Detection and Characterization of Clinical Bordetella Trematum Isolates from Chronic Wounds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbial Community Structure Dynamics in Ohio River Sediments During Reductive Dechlorination of Pcbs
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS Andres Enrique Nunez University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Nunez, Andres Enrique, "MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS" (2008). University of Kentucky Doctoral Dissertations. 679. https://uknowledge.uky.edu/gradschool_diss/679 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Andres Enrique Nunez The Graduate School University of Kentucky 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Andres Enrique Nunez Director: Dr. Elisa M. D’Angelo Lexington, KY 2008 Copyright © Andres Enrique Nunez 2008 ABSTRACT OF DISSERTATION MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS The entire stretch of the Ohio River is under fish consumption advisories due to contamination with polychlorinated biphenyls (PCBs). In this study, natural attenuation and biostimulation of PCBs and microbial communities responsible for PCB transformations were investigated in Ohio River sediments. Natural attenuation of PCBs was negligible in sediments, which was likely attributed to low temperature conditions during most of the year, as well as low amounts of available nitrogen, phosphorus, and organic carbon. -
Table S1. Primers Used for PCR Amplification
Table S1. Primers used for PCR amplification Name Primer Sequence (5’-3’) Gene target Taxon target Reference First PCR round DGGE analysis FGPH19 TACGGCAARGGTGGNATHG nifH Diazotrophic (Simonet et al. 1991) POLR ATSGCCATCATYTCRCCGGA nifH Diazotrophic (Poly et al. 2001) 799F AACMGGATTAGATACCCKG 16S rRNA Bacteria (Chelius and Triplett 2001) 1492R TACGGYTACCTTGTTACGACTT 16S rRNA Bacteria (Chelius and Triplett 2001) F203α CCGCATACGCCCTACGGGGGAAAGATTTAT 16S rRNA Alphaproteobacteria (Gomes et al. 2001) F948β CGCACAAGCGGTGGATGA 16S rRNA Betaproteobacteria (Gomes et al. 2001) F243HCG GGATGAGCCCGCGGCCTA 16S rRNA Actinobacteria (Heuer et al. 1997) BACF GGGAAACCGGGGCTAATACCGGAT 16S rRNA Firmicutes (Garbeva et al. 2003) Second PCR round DGGE analysis POLF-GC CGCCCGCCGCGCCCCGCGCCCGGCCCGCCCCCG nifH Diazotrophic (Poly et al. 2001) CCCCTGCGAYCCSAARGCBGACTC AQER GACGATGTAGATITCCTG nifH Diazotrophic (Poly et al. 2001) F968-GC CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGC 16S rRNA Bacteria (Heuer et al. 1999) ACGGGGGGAACGAAGAACCTTAC R1401 CGGTGTGTACAAGACCC 16S rRNA Bacteria (Heuer et al. 1997) qPCR analysis POLR ATSGCCATCATYTCRCCGGA nifH Diazotrophic (Poly et al. 2001) POLF TGCGAYCCSAARGCBGACTC nifH Diazotrophic (Poly et al. 2001) 6S-27F AGAGTTTGATCCTGGCTCAG 16S rRNA Bacteria Bulgari et al., 2014 338R GCTGCCTCCCGTAGGAGT 16S rRNA Bacteria Bulgari et al., 2014 Table 2. Primers used for Ion Torrent pyrosequencing analysis. Primer Primer sequence (5´-3´) Reference 967F-PP CNACGCGAAGAACCTTANC (Jünemann et al. 2012) 967F-UC1 CAACGCGAAAAACCTTACC (Jünemann et al. 2012) 967F-UC2 CAACGCGCAGAACCTTACC (Jünemann et al. 2012) 967F-UC3 ATACGCGARGAACCTTACC (Jünemann et al. 2012) 967F-AQ CTAACCGANGAACCTYACC (Jünemann et al. 2012) 1046R CGACAGCCATGCANCACCT (Jünemann et al. 2012) 1046R-PP CGACAACCATGCANCACCT (Jünemann et al. 2012) 1046R-AQ1 CGACGGCCATGCANCACCT (Jünemann et al. 2012) 1046R-AQ2 CGACGACCATGCANCACCT (Jünemann et al. 2012) Table S3. Alpha diversity indices. Statistical analysis of the total endophytic and diazotrophic endophytic bacterial community associated with sweet sorghum cv. -
Cystic Fibrosis Mice Develop Spontaneouschronic Bordetella
