Phthalic Anhydride Catalysts Brochure

Total Page:16

File Type:pdf, Size:1020Kb

Phthalic Anhydride Catalysts Brochure Do you want to combine experience with innovation? BASF Phthalic Anhydride Catalysts are the market leading solution for your oxidation process. Introduction Phthalic Anhydride Catalysts 03 Table of Content BASF Catalysts Introduction BASF – We create Chemistry BASF Catalysts Introduction 03 As the world’s leading chemical company, BASF: Offers intelligent solutions and high-quality products BASF Research & Development 09 for most industrial challenges Uses new technologies to optimize additional market opportunities Phthalic Anhydride Catalysts Portfolio 12 Combines added value with environmental protection and social responsibility Phthalic Anhydride Catalysts for o-Xylene Oxidation 12 Phthalic Anhydride Catalysts for Naphthalene/Mixed 16 BASF at a Glance Support Technical Services 19 At BASF, we create chemistry for a sustainable future. We combine economic success with environmental protection and social responsibility. More than 117,000 employees in the BASF Group work on contributing to the success of our customers in nearly all sectors and almost every country in the world. Our portfolio is organized into six segments: Chemicals, Materials, Industrial Solutions, Surface Technologies, Nutrition & Care and Agricultural Solutions. BASF has companies in more than 90 countries. We operate six Verbund sites and 361 additional production sites world- wide. Our Verbund site in Ludwigshafen, Germany, is the world’s largest chemical complex owned by a single company that was developed as an integrated network. This was where the Verbund principle was originally established and continu- ously optimized before being implemented at additional sites. BASF's Catalysts division, headquartered in Iselin, New Jersey, is the world’s leading supplier of environmental and process catalysts. The group employs more than 5,000, with over 30 manufacturing sites worldwide. As a global division of BASF SE, Ludwigshafen, Germany, Catalysts offers exceptional expertise in the development of technologies that protect the air we breathe, produce the fuels that power our world and ensure efficient production of a wide variety of chemicals, plastics and other products including advanced battery materials. By leveraging its industry-leading research and development (R&D) platforms, passion for innovation and deep knowledge of precious metals, BASF's Catalysts division develops unique, proprietary catalyst and adsorbent solutions that drive customer success. 04 Phthalic Anhydride Catalysts Introduction Introduction Phthalic Anhydride Catalysts 05 Phthalic Anhydride Catalyst History BASF Quality and Reputation are Unmatched World Consumption of Phthalic Anhydride Important Facts about Phthalic Anhydride by End Use – 2018 at BASF BASF’s Chemical Catalysts combine the strength of BASF – with the experience and expertise of our chemists and BASF provides phthalic anhydride (PA) catalysts for the pro- engineers. Our phthalic anhydride catalysts are valued 12.0 % duction of phthalic anhydride from the oxidation of o-Xylene components of the oxidation process for worldwide chemical Unsaturated polyester resin and naphthalene/mixed feed. manufacturing companies. BASF’s commitment to the phthalic anhydride process and o-Xylene/naphthalene oxidation to phthalic anhydride catalysts results in products and services BASF has been producing PA for over 140 years that meet and surpass customer expectations and 49.0 % 16.0 % requirements. Plasticizers BASF has been researching PA catalysts for more Others than 120 years The total PA at BASF's Ludwigshafen (Germany) site since 1873 is more than 4.0 million tons Production experience with post reactors since 1980 23.0 % Alkyd resins Source: