Bid Leading to Necroptosis Attack Mitochondria Through Processing Of

Total Page:16

File Type:pdf, Size:1020Kb

Bid Leading to Necroptosis Attack Mitochondria Through Processing Of Granulysin Induces Cathepsin B Release from Lysosomes of Target Tumor Cells to Attack Mitochondria through Processing of Bid Leading to Necroptosis This information is current as of September 24, 2021. Honglian Zhang, Chao Zhong, Lei Shi, Yuming Guo and Zusen Fan J Immunol 2009; 182:6993-7000; ; doi: 10.4049/jimmunol.0802502 http://www.jimmunol.org/content/182/11/6993 Downloaded from References This article cites 40 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/182/11/6993.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Granulysin Induces Cathepsin B Release from Lysosomes of Target Tumor Cells to Attack Mitochondria through Processing of Bid Leading to Necroptosis1 Honglian Zhang, Chao Zhong, Lei Shi, Yuming Guo, and Zusen Fan2 Granulysin is a killer effector molecule localized in cytolytic granules of human NK and CTL cells. Granulysin exhibits broad antimicrobial activity and potent cytotoxic action against tumor cells. However, the molecular mechanism of granulysin-induced tumor lysis is poorly understood. In this study, we found that granulysin causes a novel cell death termed necroptosis. Granulysin can target lysosomes of target tumor cells and induce partial release of lysosomal contents into the cytosol. Relocalized lysosomal cathepsin B can process Bid to active tBid to cause cytochrome c and apoptosis-activating factor release from mitochondria. Cathepsin B silencing and Bid or Bax/Bak deficiency resists granulysin-induced cytochrome c and apoptosis-activating factor Downloaded from release and is less susceptible to cytolysis against target tumor cells. The Journal of Immunology, 2009, 182: 6993–7000. ranule exocytosis-mediated cytolysis plays a major role in GNLY even at a very high concentration. Krensky and colleagues the innate and adaptive immunity against intracellular (18) generated GNLY-transgenic mice and exhibited their signif- G pathogens and tumor cells. Granulysin (GNLY)3 is colo- icant protection against lethal tumor challenge. However, the mo- calized in the cytotoxic granules along with a pore-forming protein, lecular mechanism of GNLY-induced tumor lysis is less defined. perforin (1, 2). GNLY has two major forms, 15 and 9 kDa. The 9-kDa Lysosomes have been considered to be solely involved in ne- http://www.jimmunol.org/ form is processed from the larger precursor 15-kDa form and only the crotic and autophagic cell death for many years. Likewise, lyso- 9-kDa GNLY exerts cytolytic activity (3). GNLY is a member of the somal proteases were believed to be limited to nonspecific intra- saposin-like protein family of lipid-binding proteins that includes cellular protein degradation in the lysosome. However, recent amoebapores, saposins, and NK lysin (4–6). GNLY exhibits broad- accumulating evidence strongly demonstrated that lysosomes par- spectrum antimicrobial activity against both Gram-positive and -neg- ticipate in the induction of apoptosis beyond that of simple “gar- ative bacteria, fungi, and parasites (7–9). Recent reports showed that bage disposals.” A complete destruction of lysosomes with release cytotoxic CD8ϩ T cells and CD4ϩ T cells use GNLY, rather than of high concentrations of lysosomal enzymes into the cytosol re- perforin, to kill Cryptococcus neoformans (10, 11). sults in unregulated necrosis, whereas partial, sequential perme- by guest on September 24, 2021 Besides its antimicrobial function, GNLY also harbors potent abilization triggers programmed cell death (PCD) (19). Several cytotoxic activity against tumor cells (12). GNLY can lyse Jurkat lysosomal proteases known as cathepsins, were released into the cells with apoptotic features in vitro. This apoptosis is associated cytosol of target cells as a result of moderate lysosomal disruption with an increase of intracellular calcium and a decrease of intra- (20, 21). Cathepsin B (Cath B) from