Evaluating Pre-Mining Hydrogeologic Conditions After Mining Has Occurred Using Surface Data and Modeling Tools Summit County, Colorado
Total Page:16
File Type:pdf, Size:1020Kb
EVALUATING PRE-MINING HYDROGEOLOGIC CONDITIONS AFTER MINING HAS OCCURRED USING SURFACE DATA AND MODELING TOOLS SUMMIT COUNTY, COLORADO by Samantha Tokash A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science Geological Engineering. Golden, Colorado Date:_____________ Signed: _____________________ Samantha Tokash Approved: ____________________ Dr. Eileen Poeter Thesis Advisor Golden, Colorado Date:_____________ Approved: ____________________ Dr. Murray Hitzman Professor and Head Department of Geology and Geological Engineering i ABSTRACT Procedures for evaluation of natural background conditions, after mining has occurred, are developed by investigating two similar basins with varying degrees of mining and very different geochemical signatures. Geologic, hydrologic, and geochemical data are integrated using ground-water flow and chemical reaction models. These techniques can be used to assess pre-mining conditions that lead to natural acid drainage. Surface water samples from river reaches impacted by historical mining activities, as well as reaches with no observed upgradient mining activities, contain elevated concentrations of dissolved sulfate (up to 400 mg/l), Al (up to 25 mg/l), Mn (up to 9.8 mg/l), and Fe (up to 36 mg/l). In many cases, the highest concentrations of these elements are found in reaches that are not associated with mining activities. Deer Creek is located adjacent to the upper Snake River and has higher pH values and lower metal concentrations than the upper Snake River, in spite of the similar number mines. Acidic waters (pH 3.5 to 5) in the upper Snake River of Summit County, Colorado result from interaction of ground water with disseminated pyrite in metamorphic rocks and alteration zones surrounding small rhylolitic to granitic intrusions. The Montezuma shear zone transects the area and may provide a conduit through which surface and ground water flows, oxidizing subsurface disseminated pyrite and creating acidic water and ferricrete. Water quality analysis of surface water samples from the upper Snake River and Deer Creek are divided into five chemical groups based on eleven characteristics, using a statistical hierarchal cluster analysis. The groups are representative of different ground water residence times and different subsurface mineralogy, and when spatially plotted, provide insight into ground water flow paths and water rock interactions through the two basins. ii A mass-balance model based on the volume of water that is necessary to create the ferricrete deposits in the headwaters of the upper Snake River drainage, which is not impacted by mining activities, indicates the flux of ground water recharge must be in the range of 9.4 x 105 m3/year based on an estimated age of 10,000 years. A strong spatial correlation exists between the location of the Montezuma shear zone, the iron-rich ferricrete deposits, and low-pH waters with high metal concentrations. The flux required to create the ferricrete deposits is consistent with two independent estimates, one based on climatologic data (9.8 x 105 m3/year) and the other estimated from stream discharge (8.8 x 105 m3/year), indicating relatively stable hydrogeologic conditions over the last 10,000 years. The average annual recharge is incorporated in a numerical flow model of the basin, using the MODFLOW code, which confirms the flux is consistent with expected hydraulic conductivities and gradients in the basin. Geochemical models, using the PHREEQC code, indicate that low-pH, high-metal content water occurs in areas of the upper Snake River basin that have not been affected by mining. Such models are useful for evaluating background chemistry of basins that have been extensively affected by acid mine drainage. iii TABLE OF CONTENTS ABSTRACT........................................................................................................................ ii TABLE OF CONTENTS................................................................................................... iv LIST OF FIGURES ........................................................................................................... vi LIST OF TABLES............................................................................................................. xi CD-ROM Content............................................................................................................. xii ACKNOWLEDGEMENTS.............................................................................................xiii CHAPTER 1: INTRODUCTION .................................................................................. 1 1.1 Research Problem...................................................................................................... 6 1.2 Previous Work........................................................................................................... 8 CHAPTER 2: DESCRIPTION OF THE STUDY AREA ........................................... 12 2.1 Hydrology................................................................................................................ 16 2.2 Geology ................................................................................................................... 17 2.2.1 Deer Creek Geology.................................................................................. 19 2.2.2 Snake River Geology................................................................................. 20 2.2.3 Montezuma Shear Zone............................................................................. 24 2.2.4 Precipitates................................................................................................. 26 2.2.5 Porhyry-Metal Mineral Deposits and Hydrothermal Alteration................ 26 2.3 Acid Drainage......................................................................................................... 30 CHAPTER 3: FERRICRETE....................................................................................... 34 3.1 Ferricrete in the upper Snake River......................................................................... 34 3.2 Ferricrete Calculations............................................................................................ 37 3.3 Uncertainty.............................................................................................................. 39 CHAPTER 4: FIELD AND ANALYTICAL METHODS .......................................... 41 4.1 Field Methods.......................................................................................................... 41 4.2 Analytical Methods................................................................................................. 43 CHAPTER 5: WATER CHEMISTRY ........................................................................ 44 5.1 Results of Water Sampling and Analyses ............................................................... 46 iv 5.2 Statistical Analysis................................................................................................. 52 CHAPTER 6: FLOW MODELING............................................................................. 62 6.1 Steady State Numerical Model................................................................................ 62 6.2 Conceptual Model................................................................................................... 62 6.3 Calibration Data...................................................................................................... 65 6.4 Model Input............................................................................................................. 68 6.5 Model Results.......................................................................................................... 72 6.6 Conclusions ............................................................................................................. 74 6.7 Suggestions.............................................................................................................. 74 CHAPTER 7: GEOCHEMICAL MODELING ........................................................... 75 7.1 Conceptual Geochemical Model............................................................................. 78 7.2 Observational Model............................................................................................... 86 7.3 Inverse Model........................................................................................................ 100 7.3.1 Inverse Model 1a Precipitation to Deer Creek Water.............................. 102 7.3.2 Inverse Model 2a Precipitation to Beginning Snake River Water........... 108 7.3.3 Inverse Model 3a Beginning to Final Snake River Water....................... 113 7.4 Forward Static Model............................................................................................ 118 7.4.1 Forward Static Model 1a Precipitation to Deer Creek Water.................. 118 7.4.2 Forward Static Model 2a Precipitation to Beginning Snake River Water122 7.4.3 Precipitation to Final Snake River Water................................................ 125 7.5 Mixing Model........................................................................................................ 129 7.6 Geochemical Modeling Summary......................................................................... 132 CHAPTER 8: CONCLUSIONS AND RECCOMENDATIONS .............................. 133 8.1 Discussion ............................................................................................................