IHS Markit 1968 1993 2002 2004 2009 2011 2018 Start-up of two First installation of O4-28 Acquisition of Wacker’s Introduction of new First installation of O4-68 First installation of O4-88 First installation of O4-888, with high commercial Phthalic Anhydride Phthalic Anhydride catalysts Phthalic Anhydride cata- with high PA yield PA yield and with improved PA quality plants at BASF Ludwigshafen and licensing business lyst for naphthalene/ and first installation ofO 4-35 with of O4-20 mixed feed oxidation superior PA quality O4-29 1968 1980 1993 2000 2002 2003 2004 2005 2009 2010 2011 2016 2018 1980 2000 2003 2005 2010 2016 First technical application at First Start-up of O4-32 Introduction of new Phthalic Introduction of new Phthalic First installation of O4-29 HiFlex First installation of O4-29 HiFlexII BASF Ludwigshafen of O4-26 Anhydride catalysts for o-Xylene Anhydride catalyst for o-Xylene with maximum operational with high PA yield and maximum oxidation O4-40/42 oxidation O4-66 flexibility operational flexibility 06 Phthalic Anhydride Catalysts Introduction Introduction Phthalic Anhydride Catalysts 07 Organization of the Phthalic Anhydride Catalyst Business Phthalic Anhydride Process Permanent Improvement of Process and Catalyst AMERICAS EMEA ASIA Iselin, New Jersey Ludwigshafen, Germany Shanghai, China Offgas Catalysts Division Catalyst Production Oxidation and Dehydrogenation Air Headquarters Catalyst Research Catalysts Global Business Management Regional Sales Regional Sales Regional Sales o-Xylene/ Steam 60 bar naphthalene Regional Customer Service Technical Service Technical Service and Supply Chain Regional Customer Service De Meern, Netherlands and Supply Chain Sao Paulo, Brazil Sales Office Sales Office Regional Customer Service Seoul, South Korea and Supply Chain Sales Office Pure PA tank Moscow, Russia Mumbai, India Sales Office Sales Office Main reactor Post reactor SC Pre-decomposer 2 comumn destillation From o-Xylene to Phthalic Anhydride l Moscow l Ludwigshafen De Meern l Seoul l Shanghai Iselin, NJ l l Mumbai l From Naphthalene to Phthalic Anhydride Sao Paulo l 08 Phthalic Anhydride Catalysts Introduction Research & Development Phthalic Anhydride Catalysts 09 Advantages of BASF as a Phthalic Anhydride Expert Technical Service Catalyst Supplier BASF Research & Development Our technical service staff has extensive professional experi- BASF offers over 140 years experience in Phthalic Anhydride ence in Phthalic Anhydride catalysts, including hands on oper- (PA) production and 120 years in PA catalysts research. This ational expertise in the areas of supervision, start up assis- legacy forms a strong foundation for continuous innovation tance and catalyst performance optimization. BASF has more and product improvement. Products and services are continu- than 80 years of experience in the loading and start up super- ally reviewed for alignment with our customers' needs through vision of Phthalic Anhydride catalysts. regular BASF Phthalic Anhydride Customer Forum meetings. With research and development, we shape the future and Delivery of our product to the customer site is just the begin- o-Xylene and naphthalene/mixed feed oxidation in fixed bed develop profitable growth. In 2018, we generated sales of BASF leads the world’s chemical industry ning of our offering. BASF stands behind its products and, process around € 9 billion with products launched on the market in in expen ditures for R&D with more than 2 billion € through our technical service representatives in Asia, Europe o-Xylene loadings up to 100 g/Nm3 the past five years that stemmed from research and develop- in investments. and America, ensures that our products perform and deliver Supply of complete catalyst filling and measurement equip- ment activities. Optimized processes and