The arithmetic of quaternion algebras John Voight
[email protected] June 18, 2014 Preface Goal In the response to receiving the 1996 Steele Prize for Lifetime Achievement [Ste96], Shimura describes a lecture given by Eichler: [T]he fact that Eichler started with quaternion algebras determined his course thereafter, which was vastly successful. In a lecture he gave in Tokyo he drew a hexagon on the blackboard and called its vertices clock- wise as follows: automorphic forms, modular forms, quadratic forms, quaternion algebras, Riemann surfaces, and algebraic functions. This book is an attempt to fill in the hexagon sketched by Eichler and to augment it further with the vertices and edges that represent the work of many algebraists, geometers, and number theorists in the last 50 years. Quaternion algebras sit prominently at the intersection of many mathematical subjects. They capture essential features of noncommutative ring theory, number the- ory, K-theory, group theory, geometric topology, Lie theory, functions of a complex variable, spectral theory of Riemannian manifolds, arithmetic geometry, representa- tion theory, the Langlands program—and the list goes on. Quaternion algebras are especially fruitful to study because they often reflect some of the general aspects of these subjects, while at the same time they remain amenable to concrete argumenta- tion. With this in mind, we have two goals in writing this text. First, we hope to in- troduce a large subset of the above topics to graduate students interested in algebra, geometry, and number theory. We assume that students have been exposed to some algebraic number theory (e.g., quadratic fields), commutative algebra (e.g., module theory, localization, and tensor products), as well as the basics of linear algebra, topology, and complex analysis.