Free Lossless Image Format Based on MANIAC Compression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Free Lossless Image Format
FREE LOSSLESS IMAGE FORMAT Jon Sneyers and Pieter Wuille [email protected] [email protected] Cloudinary Blockstream ICIP 2016, September 26th DON’T WE HAVE ENOUGH IMAGE FORMATS ALREADY? • JPEG, PNG, GIF, WebP, JPEG 2000, JPEG XR, JPEG-LS, JBIG(2), APNG, MNG, BPG, TIFF, BMP, TGA, PCX, PBM/PGM/PPM, PAM, … • Obligatory XKCD comic: YES, BUT… • There are many kinds of images: photographs, medical images, diagrams, plots, maps, line art, paintings, comics, logos, game graphics, textures, rendered scenes, scanned documents, screenshots, … EVERYTHING SUCKS AT SOMETHING • None of the existing formats works well on all kinds of images. • JPEG / JP2 / JXR is great for photographs, but… • PNG / GIF is great for line art, but… • WebP: basically two totally different formats • Lossy WebP: somewhat better than (moz)JPEG • Lossless WebP: somewhat better than PNG • They are both .webp, but you still have to pick the format GOAL: ONE FORMAT THAT COMPRESSES ALL IMAGES WELL EXPERIMENTAL RESULTS Corpus Lossless formats JPEG* (bit depth) FLIF FLIF* WebP BPG PNG PNG* JP2* JXR JLS 100% 90% interlaced PNGs, we used OptiPNG [21]. For BPG we used [4] 8 1.002 1.000 1.234 1.318 1.480 2.108 1.253 1.676 1.242 1.054 0.302 the options -m 9 -e jctvc; for WebP we used -m 6 -q [4] 16 1.017 1.000 / / 1.414 1.502 1.012 2.011 1.111 / / 100. For the other formats we used default lossless options. [5] 8 1.032 1.000 1.099 1.163 1.429 1.664 1.097 1.248 1.500 1.017 0.302� [6] 8 1.003 1.000 1.040 1.081 1.282 1.441 1.074 1.168 1.225 0.980 0.263 Figure 4 shows the results; see [22] for more details. -
Energy-Efficient Design of the Secure Better Portable
Energy-Efficient Design of the Secure Better Portable Graphics Compression Architecture for Trusted Image Communication in the IoT Umar Albalawi Saraju P. Mohanty Elias Kougianos Computer Science and Engineering Computer Science and Engineering Engineering Technology University of North Texas, USA. University of North Texas, USA. University of North Texas. USA. Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Energy consumption has become a major concern it. On the other hand, researchers from the software field in portable applications. This paper proposes an energy-efficient investigate how the software itself and its different uses can design of the Secure Better Portable Graphics Compression influence energy consumption. An efficient software is capable (SBPG) Architecture. The architecture proposed in this paper is suitable for imaging in the Internet of Things (IoT) as the main of adapting to the requirements of everyday usage while saving concentration is on the energy efficiency. The novel contributions as much energy as possible. Software engineers contribute to of this paper are divided into two parts. One is the energy efficient improving energy consumption by designing frameworks and SBPG architecture, which offers encryption and watermarking, tools used in the process of energy metering and profiling [2]. a double layer protection to address most of the issues related to As a specific type of data, images can have a long life if privacy, security and digital rights management. The other novel contribution is the Secure Digital Camera integrated with the stored properly. However, images require a large storage space. SBPG architecture. The combination of these two gives the best The process of storing an image starts with its compression. -
Lossy Image Compression Based on Prediction Error and Vector Quantisation Mohamed Uvaze Ahamed Ayoobkhan* , Eswaran Chikkannan and Kannan Ramakrishnan
Ayoobkhan et al. EURASIP Journal on Image and Video Processing (2017) 2017:35 EURASIP Journal on Image DOI 10.1186/s13640-017-0184-3 and Video Processing RESEARCH Open Access Lossy image compression based on prediction error and vector quantisation Mohamed Uvaze Ahamed Ayoobkhan* , Eswaran Chikkannan and Kannan Ramakrishnan Abstract Lossy image compression has been gaining importance in recent years due to the enormous increase in the volume of image data employed for Internet and other applications. In a lossy compression, it is essential to ensure that the compression process does not affect the quality of the image adversely. The performance of a lossy compression algorithm is evaluated based on two conflicting parameters, namely, compression ratio and image quality which is usually measured by PSNR values. In this paper, a new lossy compression method denoted as PE-VQ method is proposed which employs prediction error and vector quantization (VQ) concepts. An optimum codebook is generated by using a combination of two algorithms, namely, artificial bee colony and genetic algorithms. The performance of the proposed PE-VQ method is evaluated in terms of compression ratio (CR) and PSNR values using three different types of databases, namely, CLEF med 2009, Corel 1 k and standard images (Lena, Barbara etc.). Experiments are conducted for different codebook sizes and for different CR values. The results show that for a given CR, the proposed PE-VQ technique yields higher PSNR value compared to the existing algorithms. It is also shown that higher PSNR values can be obtained by applying VQ on prediction errors rather than on the original image pixels. -