ISSN 2470-3176 SciO p Forschene n HUB for Sc i e n t i f i c R e s e a r c h Journal of Infectious Pulmonary Diseases Research Article Volume: 3.2 Open Access Received date: 11 Oct 2017; Accepted date: 28 Cystic Fibrosis Mice Develop Spontaneous Oct 2017; Published date: 02 Nov 2017. Chronic Bordetella Airway Infections Citation: Darrah R, Bonfield T, LiPuma JJ, Litman P, Hodges CA, et al. (2017) Cystic Fibrosis Mice Darrah R1*, Bonfield T2, LiPuma JJ3, Litman P1, Hodges CA4, Jacono F5 and Develop Spontaneous Chronic Bordetella Airway Drumm M6 Infections. J Infect Pulm Dis 3(2): doi http://dx.doi. org/10.16966/2470-3176.128 1Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland Ohio, USA 2Department of Pediatrics, Case Western Reserve University, Cleveland Ohio, USA Copyright: © 2017 Darrah R, et al. This is an 3Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann open-access article distributed under the terms Arbor, Michigan, USA of the Creative Commons Attribution License, 4Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, which permits unrestricted use, distribution, and Cleveland Ohio, USA reproduction in any medium, provided the original 5Department of Medicine, Case Western Reserve University, and Louis Stokes VA Cleveland Medical author and source are credited. Center, USA 6Departments of Pediatrics and Genetics Genome Sciences, Case Western Reserve University, Cleveland Ohio, USA *Corresponding author: Rebecca Darrah, Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland Ohio, USA, Tel: 216-368-4911; E-mail: [email protected] Abstract Chronic pulmonary disease and infection is the primary cause of morbidity and mortality in people with cystic fibrosis (CF). -
Bordetella Petrii Clinical Isolate Isolates of This Species Have Been Previously Reported from 4
routine laboratory protocols. Initial susceptibility testing Bordetella petrii using disk diffusion indicated apparent susceptibility of the isolate to erythromycin, gentamicin, ceftriaxone, and Clinical Isolate piperacillin/tazobactam. The isolate was resistant to amox- icillin, co-amoxiclav, tetracycline, clindamycin, ciproflo- Norman K. Fry,* John Duncan,* Henry Malnick,* xacin, and metronidazole. After initial sensitivity results, a Marina Warner,* Andrew J. Smith,† 6-week course of oral clarithromycin (500 mg, 8 hourly) Margaret S. Jackson,† and Ashraf Ayoub† was begun. We describe the first clinical isolate of Bordetella petrii At follow-up appointments 3 months and 6 months from a patient with mandibular osteomyelitis. The only pre- after antimicrobial drug therapy ceased, clinical and radi- viously documented isolation of B. petrii occurred after the ographic findings were not unusual, and the infected area initial culture of a single strain from an environmental healed successfully. Despite the successful clinical out- source. come, the isolate was subsequently shown to be resistant to clarithromycin in vitro (Table). Improvement of the 67-year-old man visited an emergency dental clinic, osteomyelitis may also have been facilitated by the biopsy Awhere he complained of toothache in the lower right procedure, during which a sequestrum of bone was mandibular quadrant. Examination showed a root-filled removed. lower right canine tooth that was mobile and tender to per- The gram-negative bacillus (designated strain cussion. The tooth was extracted uneventfully under local GDH030510) was submitted to the Health Protection anesthesia. The patient returned after several days with Agency, Centre for Infections, London, for identification. pain at the extraction site. A localized alveolar osteitis was Preliminary tests results were consistent with those diagnosed, and local debridement measures were institut- described for members of the genus Bordetella. -
