Agate Fossil Beds National Monument: Paleontological Resources Management Plan (Public Version)

Total Page:16

File Type:pdf, Size:1020Kb

Agate Fossil Beds National Monument: Paleontological Resources Management Plan (Public Version) National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Agate Fossil Beds National Monument Paleontological Resources Management Plan (Public Version) Natural Resource Report NPS/AGFO/NRR—2020/2172 ON THE COVER A cast skeleton of Daeodon, standing over a cast skeleton of Moropus, on display at the AGFO Visitor Center. NPS Photo. Agate Fossil Beds National Monument Paleontological Resources Management Plan (Public Version) Natural Resource Report NPS/AGFO/NRR—2020/2172 Scott Kottkamp1, Vincent L. Santucci2, Justin S. Tweet3, Jessica De Smet4, and Ellen Starck5 1Agate Fossil Beds National Monument 301 River Road Harrison, Nebraska 69346 2National Park Service Geologic Resources Division 1849 “C” Street, NW Washington, D.C. 20240 3National Park Service 9149 79th St. S. Cottage Grove, Minnesota 55016 4University of Oregon Hopkins/Davis Lab Eugene, Oregon 97403 5Badlands National Park 25216 Ben Reifel Road Interior, South Dakota 57750 September 2020 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data. Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Government. This report is available in digital format from the Northern Great Plains Inventory & Monitoring Network and the Natural Resource Publications Management website. If you have difficulty accessing information in this publication, particularly if using assistive technology, please email [email protected]. Please cite this publication as: Kottkamp, S., V. L. Santucci, J. S. Tweet, J. De Smet, and E. Starck. 2020. Agate Fossil Beds National Monument: Paleontological resources management plan (public version). Natural Resource Report NPS/AGFO/NRR—2020/2172. National Park Service, Fort Collins, Colorado. https://doi.org/10.36967/nrr-2278685. NPS 165/173719, September 2020 ii Contents Page Figures................................................................................................................................................... ix Tables .................................................................................................................................................... ix Photographs ........................................................................................................................................... xi Appendices ..........................................................................................................................................xiii Executive Summary ............................................................................................................................. xv Acknowledgments .............................................................................................................................. xvii Dedication ........................................................................................................................................... xix Introduction ............................................................................................................................................ 1 Significance of Paleontological Resources at AGFO ..................................................................... 1 Purpose and Need ........................................................................................................................... 1 Project Objectives ........................................................................................................................... 3 Legal Authorities ............................................................................................................................ 4 American Antiquities Act of 1906 ............................................................................................ 4 NPS Organic Act of 1916 .......................................................................................................... 4 Archaeological Resources Protection Act (ARPA) of 1979 ..................................................... 4 Federal Cave Resources Protection Act (FCRPA) of 1988 ....................................................... 5 National Parks Omnibus Management Act of 1998 .................................................................. 5 Assessment of Fossil Management on Federal and Indian Lands, A Report to Congress by the Secretary of the Interior (May 2000) .............................................................. 5 Omnibus Public Lands Act of 2009 (HR 146 & PL 111-11): Subtitle D – Paleontological Resources Preservation (October 2nd 2009) ..................................................... 6 NPS Regulations ........................................................................................................................ 7 NPS Management Policies (2006) ............................................................................................. 8 NPS Director’s Order 77 ......................................................................................................... 10 Background Geology and Paleontology .............................................................................................. 11 Overview of Paleontological Resources and Localities at AGFO ............................................... 11 iii Contents (continued) Page Stratigraphy .................................................................................................................................. 12 Stratigraphic Columns, Cross Sections and “Type Sections” ................................................. 13 Sharps Formation..................................................................................................................... 14 Harrison Formation ................................................................................................................. 15 Anderson Ranch Formation ..................................................................................................... 16 Runningwater Formation ......................................................................................................... 18 Quaternary Deposits ................................................................................................................ 19 Geologic Maps.............................................................................................................................. 19 Paleontological Resource Sensitivity Maps ............................................................................ 19 AGFO Park Atlas .................................................................................................................... 19 History of Paleontological Work at AGFO .................................................................................. 21 Current Hypothesis on Origin of AGFO Bonebed ....................................................................... 22 North American Land Mammal Ages .......................................................................................... 25 AGFO’s Role in Defining the Arikareean NALMA and Miocene Epoch .............................. 25 Paleontological Resources Management ............................................................................................. 29 Strategic Goals Relating to Paleontological Resources ................................................................ 29 Resource Preservation and Curation ....................................................................................... 29 Supporting and Overseeing Scientific Inquiry ........................................................................ 30 Public Education and Interpretation ........................................................................................ 31 Paleontological Resource Inventories .......................................................................................... 31 When Are Specimens Collected During Inventory? ............................................................... 33 Documenting and Numbering New Fossil Localities.............................................................