lysosomes enhances mitochon- cellular potassium. Increasing intracellular calcium causes mito- drial release of cyt c and subsequent caspase activation in TNF-treated chondrial damage to release cytochrome c (cyt c) and apoptosis- hepatocytes (22). Cathepsin D triggers Bax activation resulting in se- inducing factor (AIF) leading to mitochondria-dependent cell lective AIF release in T lymphocytes in the early commitment phase death (13–17). Mitochondria-deficient RBC were not lysed by to apoptosis. An important cytosolic factor, Bid, was reported to be cleaved by some cathepsins and translocated to the mitochondria fol- lowing lysosomal disruption by lysosomotropic agents (23). Thus, a National Laboratory of Biomacromolecules and Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China lysosomal pathway is connected with a mitochondrial pathway to ini- tiate apoptosis through these Bcl-2 family proteins. In this study, we Received for publication July 30, 2008. Accepted for publication March 20, 2009. found that GNLY can target lysosomes of target tumor cells and in- The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance duce partial release of lysosomal contents. Relocalized lysosomal with 18 U.S.C. Section 1734 solely to indicate this fact. Cath B can process Bid to active tBid to cause cyt c and AIF release 1 This work was supported by the National Natural Science Foundation of China from mitochondria. Bid or Bak/Bax deficiency resists GNLY-induced (Grants 30700126, 30772496, 30525005, and 30830030), 863 program (Grant cyt c and AIF release and necroptosis. 2006AA02Z4C9), 973 programs (Grants 2006CB504303 and 2006CB910901), the Innovative Program (KSCX2-YW-R-42), and the Hundred Talents Program of the Chinese Academy of Sciences. Materials and Methods 2 Address correspondence and reprint requests to Dr. Zusen Fan, National Laboratory of Biomacromolecules and Center for Infection and Immunity, Institute of Biophys- Cell lines, Abs, and reagents ics, Chinese Academy of Sciences, Beijing 100101, China. E-mail address: fanz@ moon.ibp.ac.cn Jurkat cells were grown in RPMI 1640 and HeLa cells in DMEM supple- mented with 10% FCS, 50 ␮M 2-ME, 100 U/ml penicillin, and 100 ␮g/ml 3 Abbreviations used in this paper: GNLY, granulysin; cyt c, cytochrome c; Cath B, streptomycin. Mouse embryo fibroblasts (MEFs) were cultured in DMEM cathepsin B; MEF, mouse embryo fibroblast; STP, staurosporine; AO, acridine or- supplemented with 10% FCS, 100 ␮M asparagine, and 50 ␮M 2-ME. Bid ange; AIF, apoptosis-inducing factor; PCD, programmed cell death; Z-RR-AMC, Z-Arg-Arg-7-amido-4-methylcoumarin hydrochloride; PI, propidium iodide; Z-FA- wild-type (WT) MEFs and Bid knockout MEFs were provided by Dr. A. fmk, Z-Phe-Ala-fluormethyl ketone; WT, wild type; shRNA, short hairpin RNA; Strasser (The Walter and Eliza Hall Institute of Medical Research, CHX, cycloheximide. Parkville, Australia) and Bax/Bak double knockout MEFs were provided by Dr. Q. Chen (Institute of Zoology, Chinese Academy of Sciences, Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00 Beijing, China). Human PBMC and RBC were obtained from healthy www.jimmunol.org/cgi/doi/10.4049/jimmunol.0802502 6994 GNLY-INDUCED NECROPTOSIS BY TARGETING LYSOSOMES volunteers and isolated by a lymphocyte separation kit. Commercial Abs were goat polyclonal to Cath B (Santa Cruz Biotechnology) for confocal and mouse anti-Cath B (Millipore) for Western blotting, rabbit polyclonal to LAMP-1 (Abcam), mouse anti-cyt c (BD Pharmingen), rabbit anti-AIF (BD Pharmingen), monoclonal anti-␤-actin (Sigma-Aldrich), HRP-conju- gated sheep anti-mouse IgG and HRP-conjugated sheep anti-rabbit IgG (Santa Cruz Biotechnology), Alexa Fluor 488-conjugated donkey anti- mouse IgG (Molecular Probes), and Alexa Fluor 594-conjugated donkey anti-rabbit IgG (Molecular Probes). Rabbit antiserum against Bid was pro- vided by Dr. X. Wang (University of Texas Southwestern Medical Center, Dallas, TX) and mouse anti-GNLY was provided by Dr. A. Krensky (Stan- ford University, Stanford, CA). Propidium iodide (PI), acridine orange (AO), and Z-Arg-Arg-7-amido-4-methylcoumarin hydrochloride were ob- tained from Sigma-Aldrich. Mitotracker was from Molecular Probes. Z- FA-fmk and FITC-annexin V were purchased from BD Pharmingen. Expression and purification of recombinant GNLY pET28a-GNLY (a gift from A. Krensky) was expressed in Escherichia coli BL21-AI and the soluble supernatant was purified on a nickel column. Then the His tag was removed by thrombin treatment. Reverse-phase HPLC was used to further purification. After lyophilization, the protein