intelligent system As the strongest innovation power in the chemical value. We innovate to make our customers successful. ment on loan basis, including 5-tube, 10-tube and 20-tube solutions, along with new and innovative products, make key industry, BASF is ranked first in the Patent Asset catalyst filling machines contributions to the long-term success of our customers as Index™. Optimization of catalyst operation condition using portable well as ourselves. At BASF, more than 11,000 employees BASF filed 1,000 new patents in 2019. COx analyzers are working worldwide in research and development at Value Added Customer Service Verification of air flow measurements by total combustion approximately 70 locations. From order placement through invoicing, BASF's Customer BASF’s Research Verbund covers the central technology Service functions as the customer's voice by: platforms, the research and development units in our operat- Assigning a primary customer service representative ing divisions worldwide and at group companies, as well as Providing a Customer Service Network with 3 central hubs affiliated companies. In addition, we are currently involved in Addressing customer concerns in the language of the more than 1,900 collaborative partnerships worldwide with customer leading univer sities, research institutes, startup companies, and industrial partners, which add momentum to our research activities around the world. Main By-Products in Reaction Gas (o-Xylene feed) Maleic Anhydride Benzoic Acid Citraconic Anhydride Phthalide o-Toluic Aldehyde 2.2– 4.0 wt.% 0.4– 0.8 wt.% 0.3–0.5 wt.% 0.01– 0.1 wt.% 0.005– 0.02 wt.% Typical concentrations in reactor outlet gas (ROG) at 100 g/Nm3 for o-Xylene feed. Main By-Products in Reaction Gas (naphthalene feed) NH Naphthoquinone Phthalimide Maleic Anhydride Benzoic Acid 0.03– 1.0 wt.% 0.01– 0.3 wt.% 1.8– 3.5 wt.% 0.3– 0.7 wt.% Typical concentrations in reactor outlet gas (ROG) at 80 g/Nm3 for naphthalene feed. 10 Phthalic Anhydride Catalysts Research &
Recommended publications
  • SAFETY DATA SHEET Phthalic Anhydride - Flake
    Conforms to HCS 2012 - United States and Canada WHMIS 2015 SAFETY DATA SHEET Phthalic Anhydride - Flake Section 1. Identification GHS product identifier : Phthalic Anhydride - Flake Code : Not available. Other means of : Phthalic anhydride solid. identification Product type : Solid. [Flakes.] Relevant identified uses of the substance or mixture and uses advised against Identified uses : Used in the manufacturing of plasticizers, polyester and alkyd resins, dye intermediates, food preservatives, pharmaceuticals, insect repellants and perfume fixatives. Supplier's details : InterAtlas Chemical Inc. 63 Church Street, Suite 301 St. Catharines, ON CANADA L2R 3C4 Tel. 905.684.9991 Fax. 905.684.4504 www.interatlaschemical.com Emergency telephone : CHEMTREC, U.S. : 1-800-424-9300 International: +1-703-527-3887 number (with hours of 24/7 operation) Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : ACUTE TOXICITY (oral) - Category 4 substance or mixture SKIN IRRITATION - Category 2 SERIOUS EYE DAMAGE - Category 1 RESPIRATORY SENSITIZATION - Category 1 SKIN SENSITIZATION - Category 1 SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) (Respiratory tract irritation) - Category 3 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : H302 - Harmful if swallowed. H318 - Causes serious eye damage. H315 - Causes skin irritation. H334 - May cause allergy or asthma symptoms or breathing difficulties if inhaled. H317 - May cause an allergic skin reaction. H335 - May cause respiratory irritation. Precautionary statements InterAtlas Chemical 1/12 Tel: 905-684-9991 www.interatlaschemical.com Phthalic Anhydride - Flake Section 2. Hazards identification Prevention : P280 - Wear protective gloves. Wear eye or face protection.