Understanding Image Formats and When to Use Them
Understanding Image Formats And When to Use Them Are you familiar with the extensions after your images? There are so many image formats that it’s so easy to get confused! File extensions like .jpeg, .bmp, .gif, and more can be seen after an image’s file name. Most of us disregard it, thinking there is no significance regarding these image formats. These are all different and not cross‐ compatible. These image formats have their own pros and cons. They were created for specific, yet different purposes. What’s the difference, and when is each format appropriate to use? Every graphic you see online is an image file. Most everything you see printed on paper, plastic or a t‐shirt came from an image file. These files come in a variety of formats, and each is optimized for a specific use. Using the right type for the right job means your design will come out picture perfect and just how you intended. The wrong format could mean a bad print or a poor web image, a giant download or a missing graphic in an email Most image files fit into one of two general categories—raster files and vector files—and each category has its own specific uses. This breakdown isn’t perfect. For example, certain formats can actually contain elements of both types. But this is a good place to start when thinking about which format to use for your projects. Raster Images Raster images are made up of a set grid of dots called pixels where each pixel is assigned a color. -
Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks
Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel Shor, George Toderici {nickj, damienv, dminnen, covell, saurabhsingh, tchinen, sjhwang, joelshor, gtoderici} @google.com, Google Research Abstract formation from the current residual and combines it with context stored in the hidden state of the recurrent layers. By We propose a method for lossy image compression based saving the bits from the quantized bottleneck after each it- on recurrent, convolutional neural networks that outper- eration, the model generates a progressive encoding of the forms BPG (4:2:0), WebP, JPEG2000, and JPEG as mea- input image. sured by MS-SSIM. We introduce three improvements over Our method provides a significant increase in compres- previous research that lead to this state-of-the-art result us- sion performance over previous models due to three im- ing a single model. First, we modify the recurrent architec- provements. First, by “priming” the network, that is, run- ture to improve spatial diffusion, which allows the network ning several iterations before generating the binary codes to more effectively capture and propagate image informa- (in the encoder) or a reconstructed image (in the decoder), tion through the network’s hidden state. Second, in addition we expand the spatial context, which allows the network to lossless entropy coding, we use a spatially adaptive bit to represent more complex representations in early itera- allocation algorithm to more efficiently use the limited num- tions. Second, we add support for spatially adaptive bit rates ber of bits to encode visually complex image regions. -
JPEG Image Compression.Pdf
JPEG image compression FAQ, part 1/2 2/18/05 5:03 PM Part1 - Part2 - MultiPage JPEG image compression FAQ, part 1/2 There are reader questions on this topic! Help others by sharing your knowledge Newsgroups: comp.graphics.misc, comp.infosystems.www.authoring.images From: [email protected] (Tom Lane) Subject: JPEG image compression FAQ, part 1/2 Message-ID: <[email protected]> Summary: General questions and answers about JPEG Keywords: JPEG, image compression, FAQ, JPG, JFIF Reply-To: [email protected] Date: Mon, 29 Mar 1999 02:24:27 GMT Sender: [email protected] Archive-name: jpeg-faq/part1 Posting-Frequency: every 14 days Last-modified: 28 March 1999 This article answers Frequently Asked Questions about JPEG image compression. This is part 1, covering general questions and answers about JPEG. Part 2 gives system-specific hints and program recommendations. As always, suggestions for improvement of this FAQ are welcome. New since version of 14 March 1999: * Expanded item 10 to discuss lossless rotation and cropping of JPEGs. This article includes the following sections: Basic questions: [1] What is JPEG? [2] Why use JPEG? [3] When should I use JPEG, and when should I stick with GIF? [4] How well does JPEG compress images? [5] What are good "quality" settings for JPEG? [6] Where can I get JPEG software? [7] How do I view JPEG images posted on Usenet? More advanced questions: [8] What is color quantization? [9] What are some rules of thumb for converting GIF images to JPEG? [10] Does loss accumulate with repeated compression/decompression? -