Recommended publications
  • Cytokine-Enhanced Cytolytic Activity of Exosomes from NK Cells
    Cancer Gene Therapy https://doi.org/10.1038/s41417-021-00352-2 ARTICLE Cytokine-enhanced cytolytic activity of exosomes from NK Cells 1 1 2 3 2 3 Yutaka Enomoto ● Peng Li ● Lisa M. Jenkins ● Dimitrios Anastasakis ● Gaelyn C. Lyons ● Markus Hafner ● Warren J. Leonard 1 Received: 4 February 2021 / Revised: 9 May 2021 / Accepted: 18 May 2021 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021. This article is published with open access Abstract Natural killer (NK) cells play key roles in immune surveillance against tumors and viral infection. NK cells distinguish abnormal cells from healthy cells by cell–cell interaction with cell surface proteins and then attack target cells via multiple mechanisms. In addition, extracellular vesicles (EVs) derived from NK cells (NK-EVs), including exosomes, possess cytotoxic capacity against tumor cells, but their characteristics and regulation by cytokines remain unknown. Here, we report that EVs derived from human NK-92 cells stimulated with IL-15 + IL-21 show enhanced cytotoxic capacity against tumor cells. Major cytolytic granules, granzyme B and granzyme H, are enriched by IL-15 + IL-21 stimulation in NK-EVs; however, knockout experiments reveal those cytolytic granules are independent of enhanced cytotoxic capacity. To find out the key molecules, mass spectrometry analyses were 1234567890();,: 1234567890();,: performed with different cytokine conditions, no cytokine, IL-15, IL-21, or IL-15 + IL-21. We then found that CD226 (DNAM-1) on NK-EVs is enriched by IL-15 + IL-21 stimulation and that blocking antibodies against CD226 reduced the cytolytic activity of NK-EVs.
    [Show full text]
  • Coordination of Intratumoral Immune Reaction and Human Colorectal Cancer Recurrence
    Published OnlineFirst March 3, 2009; DOI: 10.1158/0008-5472.CAN-08-2654 Published Online First on March 3, 2009 as 10.1158/0008-5472.CAN-08-2654 Research Article Coordination of Intratumoral Immune Reaction and Human Colorectal Cancer Recurrence Matthieu Camus,1,2,3 Marie Tosolini,1,2,3 Bernhard Mlecnik,1,2,3 Franck Page`s,1,2,3,4 Amos Kirilovsky,1,2,3 Anne Berger,5 Anne Costes,1,2,3 Gabriela Bindea,1,2,3,7 Pornpimol Charoentong,7 Patrick Bruneval,6 Zlatko Trajanoski,7 Wolf-Herman Fridman,1,2,3,4 and Je´roˆme Galon1,2,3 1Integrative Cancer Immunology INSERM AVENIR Team 15, INSERM U872; 2Cordeliers Research Centre, Universite´Pierre et Marie Curie Paris 6; 3Universite´ Paris-Descartes;Departments of 4Immunology, 5General and Digestive Surgery, and 6Pathology, Georges Pompidou European Hospital, Paris, France;and 7Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria Abstract immune destruction. As revealed by experiments in immune- deficient mice, immune responses mediated by IFNg (2, 3) and A role for the immune system in controlling the progression of solid tumors has been established in several mouse models. cytotoxic mediators such as perforin (4, 5) secreted by lymphocytes However, the effect of immune responses and tumor escape on are involved in cancer immunosurveillance (6, 7). In human cancer, patient prognosis in the context of human cancer is poorly complex tumor-host interactions are less well documented. understood. Here, we investigate the cellular and molecular However, lymphocytes were also shown to participate in anti- parameters that could describe in situ immune responses in tumoral responses (8).