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • New Materials of Chalicotherium Brevirostris (Perissodactyla, Chalicotheriidae)
    Geobios 45 (2012) 369–376 Available online at www.sciencedirect.com Original article New materials of Chalicotherium brevirostris (Perissodactyla, Chalicotheriidae) § from the Tunggur Formation, Inner Mongolia Yan Liu *, Zhaoqun Zhang Laboratory of Evolutionary Systematics of Vertebrate, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142, Xizhimenwai Street, PO Box 643, Beijing 100044, PR China A R T I C L E I N F O A B S T R A C T Article history: Chalicotherium brevirostris was named by Colbert based on a skull lacking mandibles from the late Middle Received 23 March 2011 Miocene Tunggur Formation, Tunggur, Inner Mongolia, China. Here we describe new mandibular Accepted 6 October 2011 materials collected from the same area. In contrast to previous expectations, the new mandibular Available online 14 July 2012 materials show a long snout, long diastema, a three lower incisors and a canine. C. brevirostris shows some sexual dimorphism and intraspecific variation in morphologic characters. The new materials differ Keywords: from previously described C. cf. brevirostris from Cixian County (Hebei Province) and the Tsaidam Basin, Tunggur which may represent a different, new species close to C. brevirostris. The diagnosis of C. brevirostris is Middle Miocene revised. Chalicotheriinae Chalicotherium ß 2012 Elsevier Masson SAS. All rights reserved. 1. Abbreviations progress in understanding the Tunggur geology and paleontology (Qiu et al., 1988). The most important result of this expedition so far is
    [Show full text]
  • The Carnivora (Mammalia) from the Middle Miocene Locality of Gračanica (Bugojno Basin, Gornji Vakuf, Bosnia and Herzegovina)
    Palaeobiodiversity and Palaeoenvironments https://doi.org/10.1007/s12549-018-0353-0 ORIGINAL PAPER The Carnivora (Mammalia) from the middle Miocene locality of Gračanica (Bugojno Basin, Gornji Vakuf, Bosnia and Herzegovina) Katharina Bastl1,2 & Doris Nagel2 & Michael Morlo3 & Ursula B. Göhlich4 Received: 23 March 2018 /Revised: 4 June 2018 /Accepted: 18 September 2018 # The Author(s) 2018 Abstract The Carnivora (Mammalia) yielded in the coal mine Gračanica in Bosnia and Herzegovina are composed of the caniform families Amphicyonidae (Amphicyon giganteus), Ursidae (Hemicyon goeriachensis, Ursavus brevirhinus) and Mustelidae (indet.) and the feliform family Percrocutidae (Percrocuta miocenica). The site is of middle Miocene age and the biostratigraphical interpretation based on molluscs indicates Langhium, correlating Mammal Zone MN 5. The carnivore faunal assemblage suggests a possible assignement to MN 6 defined by the late occurrence of A. giganteus and the early occurrence of H. goeriachensis and P. miocenica. Despite the scarcity of remains belonging to the order Carnivora, the fossils suggest a diverse fauna including omnivores, mesocarnivores and hypercarnivores of a meat/bone diet as well as Carnivora of small (Mustelidae indet.) to large size (A. giganteus). Faunal similarities can be found with Prebreza (Serbia), Mordoğan, Çandır, Paşalar and Inönü (all Turkey), which are of comparable age. The absence of Felidae is worthy of remark, but could be explained by the general scarcity of carnivoran fossils. Gračanica records the most eastern European occurrence of H. goeriachensis and the first occurrence of A. giganteus outside central Europe except for Namibia (Africa). The Gračanica Carnivora fauna is mostly composed of European elements. Keywords Amphicyon . Hemicyon .