Vue PACS 12.2 DICOM Conformance Statement
Clinical Collaboration Platform Vue PACS 12.2 DICOM Conformance Statement Part # AD0536 2017-11-23 Vue PACS 12.2 DICOM Conformance Statement AD0536 A Uncontrolled unless otherwise indicated Confidential Vue PACS 12.2 - DICOM Conformance Statement - AD0536.docx PAGE 1 of 155 Table of Contents 1 Introduction ............................................................................................................................................ 3 1.1 Terms and Definitions ...................................................................................................................... 3 1.2 About This Document ....................................................................................................................... 4 1.3 Important Remarks ........................................................................................................................... 4 2 Implementation Model............................................................................................................................ 5 2.1 Application Data Flow Diagram ........................................................................................................ 5 2.2 Functional Definitions of AEs ......................................................................................................... 11 2.3 Sequencing of Real World Activities .............................................................................................. 12 3 AE Specifications ................................................................................................................................ -
CP2100 Clarify SMPTE Transfer Syntaxes for DICOM Web Services
16 CP-2100 - Clarify SMPTE Transfer Syntaxes for DICOM Web Services Page 1 1 Status Final Text 2 Date of Last Update 2021/09/03 3 Person Assigned David Clunie 4 mailto:[email protected] 5 Submitter Name Mathieu Malaterre 6 mailto:[email protected] 7 Submission Date 2020/04/16 8 Correction Number CP-2100 9 Log Summary: Clarify SMPTE Transfer Syntaxes for DICOM Web Services 10 Name of Standard 11 PS3.18 12 Rationale for Correction: 13 Clarify that the video Transfer Syntaxes used for RTV, such as SMPTE ST 2110-20, are not applicable. 14 Correction Wording: 15 - Final Text - 48 CP-2100 - Clarify SMPTE Transfer Syntaxes for DICOM Web Services Page 2 1 Amend DICOM PS3.18 as follows (changes to existing text are bold and underlined for additions and struckthrough for removals): 2 8.7.3.1 Instance Media Types 3 The application/dicom media type specifies a representation of Instances encoded in the DICOM File Format specified in Section 7 4 “DICOM File Format” in PS3.10. 5 Note 6 The origin server may populate the PS3.10 File Meta Information with the identification of the Source, Sending and Receiving 7 AE Titles and Presentation Addresses as described in Section 7.1 in PS3.10, or these Attributes may have been left unaltered 8 from when the origin server received the objects. The user agent storing the objects received in the response may populate 9 or coerce these Attributes based on its own knowledge of the endpoints involved in the transaction, so that they accurately 10 identify the most recent -
Comparison of JPEG's Competitors for Document Images
Comparison of JPEG’s competitors for document images Mostafa Darwiche1, The-Anh Pham1 and Mathieu Delalandre1 1 Laboratoire d’Informatique, 64 Avenue Jean Portalis, 37200 Tours, France e-mail: fi[email protected] Abstract— In this work, we carry out a study on the per- in [6] concerns assessing quality of common image formats formance of potential JPEG’s competitors when applied to (e.g., JPEG, TIFF, and PNG) that relies on optical charac- document images. Many novel codecs, such as BPG, Mozjpeg, ter recognition (OCR) errors and peak signal to noise ratio WebP and JPEG-XR, have been recently introduced in order to substitute the standard JPEG. Nonetheless, there is a lack of (PSNR) metric. The authors in [3] compare the performance performance evaluation of these codecs, especially for a particular of different coding methods (JPEG, JPEG 2000, MRC) using category of document images. Therefore, this work makes an traditional PSNR metric applied to several document samples. attempt to provide a detailed and thorough analysis of the Since our target is to provide a study on document images, aforementioned JPEG’s competitors. To this aim, we first provide we then use a large dataset with different image resolutions, a review of the most famous codecs that have been considered as being JPEG replacements. Next, some experiments are performed compress them at very low bit-rate and after that evaluate the to study the behavior of these coding schemes. Finally, we extract output images using OCR accuracy. We also take into account main remarks and conclusions characterizing the performance the PSNR measure to serve as an additional quality metric. -