Vitek®2 Id & Ast Cards
® VITEK 2 ID & AST CARDS Reliable • safe • rapid RESULTS YOU CAN TRUST FOCUS The VITEK 2 ADVANCED EXPERT SYSTEM™ software lets you focus your time where it is most required in ® the lab. The ADVANCED EXPERT SYSTEM™ validates VITEK 2 ID & AST CARDS ON WHAT every result and quickly identi es those truly needing a Microbiologist’s valuable time and attention. This allows the majority of results to be quickly and con dently reported to clinicians without need for MATTERS 2,8,11,13,15 review Rapid, Flexible, E cient EFFICIENCY THROUGH AUTOMATION VITEK 2 cards o er the shortest preparation time in the industry, considerably reducing labor Each self-contained, costs1,3,7,9,10,14. They also have the least contaminated waste, o ering up to 64% cost savings for disposal disposable test card compared to other systems6,10,12.The cards provide provides rapid and INNOVATIVE AND FLEXIBLE DESIGN increased standardization and automated, same-day accurate species- results helping clinicians to optimise antibiotic level identi cation or • Each card contains microwells with biochemicals or antimicrobials therapy sooner2,3. susceptibility results with • Ready and simple to use accurate MICs* based on • Pre-applied barcodes for maximum traceability • EUCAST and CLSI compliant AST formulations available Designed for VITEK 2 automated systems, VITEK 2 reference CLSI** and identi cation (ID) and susceptibility (AST) cards provide ISO *** MIC methods UP TO 50% FEWER PREPARATION STEPS THAN and EUCAST****, OTHER SYSTEMS,3,9,10: reliable and accurate results for clinically important US FDA*****, bacteria and yeasts1,2,4,5 or CLSI® breakpoint • Inoculation with a simple, standardised suspension of organism in saline interpretations1,3,4,5,7,8,10. -
Bordetella Trematum Infection: Case Report and Review of Previous Cases
y Castro et al. BMC Infectious Diseases (2019) 19:485 https://doi.org/10.1186/s12879-019-4046-8 CASEREPORT Open Access Bordetella trematum infection: case report and review of previous cases Thaís Regina y Castro1, Roberta Cristina Ruedas Martins2, Nara Lúcia Frasson Dal Forno3, Luciana Santana4, Flávia Rossi4, Alexandre Vargas Schwarzbold1, Silvia Figueiredo Costa2 and Priscila de Arruda Trindade1,5* Abstract Background: Bordetella trematum is an infrequent Gram-negative coccobacillus, with a reservoir, pathogenesis, a life cycle and a virulence level which has been poorly elucidated and understood. Related information is scarce due to the low frequency of isolates, so it is important to add data to the literature about this microorganism. Case presentation: We report a case of a 74-year-old female, who was referred to the hospital, presenting with ulcer and necrosis in both legs. Therapy with piperacillin-tazobactam was started and peripheral artery revascularization was performed. During the surgery, a tissue fragment was collected, where Bordetella trematum, Stenotrophomonas maltophilia, and Enterococcus faecalis were isolated. After surgery, the intubated patient was transferred to the intensive care unit (ICU), using vasoactive drugs through a central venous catheter. Piperacillin- tazobactam was replaced by meropenem, with vancomycin prescribed for 14 days. Four days later, levofloxacin was added for 24 days, aiming at the isolation of S. maltophilia from the ulcer tissue. The necrotic ulcers evolved without further complications, and the patient’s clinical condition improved, leading to temporary withdrawal of vasoactive drugs and extubation. Ultimately, however, the patient’s general condition worsened, and she died 58 days after hospital admission. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Achromobacter Infections and Treatment Options