    [Show full text]
  • The Condensation of Phenols with Maleic Anhydride
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 1951 The ondeC nsation of Phenols with Maleic Anhydride Leslie D. Kamstra Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Kamstra, Leslie D., "The ondeC nsation of Phenols with Maleic Anhydride" (1951). Theses and Dissertations. 2215. https://openprairie.sdstate.edu/etd/2215 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. THE CONDENSATION OF PHENOLS WITH MALEIC ANHYDRIDE By Leslie D. Kamstra This thesis is approved as a creditable independent investigation by a candidate for the degree, Master of Science, and acceptable as meeting the thesis requirements for this degree, but without imVlying that the conclusions reached by the candidate are neces­ sarily the conclusions of the major department. ,(\ � -� fSOUTH DAKOTA ·STATE COLLEGE LIBRARY page i TABLE OF CONTENTS Introduction• ••.......•..••••••••.•••••....•.•..•.••••• #,• 1 Condensation using Hydrated and Anhydrous Stannic Chloride 2 Preparation of the Original Product•• � •...•• � 2 Determination of Temperature and Time for Optimum
    [Show full text]
  • Phthalic Anhydride
    Right to Know Hazardous Substance Fact Sheet Common Name: PHTHALIC ANHYDRIDE Synonyms: 1,2-Benzendicarboxylic Anhydride; 1,3-Dioxophthalon CAS Number: 85-44-9 Chemical Name: 1,3-Isobenzofurandione RTK Substance Number: 1535 Date: August 2001 Revision: April 2010 DOT Number: UN 2214 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Phthallic Anhydride is a colorless to white, crystalline (sand- Hazard Summary like) or needle-shaped solid, or a pale yellow liquid when in Hazard Rating NJDOH NFPA molten form, with a strong, choking odor. It is used to make HEALTH - 3 plastics, resins, dyes, pharmaceuticals and fungicides. FLAMMABILITY - 1 REACTIVITY - 0 f ODOR THRESHOLD = 0.053 ppm CORROSIVE f Odor thresholds vary greatly. Do not rely on odor alone to POISONOUS GASES ARE PRODUCED IN FIRE determine potentially hazardous exposures. Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f Phthallic Anhydride is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, f Phthallic Anhydride can affect you when inhaled. NIOSH, DEP, IRIS, NFPA and EPA. f Contact can severely irritate and burn the skin and eyes. f This chemical is on the Special Health Hazard Substance f Inhaling Phthallic Anhydride can irritate the nose, throat List. and lungs. f Phthallic Anhydride may cause a skin allergy and an asthma-like allergy. f Phthallic Anhydride may damage the liver and kidneys. f Phthallic Anhydride is a DOT CORROSIVE. SEE GLOSSARY ON PAGE 5. Workplace Exposure Limits OSHA: The legal airborne permissible exposure limit (PEL) is FIRST AID 3 12 mg/m averaged over an 8-hour workshift.
    [Show full text]
  • Preparative Method of Novel Phthalocyanines from 3- Nitro
    Available online a t www.derpharmachemica.com Scholars Research Library Der Pharma Chemica, 2012, 4(4):1397-1403 (http://derpharmachemica.com/archive.html) ISSN 0975-413X CODEN (USA): PCHHAX Preparative Method of Novel Phthalocyanines from 3- Nitro Phthalic Anhydride, Cobalt salt and Urea with Chloromethylpolyestyrene as a Heterogenous, Reusable and Efficient Catalyst Mohammad Ali Zolfigol 2, Ali Reza Pourali 1, Sami Sajjadifar 3,4 and Shohreh Farahmand 1,2,4 1Faculty of Chemistry, Bu-Ali Sina University, Hamedan, P.O. Box 6517838683, Iran 2School of Chemistry, Damghan University, Damghan, Iran 3Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran 4Department of Chemistry, Payame Noor University, Tehran, P.O. Box 19395-4697, Iran _____________________________________________________________________________________________ ABSTRACT 3-Nitrophthalic anhydride was reacted with urea and cobalt salt in nitrobenzene under N 2 at 185°C and cobalt- tetraanitrophthalocyanine (CoTNP) was produced. Cobalt-tetraaminophthalocyanine (CoTAP) was produced by reduction of CoTNP caused by Sodium borohydride under N 2(g). CoTAP and chloromethylpolystyrene was refluxed in nitrobenzene or DMF at 180 oC for 12h. The mixture was cooled down to reach the room temperature and then solvent removed and the resulting precipitate was washed with water to remove excess CoTAP, and dried it to get a light green solid (CoTAP-linked-polymer). Kaywords Phthalocyanines, Cobaltetraminophthalocyanine, CoTAP ,Phthalocyanines linked polymer. _____________________________________________________________________________________________ INTRODUCTION Phthalocyanines are of interest not only as model compounds for the biologically important porphyrins but also because the intensely colored metal complexes are of commercial importance as dyes and pigments [1], the copper derivatives being an important blue pigment [2].