Forcepoint DLP Supported File Formats and Size Limits
Forcepoint DLP Supported File Formats and Size Limits Supported File Formats and Size Limits | Forcepoint DLP | v8.8.1 This article provides a list of the file formats that can be analyzed by Forcepoint DLP, file formats from which content and meta data can be extracted, and the file size limits for network, endpoint, and discovery functions. See: ● Supported File Formats ● File Size Limits © 2021 Forcepoint LLC Supported File Formats Supported File Formats and Size Limits | Forcepoint DLP | v8.8.1 The following tables lists the file formats supported by Forcepoint DLP. File formats are in alphabetical order by format group. ● Archive For mats, page 3 ● Backup Formats, page 7 ● Business Intelligence (BI) and Analysis Formats, page 8 ● Computer-Aided Design Formats, page 9 ● Cryptography Formats, page 12 ● Database Formats, page 14 ● Desktop publishing formats, page 16 ● eBook/Audio book formats, page 17 ● Executable formats, page 18 ● Font formats, page 20 ● Graphics formats - general, page 21 ● Graphics formats - vector graphics, page 26 ● Library formats, page 29 ● Log formats, page 30 ● Mail formats, page 31 ● Multimedia formats, page 32 ● Object formats, page 37 ● Presentation formats, page 38 ● Project management formats, page 40 ● Spreadsheet formats, page 41 ● Text and markup formats, page 43 ● Word processing formats, page 45 ● Miscellaneous formats, page 53 Supported file formats are added and updated frequently. Key to support tables Symbol Description Y The format is supported N The format is not supported P Partial metadata -
Graphics File Formats
Autumn 2016 CSCU9N5: Multimedia and HCI 1 Graphics File Formats Why have a range of graphics file formats? What to look for when choosing a file format A sample tour of different file formats, including – bitmap-based formats – vector-based formats – metafiles – proprietary formats Autumn 2016 CSCU9N5: Multimedia and HCI 2 1 Graphics File Formats Need to store and retrieve graphical data in an efficient and logical way – Data stored according to specific format conventions – Formats are immortal - technology evolves, new formats appear, but the old ones will still be there – No one universal format - different formats for different purposes – You (probably) won ’t need to access the formats in detail • there is usually library code to input/output/convert images for you – Useful to understand what is going on “behind the scenes ”, for making the best image format choices Autumn 2016 CSCU9N5: Multimedia and HCI 3 What to Look For in File Formats When choosing which is more appropriate for your purpose, some common factors to consider: – Lossy or lossless compression? – What is the compression ratio? – Data format: 8-bit (binary) or 7-bit (text)? – Is the image stored at a fixed resolution? – How many images per file (static or animated)? – Colour model? (usually RGB) – ….amongst other things Autumn 2016 CSCU9N5: Multimedia and HCI 4 2 Bitmaps Simplified structure of a bitmap file: Header Information File type, version, image size, compression method Palette Bitmap Data Usually in a compressed encoding In practice there are many format variations -
Digital Preservation Guidance Note: Graphics File Formats
Digital Preservation Guidance Note: 4 Graphics File Formats Digital Preservation Guidance Note 4: Graphics file formats Document Control Author: Adrian Brown, Head of Digital Preservation Research Document Reference: DPGN-04 Issue: 2 Issue Date: August 2008 ©THE NATIONAL ARCHIVES 2008 Page 2 of 15 Digital Preservation Guidance Note 4: Graphics file formats Contents 1 INTRODUCTION .....................................................................................................................4 2 TYPES OF GRAPHICS FORMAT........................................................................................4 2.1 Raster Graphics ...............................................................................................................4 2.1.1 Colour Depth ............................................................................................................5 2.1.2 Colour Spaces and Palettes ..................................................................................5 2.1.3 Transparency............................................................................................................6 2.1.4 Interlacing..................................................................................................................6 2.1.5 Compression ............................................................................................................7 2.2 Vector Graphics ...............................................................................................................7 2.3 Metafiles............................................................................................................................7