    [Show full text]
  • Agate Fossil Beds National Monument: a Proposal
    a frMrfxteaC Tincted Sfatei. 'Hattattat 'Pa'16, Service Cover: FOSSIL SLAB FROM THE AGATE QUARRIES Courtesy University of Nebraska State Museum ANCIENT LIFE AT THE AGATE SITE Illustration by Charles R. Knight Courtesy Chicago Natural History Museum PROPOSED AGATE FOSSIL BEDS NATIONAL MONUMENT NEBRASKA August 1963 Department of the Interior National Park Service Midwest Region Omaha, Nebraska Created in I8U9, the Department of the Interior— America's Department of Natural Resources—is concerned with the management, conservation, and development of the Nation's water, wildlife, mineral, forest, and park and recreational resources. It also has major responsibilities for Indian and Territorial affairs. As the Nation's principal conservation agency, the Department works to assure that nonrenewable re­ sources are developed and used wisely, that park and recreational resources make their full contri­ bution to the progress, prosperity, and security of the United States—now and in the future. CONTENTS Page Introduction 1 The Setting 3 Geologic History 7 Fossil Collecting History 23 The Cook Family - Early Pioneers of the West 29 Significance 33 Suitability 35 Feasibility 38 Conclusions and Recommendations 39 Proposed Development and Use kl The Proposed Area and Its Administration k6 Acknowledgements k7 Bibliography kQ Fifteen Million Years Ago in Western Nebraska From an illustration by Erwin Christinas Courtesy Natural History Magazine INTRODUCTION The Agate Springs Fossil Quarries site located in Sioux County, Nebraska, is world renowned for its rich concentrations of the fossil remains of mammals that lived fifteen million years ago. A study of this site was made by the Midwest Region, National Park Service in the fall of i960, and a preliminary report prepared.
    [Show full text]
  • Educator Guide, Grades
    Texas Memorial Museum Page 1 Hall of Geology and Paleontology Overview Over its long history Texas has been pocked by meteorites and covered by oceans. Mountains have come and gone, and new ones have appeared. Forests have sprouted and disappeared, and the climate has changed dramatically. Texas has been home to some of the world’s strangest and most spectacular creatures. Its dynamic geological history has left today’s Texas with a great wealth of natural resources. So walk with us back through the Ice Ages, beyond the Age of Dinosaurs, into the most remote depths of Texas’ natural history. By studying environments and life forms of Texas’ past, we have learned much about our natural world today. As you walk through the Hall of Geology and Paleontology, consider this: what will the Texas environment be like in the future? Texas Essential Knowledge and Skills Correlations English Language Arts and Reading 3rd grade - 3.1, 3.3, 3.4, 3.6, 3.7, 3.8, 3.9, 3.14, 3.15, 3.18, 3.20 4th grade - 4.1, 4.3, 4.5, 4.7, 4.8, 4.9, 4.10, 4.15, 4.16, 4.18, 4.19, 4.21, 4.25 5th grade - 5.1, 5.3, 5.7, 5.8, 5.9, 5.10, 5.15, 5.16, 5.18, 5.19, 5.21, 5.25 Science 3rd grade - 3.9 (A-C), 3.10 (A) 4th grade - 4.9 (A,B), 4.10 (A) 5th grade -5.7(D), 5.9 (A-C), 5.10(A) Social Studies 3rd grade - 3.16 (E) 4th grade - 4.6 (A), 4.22 (C) 5th grade - 5.6 (A), 5.25 (C) Words to Know • adaptation – Features or behaviors that can improve a plant or animal’s chance for survival and of producing more surviving young.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Investigating Sexual Dimorphism in Ceratopsid Horncores