AAC Accepted Manuscript Posted Online 17 August 2020 Antimicrob. Agents Chemother. doi:10.1128/AAC.01025-20 Copyright © 2020 American Society for Microbiology. All Rights Reserved. 1 Achromobacter Infections and Treatment Options 2 Burcu Isler 1 2,3 3 Timothy J. Kidd Downloaded from 4 Adam G. Stewart 1,4 5 Patrick Harris 1,2 6 1,4 David L. Paterson http://aac.asm.org/ 7 1. University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, 8 Brisbane, Australia 9 2. Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, 10 Brisbane, Australia on August 18, 2020 at University of Queensland 11 3. University of Queensland, Faculty of Science, School of Chemistry and Molecular 12 Biosciences, Brisbane, Australia 13 4. Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Brisbane, Australia 14 15 Editorial correspondence can be sent to: 16 Professor David Paterson 17 Director 18 UQ Center for Clinical Research 19 Faculty of Medicine 20 The University of Queensland 1 21 Level 8, Building 71/918, UQCCR, RBWH Campus 22 Herston QLD 4029 AUSTRALIA 23 T: +61 7 3346 5500 Downloaded from 24 F: +61 7 3346 5509 25 E: [email protected] 26 http://aac.asm.org/ 27 28 29 on August 18, 2020 at University of Queensland 30 31 32 33 34 35 36 37 38 39 2 40 Abstract 41 Achromobacter is a genus of non-fermenting Gram negative bacteria under order 42 Burkholderiales. Although primarily isolated from respiratory tract of people with cystic Downloaded from 43 fibrosis, Achromobacter spp. can cause a broad range of infections in hosts with other 44 underlying conditions. -
Structural and Functional Effects of Bordetella Avium Infection in the Turkey Respiratory Tract William George Van Alstine Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1987 Structural and functional effects of Bordetella avium infection in the turkey respiratory tract William George Van Alstine Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Sciences Commons, and the Veterinary Medicine Commons Recommended Citation Van Alstine, William George, "Structural and functional effects of Bordetella avium infection in the turkey respiratory tract " (1987). Retrospective Theses and Dissertations. 11655. https://lib.dr.iastate.edu/rtd/11655 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Plant-Derived Benzoxazinoids Act As Antibiotics and Shape Bacterial Communities
Supplemental Material for: Plant-derived benzoxazinoids act as antibiotics and shape bacterial communities Niklas Schandry, Katharina Jandrasits, Ruben Garrido-Oter, Claude Becker Contents Supplemental Tables 2 Supplemental Table 1. Phylogenetic signal lambda . .2 Supplemental Table 2. Syncom strains . .3 Supplemental Table 3. PERMANOVA . .6 Supplemental Table 4. PERMANOVA comparing only two treatments . .7 Supplemental Table 5. ANOVA: Observed taxa . .8 Supplemental Table 6. Observed diversity means and pairwise comparisons . .9 Supplemental Table 7. ANOVA: Shannon Diversity . 11 Supplemental Table 8. Shannon diversity means and pairwise comparisons . 12 Supplemental Table 9. Correlation between change in relative abundance and change in growth . 14 Figures 15 Supplemental Figure 1 . 15 Supplemental Figure 2 . 16 Supplemental Figure 3 . 17 Supplemental Figure 4 . 