    [Show full text]
  • 6.5 Phthalic Anhydride
    6.5 Phthalic Anhydride 6.5.1 General1 Phthalic anhydride (PAN) production in the United States in 1972 was 0.9 billion pounds per year; this total is estimated to increase to 2.2 billion pounds per year by 1985. Of the current production, 50 percent is used for plasticizers, 25 percent for alkyd resins, 20 percent for unsaturated polyester resins, and 5 percent for miscellaneous and exports. PAN is produced by catalytic oxidation of either orthoxylene or naphthalene. Since naphthalene is a higher-priced feedstock and has a lower feed utilization (about 1.0 lb PAN/lb o-xylene versus 0.97 lb PAN/lb naphthalene), future production growth is predicted to utilize o-xylene. Because emission factors are intended for future as well as present application, this report will focus mainly on PAN production utilizing o-xylene as the main feedstock. The processes for producing PAN by o-xylene or naphthalene are the same except for reactors, catalyst handling, and recovery facilities required for fluid bed reactors. In PAN production using o-xylene as the basic feedstock, filtered air is preheated, compressed, and mixed with vaporized o-xylene and fed into the fixed-bed tubular reactors. The reactors contain the catalyst, vanadium pentoxide, and are operated at 650 to 725EF (340 to 385EC). Small amounts of sulfur dioxide are added to the reactor feed to maintain catalyst activity. Exothermic heat is removed by a molten salt bath circulated around the reactor tubes and transferred to a steam generation system. Naphthalene-based feedstock is made up of vaporized naphthalene and compressed air.
    [Show full text]
  • Phenolphthalein As Organic Teaching Materials: Small-Scale Preparation and Modeling for Some Functional Dyes
    Chemical Education Journal (CEJ), Vol. 13, No. 1 /Registration No. 13-11/Received July 29, 2009. URL = http://chem.sci.utsunomiya-u.ac.jp/cejrnlE.html Phenolphthalein as Organic Teaching Materials: Small-scale Preparation and Modeling for Some Functional Dyes AMIMOTO Kiichi* and KOGA Nobuyoshi Department of Science Education, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan *[email protected] Keywords: Organic dyes, teaching materials, phenolphthalein, small-scale experiment, modeling of functional materials Abstract Further possibilities for utilizing phenolphthalein as the sophisticated teaching materials were reinvestigated. It was proposed to use p-toluenesulfonic acid as the acid catalyst for the synthesis of phenolphthalein in conventional-scale and small-scale experiments in order to increase the reproducibility and to simplify the extraction procedures. Simplified model experiments for demonstrating the functionality of organic dyes were also developed using phenolphthalein and its derivatives. The practical usefulness of these experiments in chemistry courses at high schools was discussed. Introduction It is generally accepted that chemical changes accompanying with dramatic color changes serve to strengthen students’ enthusiasm and interest in studying chemistry. Various reaction systems which indicate such color changes have been continuously investigated for developing effective teaching materials [1-2]. The proton dissociation equilibrium of phenolphthalein (Scheme 1a), which indicates the color change between colorless and red-purple by the equilibrium shift, is one of the most popular color change phenomena for high school students, due to the utilizations as an acid-base indicator for neutralization titration, fountain of ammonia, and so on [3-4].