    [Show full text]
  • A Novel CD4+ CTL Subtype Characterized by Chemotaxis and Inflammation Is Involved in the Pathogenesis of Graves’ Orbitopa
    Cellular & Molecular Immunology www.nature.com/cmi ARTICLE OPEN A novel CD4+ CTL subtype characterized by chemotaxis and inflammation is involved in the pathogenesis of Graves’ orbitopathy Yue Wang1,2,3,4, Ziyi Chen 1, Tingjie Wang1,2, Hui Guo1, Yufeng Liu2,3,5, Ningxin Dang3, Shiqian Hu1, Liping Wu1, Chengsheng Zhang4,6,KaiYe2,3,7 and Bingyin Shi1 Graves’ orbitopathy (GO), the most severe manifestation of Graves’ hyperthyroidism (GH), is an autoimmune-mediated inflammatory disorder, and treatments often exhibit a low efficacy. CD4+ T cells have been reported to play vital roles in GO progression. To explore the pathogenic CD4+ T cell types that drive GO progression, we applied single-cell RNA sequencing (scRNA-Seq), T cell receptor sequencing (TCR-Seq), flow cytometry, immunofluorescence and mixed lymphocyte reaction (MLR) assays to evaluate CD4+ T cells from GO and GH patients. scRNA-Seq revealed the novel GO-specific cell type CD4+ cytotoxic T lymphocytes (CTLs), which are characterized by chemotactic and inflammatory features. The clonal expansion of this CD4+ CTL population, as demonstrated by TCR-Seq, along with their strong cytotoxic response to autoantigens, localization in orbital sites, and potential relationship with disease relapse provide strong evidence for the pathogenic roles of GZMB and IFN-γ-secreting CD4+ CTLs in GO. Therefore, cytotoxic pathways may become potential therapeutic targets for GO. 1234567890();,: Keywords: Graves’ orbitopathy; single-cell RNA sequencing; CD4+ cytotoxic T lymphocytes Cellular & Molecular Immunology
    [Show full text]
  • Bovine NK-Lysin: Copy Number Variation and PNAS PLUS Functional Diversification
    Bovine NK-lysin: Copy number variation and PNAS PLUS functional diversification Junfeng Chena, John Huddlestonb,c, Reuben M. Buckleyd, Maika Maligb, Sara D. Lawhona, Loren C. Skowe, Mi Ok Leea, Evan E. Eichlerb,c, Leif Anderssone,f,g, and James E. Womacka,1 aDepartment of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843; bDepartment of Genome Sciences, University of Washington, Seattle, WA 98195; cHoward Hughes Medical Institute, University of Washington, Seattle, WA 98195; dSchool of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; eDepartment of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843; fDepartment of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE 75123, Sweden; and gDepartment of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, SE 75007, Sweden Contributed by James E. Womack, November 20, 2015 (sent for review November 5, 2015; reviewed by Denis M. Larkin and Harris A. Lewin) NK-lysin is an antimicrobial peptide and effector protein in the host compared with humans and mice. These include genes coding innate immune system. It is coded by a single gene in humans and AMPs such as the cathelicidins and β-defensins, members of most other mammalian species. In this study, we provide evidence the IFN gene family, C-type lysozyme, and lipopolysaccharide- for the existence of four NK-lysin genes in a repetitive region on binding protein (ULBP) (23–28). Expansion of these gene fam- cattle chromosome 11. The NK2A, NK2B,andNK2C genes are tan- ilies potentially can give rise to new functional paralogs with demly arrayed as three copies in ∼30–35-kb segments, located implications in the unique gastric physiology of ruminants or in 41.8 kb upstream of NK1.