18 1 Supplemental Tables Supplemental Table 1. Phylogenetic signal lambda Class Order Family lambda p.value All - All All All All 0.763 0.0004 * * Gram Negative - Proteobacteria All All All 0.817 0.0017 * * Alpha All All 0 0.9998 Alpha Rhizobiales All 0 1.0000 Alpha Rhizobiales Phyllobacteriacae 0 1.0000 Alpha Rhizobiales Rhizobiacaea 0.275 0.8837 Beta All All 1.034 0.0036 * * Beta Burkholderiales All 0.147 0.6171 Beta Burkholderiales Comamonadaceae 0 1.0000 Gamma All All 1 0.0000 * * Gamma Xanthomonadales All 1 0.0001 * * Gram Positive - Actinobacteria Actinomycetia Actinomycetales All 0 1.0000 Actinomycetia Actinomycetales Intrasporangiaceae 0.98 0.2730 Actinomycetia Actinomycetales Microbacteriaceae 1.054 0.3751 Actinomycetia Actinomycetales Nocardioidaceae 0 1.0000 Actinomycetia All All 0 1.0000 Gram Positive - All All All All 0.421 0.0325 * Gram Positive - Firmicutes Bacilli All All 0 1.0000 2 Supplemental Table 2. -
Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): from Uptake to Pathogenicity
This is a repository copy of Tripartite ATP-independent periplasmic (TRAP) transporters and tripartite tricarboxylate transporters (TTT): From uptake to pathogenicity. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/127518/ Version: Published Version Article: Rosa, Leonardo T., Bianconi, Matheus E., Thomas, Gavin Hugh orcid.org/0000-0002- 9763-1313 et al. (1 more author) (2018) Tripartite ATP-independent periplasmic (TRAP) transporters and tripartite tricarboxylate transporters (TTT): From uptake to pathogenicity. Frontiers in Microbiology. 33. ISSN 1664-302X https://doi.org/10.3389/fcimb.2018.00033 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ REVIEW published: 12 February 2018 doi: 10.3389/fcimb.2018.00033 Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity Leonardo T. Rosa 1, Matheus E. Bianconi 2, Gavin H. Thomas 3 and David J. Kelly 1* 1 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom, 2 Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom, 3 Department of Biology, University of York, York, United Kingdom The ability to efficiently scavenge nutrients in the host is essential for the viability of any pathogen. -
Supplementary Fig. S2. Taxonomic Classification of Two Metagenomic Samples of the Gall-Inducing Mite Fragariocoptes Seti- Ger in Kraken2
Supplementary Fig. S2. Taxonomic classification of two metagenomic samples of the gall-inducing mite Fragariocoptes seti- ger in Kraken2. There was a total of 708,046,814 and 82,009,061 classified reads in samples 1 and 2, respectively. OTUs (genera) were filtered based on a normalized abundance threshold of ≥0.0005% in either sample, resulting in 171 OTUs represented by 670,717,361 and 72,439,919 reads (sample 1 and 2, respectively). Data are given in Supplementary Table S3. Sample1 Sample2 0.000005 0.002990 Bacteria:Proteobacteria:Inhella Read % (log2) 0.000005 0.005342 Bacteria:Actinobacteria:Microbacteriaceae:Microterricola 10.00 0.000006 0.003983 Bacteria:Actinobacteria:Microbacteriaceae:Cryobacterium 5.00 0.000012 0.006576 Eukaryota:Ascomycota:Mycosphaerellaceae:Cercospora 0.00 0.000013 0.002947 Bacteria:Actinobacteria:Bifidobacteriaceae:Gardnerella 0.000017 0.003555 Eukaryota:Ascomycota:Chaetomiaceae:Thielavia -5.00 0.000014 0.004244 Bacteria:Firmicutes:Clostridiaceae:Clostridium -10.00 0.000010 0.001699 Bacteria:Proteobacteria:Caulobacteraceae:Phenylobacterium -15.00 0.000012 0.001183 Bacteria:Actinobacteria:Microbacteriaceae:Leifsonia 0.000009 0.001144 Bacteria:Proteobacteria:Desulfovibrionaceae:Desulfovibrio -20.00 0.000016 0.000777 Bacteria:Firmicutes:Leuconostocaceae:Weissella -25.00 0.000014 0.000761 Bacteria:Cyanobacteria:Oscillatoriaceae:Oscillatoria 0.000013 0.000683 Bacteria:Proteobacteria:Methylobacteriaceae:Microvirga Read % 0.000011 0.000578 Bacteria:Fusobacteria:Leptotrichiaceae:Leptotrichia 0.000009 0.000842 Bacteria:Firmicutes:Paenibacillaceae:Paenibacillus