticity.
    [Show full text]
  • APPH 4200 Physics of Fluids Review (Ch
    APPH 4200 Physics of Fluids Review (Ch. 3) & Fluid Equations of Motion (Ch. 4) 1. Chapter 3 (more notes/examples) 2. Vorticity and Circulation 3. Navier-Stokes Equation Summary: Cauchy-Stokes Decomposition Velocity Gradient Tensor Kinematics Exercise 77 terms of the streamfunction. Differentiating this with respect to x, and following a similar rule, we obtain nctions of rand e, the chain a21/ = cose~ (cose a 1/ _ sine a1/J _ sine ~ (cose a1/ _ sine a1/J. ax2 ar ar r ae r ae ar r ae (3.42) t (:~)e' In a similar manner, -=sma21/ . e a- (. smea1/ -+--cose a1/J +--cose a sme-+--(. a1/ cose a1/J . se + u sine. (3.41) ay2 ar ar r ae r ae -ar r ae (3.43) quation (3.40) implies a1//ar The addition of equations (3.41) and (3.42) leads to Therefore, the polar velocity a21/ a21/ i a (a1/) i a21/ ax2 + ay2 = -; ar ra; + r2 ae2 = 0, which completes the transformation.Problem 3.1 Exercises t the derivative of 1/ gives the 1. A two-dimensional steady flow has velocity components he direction of differentiation. irdinates. The chain rule gives u =y v =x. sin e a1/ --- Show that the streamines are rectangular hyperbolas r ae x2 _ y2 = const. Sketch the flow pattern, and convince yourself that it represents an irrotational flow in a 90° comer. , 2. Consider a steady axisymmetrc flow of a compressibla fluid. The equation ,/ of continuity in cylindrcal coordinatesa a (R, cp, x) is -(pRUR)aR ax+ -(pRux) = O. Show how we can define" a streamfnction so that the equation of contiuity is satisfied automatically.
    [Show full text]
  • Circulation, Vorticity, and Potential Vorticity
    Chapter 4 Circulation, Vorticity, and Potential Vorticity 4.1. What is the circulation about a square of 1000 km on a side for an easterly (that is, westward flowing) wind that decreases 1 in magnitude toward the north at a rate of 10 m s− per 500 km? What is the mean relative vorticity in the square? 1 Solution: Vorticity is: ζ @v @u 0 10 m s− 2 10 5 s 1 D @x − @y D − 5 105 m D − × − − RR 5 1× 12 2 7 2 1 But, C ζdA ζmA 2 10 s 10 m 2 10 m s . D A D D − × − − D − × − 4.2. A cylindrical column of air at 30◦N with radius 100 km expands to twice its original radius. If the air is initially at rest, what is the mean tangential velocity at the perimeter after expansion? Solution: From the circulation theorem C .2 sin φ/ A Constant. Thus, Cfinal 2 sin φ .Ainitial Afinal/ Cinitial. 2 2 C D D 2 − C But Ainitial πri , and Afinal πrf . But rf 2ri. Therefore, Cfinal 2 sin φ 3πri . Now V Cfinal 2πrf , so D D 1 D D − D V 2 sin φ . 3ri=4/ 5:5 m s (anticyclonic). D − D − − 4.3. An air parcel at 30 N moves northward, conserving absolute vorticity. If its initial relative vorticity is 5 10 5 s 1, what is ◦ × − − its relative vorticity upon reaching 90◦N? Solution: Absolute vorticity is conserved for the column: ζ f Constant. Thus, ζfinal ζinitial . finitial ffinal/. Hence, 5 C D 5 1 D C − ζfinal 2 sin .π=2/ 5 10 2 sin .π=6/ 2:3 10 s .
    [Show full text]