    [Show full text]
  • Mutant GNLY Is Linked to Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis
    Human Genetics (2019) 138:1267–1274 https://doi.org/10.1007/s00439-019-02066-w ORIGINAL INVESTIGATION Mutant GNLY is linked to Stevens–Johnson syndrome and toxic epidermal necrolysis Dora Janeth Fonseca1 · Luz Adriana Caro2 · Diana Carolina Sierra‑Díaz1 · Carlos Serrano‑Reyes3 · Olga Londoño1 · Yohjana Carolina Suárez1 · Heidi Eliana Mateus1 · David Bolívar‑Salazar1 · Ana Francisca Ramírez4 · Alejandra de‑la‑Torre5 · Paul Laissue1 Received: 11 July 2019 / Accepted: 25 September 2019 / Published online: 14 October 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare severe cutaneous adverse reactions to drugs. Granulysin (GNLY) plays a key role in keratinocyte apoptosis during SJS/TEN pathophysiology. To determine if GNLY-encoding mutations might be related to the protein’s functional disturbances, contributing to SJS/TEN pathogenesis, we performed direct sequencing of GNLY’s coding region in a group of 19 Colombian SJS/TEN patients. A GNLY genetic screening was implemented in a group of 249 healthy individuals. We identifed the c.11G > A heterozygous sequence variant in a TEN case, which creates a premature termination codon (PTC) (p.Trp4Ter). We show that a mutant protein is synthesised, possibly due to a PTC-readthrough mechanism. Functional assays demonstrated that the mutant protein was abnormally located in the nuclear compartment, potentially leading to a toxic efect. Our results argue in favour of GNLY non-synonymous sequence variants contributing to SJS/TEN pathophysiology, thereby constituting a promising, clinically useful molecular biomarker. Introduction skin detachment secondary to keratinocyte death, and ocular involvement (Duong et al.
    [Show full text]
  • Effects of Sex and Aging on the Immune Cell Landscape As Assessed by Single-Cell Transcriptomic Analysis
    Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis Zhaohao Huanga,1, Binyao Chena,1, Xiuxing Liua,1,HeLia,1, Lihui Xiea,1, Yuehan Gaoa,1, Runping Duana, Zhaohuai Lia, Jian Zhangb, Yingfeng Zhenga,2, and Wenru Sua,2 aState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China; and bDepartment of Clinical Research Center, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved June 22, 2021 (received for review November 19, 2020) Sex and aging influence the human immune system, resulting in the immune system integrates numerous interconnected compo- disparate responses to infection, autoimmunity, and cancer. How- nents, pathways, and cell types in sex and aging. ever, the impact of sex and aging on the immune system is not yet To this end, we profiled the transcriptomes of peripheral im- fully elucidated. Using small conditional RNA sequencing, we mune cells sampled from men and women of two distinct age found that females had a lower percentage of natural killer (NK) groups. Then, we investigated sex- and age-related differences in cells and a higher percentage of plasma cells in peripheral blood PBMC immune cell composition, molecular programs, and com- compared with males. Bioinformatics revealed that young females munication network. Extensive differences in all of these aspects exhibited an overrepresentation of pathways that relate to T and were observed between sexes, particularly in aging. Compared – B cell activation. Moreover, cell cell communication analysis revealed with males, females exhibited a higher expression of T cell (TC)– evidence of increased activity of the BAFF/APRIL systems in females.
    [Show full text]
  • Expansions of Adaptive-Like NK Cells with a Tissue-Resident Phenotype in Human Lung and Blood
    Expansions of adaptive-like NK cells with a tissue-resident phenotype in human lung and blood Demi Brownliea,1, Marlena Scharenberga,1, Jeff E. Moldb, Joanna Hårdb, Eliisa Kekäläinenc,d,e, Marcus Buggerta, Son Nguyenf,g, Jennifer N. Wilsona, Mamdoh Al-Amerih, Hans-Gustaf Ljunggrena, Nicole Marquardta,2,3, and Jakob Michaëlssona,2 aCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden; bDepartment of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; cTranslational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland; dDepartment of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland; eHelsinki University Central Hospital Laboratory, Division of Clinical Microbiology, Helsinki University Hospital, 00290 Helsinki, Finland; fDepartment of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; gInstitute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and hThoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden Edited by Marco Colonna, Washington University in St. Louis School of Medicine, St. Louis, MO, and approved January 27, 2021 (received for review August 18, 2020) Human adaptive-like “memory” CD56dimCD16+ natural killer (NK) We and others recently identified a subset of tissue-resident − cells in peripheral blood from cytomegalovirus-seropositive indi- CD49a+CD56brightCD16 NK cells in the human lung (14, 15). viduals have been extensively investigated in recent years and are The human lung is a frequent site of infection with viruses such currently explored as a treatment strategy for hematological can- as influenza virus and HCMV, as well as a reservoir for latent cers.