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-01-25 Investigating Sexual Dimorphism in Ceratopsid Horncores Borkovic, Benjamin Borkovic, B. (2013). Investigating Sexual Dimorphism in Ceratopsid Horncores (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26635 http://hdl.handle.net/11023/498 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Investigating Sexual Dimorphism in Ceratopsid Horncores by Benjamin Borkovic A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES CALGARY, ALBERTA JANUARY, 2013 © Benjamin Borkovic 2013 Abstract Evidence for sexual dimorphism was investigated in the horncores of two ceratopsid dinosaurs, Triceratops and Centrosaurus apertus. A review of studies of sexual dimorphism in the vertebrate fossil record revealed methods that were selected for use in ceratopsids. Mountain goats, bison, and pronghorn were selected as exemplar taxa for a proof of principle study that tested the selected methods, and informed and guided the investigation of sexual dimorphism in dinosaurs. Skulls of these exemplar taxa were measured in museum collections, and methods of analysing morphological variation were tested for their ability to demonstrate sexual dimorphism in their horns and horncores.
    [Show full text]
  • GEOL 204 the Fossil Record Spring 2020 Section 0109 Luke Buczynski, Eamon, Doolan, Emmy Hudak, and Shutian Wang
    ENTELODONT: The Hellacious Pigs of the Cenozoic GEOL 204 The Fossil Record Spring 2020 Section 0109 Luke Buczynski, Eamon, Doolan, Emmy Hudak, and Shutian Wang Entelodont Overview: From the family Entelodontidae, these omnivorous mammals had a wide geographic variety, as seen in image B. They first inhabited Mongolia then spread into Eurasia and North America, while in North America they preferred flood plains and woodlands. Entelodont were fairly aggressive and would fight with their own kind, using their strong jaws and large heads. They survived from the middle of Eocene to the middle of Miocene. Size and Diet: Skull Features: Figure D shows one of the largest Entelodont, Daedon, compared to an As seen on Figure C, the skull of the Entelodont is massive. They all 1.8 meter tall human, illustrating how immense they really were. contained large Neural Spines, most likely to hold up their huge head, Entelodont weighed from 150 kg on the small size, up to 900 kg (330 to which in turn created a hump. Entelodont contained a pretty small 2,000 pounds) and 1 to 2 meters in height. They had teeth that made them brain, but large olfactory lobes, giving them an acute sense of smell. capable of consuming meat, but the overall structure and wear on the the They held sturdy canines, long incisors, sharp serrated premolars, and suggest the consumption of plant matter as well. Although these large blunt square molars (a sign of omnivory), all of which were covered in a animals might not look it, their limbs were fully terrestrial and adept for very thick layer of enamel.
    [Show full text]
  • Species Were Accidentally Lost,But Future Shipments Will Probably
    59.9(728) Article XXXIV.- MAMMALS FROM NICARAGUA. BY J. A. ALLEN. During the last two years the Museum has received several collections of birds and mammals from Nicaragua, made by Mr. William B. Richardson, who for many years was in the employ of Messrs. Salvin and Godman as an ornithological collector in Mexico and Central America. The mammals thus far received comprise about 400 specimens, representing nearly 60 species, of which about one-fourth appear to be undescribed. This is perhaps not surprising, in view of the fact that very few mammals have been previously received from Nicaragua. The most important of Mr. Richardson's discoveries are a new and very distinct species of Bassaricyon, and a new species of spiney rat, allied to the Ecuadorian Echimys gymnurus Thomas, and representing a hitherto unrecognized genus. The collection contains also several other species which are quite differentt from any previously known. Mr. Richardson's collecting trips have covered a wide extent of country. From his home at Matagalpa, in the central part of Nicaragua, he visited the highlands to the northward and northwestward, and also the Pacific coast; eastward his explorations extended from Lake Nicaragua to the vicinity of the Atlantic coast. The principal points at which collections were made are as follows: Matagalpa, altitude about 3000 feet. San Rafael del Norte, altitude about 5000 feet. Ocotal, altitude about 4500 feet. Chinandega, on the Pacific slope, about 700 feet. Chontales, lowlands east of Lake Nicaragua, altitude about 500 to 1000 feet. Tuma and Lavala, east of Matagalpa, on the Atlantic slope, below 1000 feet.