    [Show full text]
  • Benzyl Butyl Phthalate Or BBP)
    Toxicity Review for Benzyl­n­butyl Phthalate (Benzyl Butyl Phthalate or BBP) Introduction Benzyl butyl phthalate (BBP) is a man‐made phthalate ester that is mostly used in vinyl tile (CERHR, 2003). BBP can also be found as a plasticizer in polyvinyl chloride (PVC) for the manufacturing of conveyor belts, carpet, weather stripping and more. It is also found in some vinyl gloves and adhesives. BBP is produced by the sequential reaction of butanol and benzyl chloride with phthalic anhydride (CERHR, 2003). The Monsanto Company is the only US producer of BBP (IPCS, 1999). When BBP is added during the manufacturing of a product, it is not bound to the final product. However, through the use and disposal of the product, BBP can be released into the environment. BBP can be deposited on and taken up by crops for human and livestock consumption, resulting in its entry into the food chain (CERHR, 2003). Concentrations of BBP have been found in ambient and indoor air, drinking water, and soil. However, the concentrations are low and intakes from these routes are considered negligible (IPCS, 1999). Exposure to BBP in the general population is based on food intake. Occupational exposure to BBP is possible through skin contact and inhalation, but data on BBP concentrations in the occupational environment is limited. Unlike some other phthalates, BBP is not approved by the U.S. Food and Drug Administration for use in medicine or medical devices (IPCS, 1999; CERHR, 2003). Based on the National Toxicology Program (NTP) bioassay reports of increased pancreatic lesions in male rats, a tolerable daily intake of 1300 µg/kg body weight per day (µg/kg‐d) has been calculated for BBP by the International Programme on Chemical Safety (IPCS) (IPCS, 1999).
    [Show full text]
  • Butyl Benzyl Phthalate (1,2-Benzenedicarboxylic Acid, 1-Butyl 2-(Phenylmethyl) Ester)
    EPA Document# EPA-740-D-20-015 April 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Draft Scope of the Risk Evaluation for Butyl Benzyl Phthalate (1,2-Benzenedicarboxylic acid, 1-butyl 2-(phenylmethyl) ester) CASRN 85-68-7 April 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS .........................................................................................................................5 ABBREVIATIONS AND ACRONYMS ....................................................................................................6 EXECUTIVE SUMMARY .........................................................................................................................9 1 INTRODUCTION ..............................................................................................................................12 2 SCOPE OF THE EVALUATION ......................................................................................................12 2.1 Reasonably Available Information ..............................................................................................12 Search of Gray Literature ...................................................................................................... 13 Search of Literature from Publicly Available Databases (Peer-Reviewed Literature) .......... 14 Search of TSCA Submissions ................................................................................................ 18 2.2 Conditions of Use ........................................................................................................................19
    [Show full text]
  • Phthalic Anhydride for Possible Carcinogenicity
    OFFICIAL NTP FILE COPY National Cancer Institute T -H I CARCINOGENESIS DO NOT REMOVE FROM THIS OFFICE Technical Report Series = NO. 159 £ 1979 I O D m BIOASSAY OF PHTHALIC ANHYDRIDE FOR POSSIBLE CARCINOGENICITY CAS No. 85-44-9 NCI-CG-TR-159 z o 6 o H 30 Ul CO U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health (O >g CO BIOASSAY OF PHTHALIC ANHYDRIDE FOR POSSIBLE CARCINOGENICITY Carcinogenesis Testing Program Division of Cancer Cause and Prevention National Cancer Institute National Institutes of Health Bethesda, Maryland 20014 U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health DHEW Publication No. (NIH) 79-1715 ii BIOASSAY OF PHTHALIC ANHYDRIDE FOR POSSIBLE CARCINOGENICITY Carcinogenesis Testing Program Division of Cancer Cause and Prevention National Cancer Institute National Institutes of Health FOREWORD; This report presents the results of the bioassay of phthalic anhydride conducted for the Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland. This is one of a series of experiments designed to determine whether selected chemicals have the capacity to produce cancer in animals. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that the test chemical is not a carcino­ gen, inasmuch as the experiments are conducted under a limited set of circumstances. Positive results demonstrate that the test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical is a potential risk to man.