    [Show full text]
  • Stronger Inflammatory/Cytotoxic T-Cell Response in Women Identified by Microarray Analysis
    Genes and Immunity (2009) 10, 509–516 & 2009 Macmillan Publishers Limited All rights reserved 1466-4879/09 $32.00 www.nature.com/gene ORIGINAL ARTICLE Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis A Hewagama, D Patel, S Yarlagadda, FM Strickland and BC Richardson Department of Internal Medicine, Rheumatology Division, The University of Michigan, Ann Arbor, MI, USA Women develop chronic inflammatory autoimmune diseases more often than men. The mechanisms causing the increased susceptibility are incompletely understood. Chronic immune stimulation characterizes many autoimmune disorders. We hypothesized that repeated stimulation may cause a different T-cell response in women than in men. Microarrays were used to compare gene expression in T cells from healthy men and women with and without repeated stimulation. Four days after a single stimulation, only 25% of differentially expressed, gender-biased genes were expressed at higher levels in women. In contrast, after restimulation, 72% were more highly expressed in women. Immune response genes were significantly over- represented among the genes upregulated in women and among the immune response genes, the inflammatory/cytotoxic effector genes interferon-g (IFN-g), lymphotoxin b (LTb), granzyme A (GZMA), interleukin-12 receptor b2 (IL12Rb2), and granulysin (GNLY) were among those overexpressed to the highest degree. In contrast, IL17A was the only effector gene more highly expressed in men. Estrogen response elements were identified in the promoters of half the overexpressed immune genes in women, and in o10% of the male-biased genes. The differential expression of inflammatory/cytotoxic effector molecules in restimulated female T cells may contribute to the differences in autoimmune diseases between women and men.
    [Show full text]
  • Original Article Increased Granulysin in the Peripheral Blood and Tissues of Patients with Oral Lichen Planus
    Int J Clin Exp Pathol 2019;12(5):1634-1641 www.ijcep.com /ISSN:1936-2625/IJCEP0093170 Original Article Increased granulysin in the peripheral blood and tissues of patients with oral lichen planus Juanyong Xu1,2*, Lin Liu1,2*, Jing Shan1,2, Shan Li1,2, Chen Shen1,2, Chen Wang1,2, Yuan Fan1,2 1Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; 2Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China. *Equal con- tributors. Received February 28, 2019; Accepted March 28, 2019; Epub May 1, 2019; Published May 15, 2019 Abstract: Oral lichen planus (OLP) is a chronic inflammatory disease of unclear etiology and pathogenesis. Granulysin (GNLY) participates in various immune responses and mediates various skin diseases. However, its expression in OLP has not been reported. This study was to investigate whether there was an abnormal expression of GNLY in the peripheral blood and tissues of patients with OLP. Twenty patients with non-erosive OLP, twenty patients with erosive OLP, and twenty healthy controls were enrolled. The mRNA expression of GNLY in the peripheral blood and tissues was detected using RT-qPCR. The protein expression of GNLY in the peripheral blood plasma was measured using ELISA. The GNLY in tissues was investigated using immunohistochemistry. The mRNA and protein expression of GNLY in non-erosive and erosive OLP patients, when compared with the controls, were upregulated both in the pe- ripheral blood and tissue. Also, in non-erosive and erosive OLP lesion tissues, there was a weak positive expression of GNLY in the lymphocyte membrane of the lamina propria layer and was less expressed in the epithelial layer.