    [Show full text]
  • Earth Science Week 2009
    Earth Science Week 2013 “Mapping Our World” Highlights and News Clips American Geosciences Institute 4220 King Street, Alexandria, Virginia 22302 www.earthsciweek.org • [email protected] Ann E. Benbow, Ph.D. • Geoff Camphire • Katelyn Murtha Made possible with support from U.S. Geological Survey • National Park Service • NASA AAPG Foundation • Association of American State Geologists Esri • American Geophysical Union • Geological Society of America National Geographic • Society for Mining, Metallurgy, and Exploration 1 Earth Science Week 2013 “Mapping Our World” Highlights and News Clips Table of Contents Introduction 4 Overview 5 Key Partnerships and Efforts 5 Earth Science Week Toolkits 13 Web Resources 13 Newsletter 14 National Contests 15 Earth Science Teacher Award 15 Events 16 Citywide Celebration 17 AGI Promotions 17 Official Proclamations 18 Publicity and Media Coverage 18 External Evaluation: Key Outcomes 20 Sponsors and Contributors 21 Activities by State, Territory, and Nation 22 Announcements and News Clips www.earthsciweek.org/highlights Because of the large and increasing number of news clippings citing Earth Science Week activities and resources, the print edition of the print report no longer includes clippings. To view the hundreds of press releases and news items promoting awareness of Earth Science Week each year, please go online to www.earthsciweek.org/highlights. Thank you for helping us in our efforts to conserve resources and protect the environment. 2 3 Highlights and News Clips from Earth Science Week 2013 Introduction Held October 13-19, 2013, the 16th annual Earth Science Week celebrated the theme of “Mapping Our World.” The 2013 event, like past celebrations, promoted public and professional awareness of Earth science in education and society.
    [Show full text]
  • Rocky Start of Dinosaur National Monument (USA), the World's First Dinosaur Geoconservation Site
    Original Article Rocky Start of Dinosaur National Monument (USA), the World's First Dinosaur Geoconservation Site Kenneth Carpenter Prehistoric Museum, Utah State University Eastern Price, Utah 80504 USA Abstract The quarry museum at Dinosaur National Monument, which straddles the border between the American states of Colorado and Utah, is the classic geoconservation site where visitors can see real dinosaur bones embedded in rock and protected from the weather by a concrete and glass structure. The site was found by the Carnegie Museum in August 1909 and became a geotourist site within days of its discovery. Within a decade, visitors from as far as New Zealand traveled the rough, deeply rutted dirt roads to see dinosaur bones in the ground for themselves. Fearing that the site would be taken over by others, the Carnegie Museum attempted twice to take the legal possession of the land. The second attempt had consequences far beyond what the Museum intended when the federal government declared the site as Dinosaur National Monument in 1915, thus taking ultimate control from the Carnegie Museum. Historical records and other archival data (correspondence, diaries, reports, newspapers, hand drawn maps, etc.) are used to show that the unfolding of events was anything but smooth. It was marked by misunderstanding, conflicting Corresponding Author: goals, impatience, covetousness, miscommunication, unrealistic expectation, intrigue, and some Kenneth Carpenter paranoia, which came together in unexpected ways for both the Carnegie Museum and the federal Utah State University Eastern Price, government. Utah 80504 USA Email: [email protected] Keywords: Carnegie Museum, Dinosaur National Monument, U.S. National Park Service.
    [Show full text]