    [Show full text]
  • Toxicity Review for Di(2-Ethylhexyl) Phthalate (DEHP)
    (including carcinogenicity, neurotoxicity, and reproductive and developmental toxicity) are assessed by the CPSC staff using guidelines issued by the Commission (CPSC, 1992). If it is concluded that a substance is “toxic” due to chronic toxicity, then a quantitative assessment of exposure and risk is performed to evaluate whether the chemical may be considered a “hazardous substance”. This memo represents the first step in the risk assessment process; that is, the hazard identification step. * These comments are those of the CPSC staff, have not been reviewed or approved by, and may not necessarily represent the views of, the Commission. Page 2 of 2 KRC Table of Contents Tables ...................................................................................................................................v Figures............................................................................................................................... vii Appendices ........................................................................................................................ vii Abbreviations ................................................................................................................... viii Executive Summary .............................................................................................................x 1. Introduction ....................................................................................................................1 2. Physico-chemical Characteristics ..................................................................................1
    [Show full text]
  • Final Scope of the Risk Evaluation for Butyl Benzyl Phthalate CASRN 85-68-7
    EPA Document# EPA-740-R-20-015 August 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Final Scope of the Risk Evaluation for Butyl Benzyl Phthalate (1,2-Benzenedicarboxylic acid, 1-butyl 2-(phenylmethyl) ester) CASRN 85-68-7 August 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................6 ABBREVIATIONS AND ACRONYMS ..................................................................................................7 EXECUTIVE SUMMARY .....................................................................................................................10 1 INTRODUCTION ............................................................................................................................12 2 SCOPE OF THE EVALUATION ...................................................................................................13 2.1 Reasonably Available Information ..............................................................................................13 Search of Gray Literature ...................................................................................................... 14 Search of Literature from Publicly Available Databases (Peer-reviewed Literature) ........... 15 Search of TSCA Submissions ................................................................................................ 24 2.2 Conditions of Use ........................................................................................................................25
    [Show full text]
  • By SUN CHUN CHOW for the Degree Of
    ii POLYMERIZATiot~ OF MALEIC ANHYDRIDE INDUCED BY PYRIDINE By SUN CHUN CHOW I\ Bachelor of Science Mational Central University Wanking, China 1939 Suhooitted to the Department of Chemistry Oklahoma Agricultural and Hechanical College In Partial l7ul£illmen.t of the Requiremnts for the Degree of ~Ill.STER OF SCIEtJCE 1950 OKUHOMA i ii RJCULT RU ~ 1'1 ~ H I AL OOLWII LIBRARY SEP 30 950 POLYMERIZATION OF MAL IC ANHYDRIDE INDUCED BY PYRIDI SUN CHUN CHOW MASTER OF SCIENCE 1950 THESIS AN ABSTRACT ROVED : Thesis Adviser c5taa,4: 2n, ~ Faculty Representative 59573 iv A C K l\l' 0 W L E D G 1,1 E f~ 'I' The author wishes to express his sincere thanks to Dr. O. C. Dermer under 1,-nose direction and with whose help this work has been done. He also wishes to express his appreciation for the financial aid rendered by Oklahoma A. and t,I. Colleee in the form of a graduate fellowship in the Chemistry Department. V T!-J3LE OF CONTfil~TS Historical l Scope of Reaction I.. Prepa.ratiV'e tfork 5 C:,uantita:tive Data 10 Discussion o.f rtesults 17 Sunrnary 23 Bibliography 24 HISTORICAL Since tertiary amines do not ordinarily combine with anhytlrides of earboxylic acids, the observation in tr ~se laboratories that a vigorous exothermic reaction takes place bet~cen pyridine and maleic anhydride was une:>..-pected and theoretically interesting. A sea:·ch of the literature showed that the phenomenon had been previously noted but littl e st udied. Both Smith , Bryant, and Mitchell (1) and Mullen and Pacsu (2) observed that the reaction is violent, almost explosive; the fonner authors suggested that a Dials- Al der react.ion was involved.
    [Show full text]