    [Show full text]
  • Granulysin: Killer Lymphocyte Safeguard Against Microbes
    Available online at www.sciencedirect.com ScienceDirect Granulysin: killer lymphocyte safeguard against microbes 1 2 Farokh Dotiwala and Judy Lieberman Primary T cell immunodeficiency and HIV-infected patients are of infected target cells, such as perturbations of major plagued by non-viral infections caused by bacteria, fungi, and histocompatibility protein expression or molecular signs parasites, suggesting an important and underappreciated role of cellular stress, as part of innate immunity. Most killer for T lymphocytes in controlling microbes. Here, we review T cells, as part of the adaptive immune response, only recent studies showing that killer lymphocytes use the expand and become cytotoxic about a week after they first antimicrobial cytotoxic granule pore-forming peptide encounter target cells. However, innate-like killer T cells granulysin, induced by microbial exposure, to permeabilize (gd T cells, NK T cells, mucosal associated invariant cholesterol-poor microbial membranes and deliver death- T (MAIT) cells) that have restricted T cell receptors that inducing granzymes into these pathogens. Granulysin and recognize common features of infected cells, including granzymes cause microptosis, programmed cell death in pathogenic lipids and microbial metabolites, are often microbes, by inducing reactive oxygen species and destroying localized at barrier surfaces where infection enters the microbial antioxidant defenses and disrupting biosynthetic and body. These killer cells may have been activated by other central metabolism pathways
    [Show full text]
  • Single-Cell Transcriptomics of Human T Cells Reveals Tissue and Activation Signatures in Health and Disease
    ARTICLE https://doi.org/10.1038/s41467-019-12464-3 OPEN Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease Peter A. Szabo 1,6, Hanna Mendes Levitin2,6, Michelle Miron1,3, Mark E. Snyder1, Takashi Senda1,4, Jinzhou Yuan2, Yim Ling Cheng2, Erin C. Bush2, Pranay Dogra1, Puspa Thapa1, Donna L. Farber 1,3,4,7*& Peter A. Sims 2,5,7* 1234567890():,; Human T cells coordinate adaptive immunity in diverse anatomic compartments through production of cytokines and effector molecules, but it is unclear how tissue site influences T cell persistence and function. Here, we use single cell RNA-sequencing (scRNA-seq) to define the heterogeneity of human T cells isolated from lungs, lymph nodes, bone marrow and blood, and their functional responses following stimulation. Through analysis of >50,000 resting and activated T cells, we reveal tissue T cell signatures in mucosal and lymphoid sites, and lineage-specific activation states across all sites including distinct effector states for CD8+ T cells and an interferon-response state for CD4+ T cells. Comparing scRNA-seq profiles of tumor-associated T cells to our dataset reveals predominant activated CD8+ compared to CD4+ T cell states within multiple tumor types. Our results therefore establish a high dimensional reference map of human T cell activation in health for analyzing T cells in disease. 1 Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA. 2 Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA. 3 Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
    [Show full text]
  • Distinguishing Human Peripheral Blood NK Cells From
    www.nature.com/scientificreports OPEN Distinguishing Human Peripheral Blood NK Cells from CD56dimCD16dimCD69+CD103+ Received: 5 June 2017 Accepted: 2 February 2018 Resident Nasal Mucosal Lavage Published: xx xx xxxx Fluid Cells Meghan E. Rebuli1, Erica A. Pawlak2, Dana Walsh1, Elizabeth M. Martin3 & Ilona Jaspers1,2,4 Natural killer (NK) cells are members of the innate lymphoid cells group 1 (ILC1s), which play a critical role in innate host defense against viruses and malignancies. While many studies have examined the role of circulating peripheral blood (PB) CD56+ NK cells, little is known about the resident CD56+ cell population. Therefore, matched CD56+ cells from nasal lavage fuid (NLF) and PB of smokers and non- smokers were compared phenotypically, via fow cytometry, and functionally, via NK-cell specifc gene expression. NLF and PB CD56+ cells had similar expression of CD56, but diferentially expressed tissue residency (CD69 and CD103) and cytotoxicity (CD16) markers. In addition, NLF CD56dim cells expressed lower levels of cytotoxicity-associated genes, perforin (PRF1) and granzyme B (GZMB), and increased levels of cytokines and cell signaling molecules, TRAIL, IFNGR2, and IL8, as compared to PB CD56dim cells. In smokers, ITGA2 was downregulated in NLF CD56dim cells, while markers of cytotoxic function were primarily downregulated in PB CD56dim NK cells. Overall, NLF CD56dim cells are a unique cell population that likely play a role in orchestrating innate immune responses in the nasal cavity, which is distinct from their role as a non-antigen-restricted cytotoxic CD56dim lymphocytes in the PB. Natural killer (NK) cells belong to the family of innate lymphoid cells (ILCs), sharing many characteristics with ILC group 1 (ILC1) in non-mucosal tissues1, including the expression of certain surface markers and the abil- ity to produce interferon gamma (IFNγ) in response to invading pathogens.
    [Show full text]