signals Article Improving Speech Quality for Hearing Aid Applications Based on Wiener Filter and Composite of Deep Denoising Autoencoders Raghad Yaseen Lazim 1,2 , Zhu Yun 1,2 and Xiaojun Wu 1,2,* 1 Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710062, China;
[email protected] (R.Y.L.);
[email protected] (Z.Y.) 2 School of Computer Science, Shaanxi Normal University, No.620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China * Correspondence:
[email protected] Received: 10 July 2020; Accepted: 1 September 2020; Published: 21 October 2020 Abstract: In hearing aid devices, speech enhancement techniques are a critical component to enable users with hearing loss to attain improved speech quality under noisy conditions. Recently, the deep denoising autoencoder (DDAE) was adopted successfully for recovering the desired speech from noisy observations. However, a single DDAE cannot extract contextual information sufficiently due to the poor generalization in an unknown signal-to-noise ratio (SNR), the local minima, and the fact that the enhanced output shows some residual noise and some level of discontinuity. In this paper, we propose a hybrid approach for hearing aid applications based on two stages: (1) the Wiener filter, which attenuates the noise component and generates a clean speech signal; (2) a composite of three DDAEs with different window lengths, each of which is specialized for a specific enhancement task. Two typical high-frequency hearing loss audiograms were used to test the performance of the approach: Audiogram 1 = (0, 0, 0, 60, 80, 90) and Audiogram 2 = (0, 15, 30, 60, 80, 85).