Confidential Genomic Structure in Europeans

Total Page:16

File Type:pdf, Size:1020Kb

Confidential Genomic Structure in Europeans Submitted Manuscript: Confidential Genomic Structure in Europeans dating back at least 36,200 years Andaine Seguin-Orlando1*, Thorfinn S. Korneliussen1*, Martin Sikora1*, Anna-Sapfo Malaspinas1, Andrea Manica2, Ida Moltke3,4, Anders Albrechtsen4, Amy Ko5, Ashot Margaryan1,Vyacheslav Moiseyev6, Ted Goebel7, Michael Westaway8, David Lambert8, Valeri Khartanovich6, Jeffrey D. Wall9, Philip R. Nigst10,11, Robert A. Foley1,12, Marta Mirazon Lahr1,12†, Rasmus Nielsen5†, Ludovic Orlando1, Eske Willerslev1† 1Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark 2Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK 3 Department of Human Genetics, University of Chicago, 920 E. 58th Street, CLSC, Chicago, IL 60637 4The Bioinformatics Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark 5Department of Integrative Biology, University of California, Berkeley, California 94720, USA 6Department of Physical Anthropology, Kunstkamera, Peter the Great Museum of Anthropology and Etnography, Russian Academy of Sciences, 24 Srednii prospect, Vassilievskii Island, St. Peterburg, Russia. 7Center for the Study of the First Americans and Department of Anthropology, Texas A&M University, TAMU-4352, College Station, Texas 77845-4352, USA 8Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Brisbane, Queensland 4111, Australia 9Department of Epidemiology and Biostatistics, University of California San Francisco, 185 Berry Street, Lobby 5, Suite 5700, San Francisco, CA 94107, USA 10Division of Archaeology, University of Cambridge, Cambridge, Downing Street, CB2 3DZ, UK 11Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Deutscher Platz 6, D-04103, Germany 12 Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology & Anthropology, University of Cambridge, Cambridge, Fitzwilliam Street, CB2 1QH, UK *These authors contributed equally to the work and should be regarded as joint first authors. † Corresponding authors: [email protected], [email protected], [email protected] Abstract The origin of contemporary Europeans remains contentious. We obtain a genome sequence from Kostenki 14 in European Russia dating to 38,700-36,200 years ago, one of the oldest fossils of Anatomically Modern Humans from Europe. We find that K14 shares a close ancestry with the 24,000 year old Mal’ta boy from central Siberia, European Mesolithic hunter-gatherers, some contemporary western Siberians and many Europeans, but not eastern Asians. Additionally, the Kostenki 14 genome shows evidence of shared ancestry with a population basal to all Eurasians that also relates to later European Neolithic farmers. We find that Kostenki 14 contains more Neandertal DNA that is contained in longer tracts than present Europeans. Our findings reveal the timing of divergence of western Eurasians and East Asians to be >36,200 years ago, and that European genomic structure today dates back to the Upper Paleolithic and derives from a meta-population that at times stretched from Europe to central Asia. One Sentence Summary: The genome of Kostenki 14, a ~37 ka-old modern human from European Russia, reveals that European genomic structure dates back to the Upper Paleolithic. Main Text: The ancestors of contemporary Eurasians are believed to have left Africa some 60,000-50,000 years ago (60-50 ka) (1, 2), possibly 30-40 ka later than Australo-Melanesian ancestors (3). Despite controversies about routes out of Africa, the first Upper Paleolithic (UP) industries of Eurasia are found in the Levant from c. 48 ka (4, 5). Expansion into Europe took place through multiple events that by c. 40 ka had generated a spatially and culturally structured Anatomically Modern Human (AMH) population – from Russia (6), to Georgia (7), Bulgaria (8), southern Europe (9, 10) and the UK (11). The few AMH fossils associated with these initial UP industries are morphologically variable (9, 12–17). In western Eurasia, the distinctive Aurignacian toolkit, first observed at Willendorf (Austria) by 43.5 ka (18), becomes predominant across the earlier range by 39 ka. Although analyses of ancient human genomes have advanced our understanding of the European past, revealing contributions from Paleolithic Siberians, European Mesolithic and Near Eastern Neolithic groups to the European gene pool (19–23), the possible contribution of the earliest Eurasians to these later cultures and to contemporary human populations remains unknown. To investigate this, we sequenced the genome of Kostenki 14 (K14, Markina Gora, Figure 1A). The locality of Kostenki-Borshchevo on the Middle Don River, Russia, has one of the most extensive Paleolithic records in eastern Europe. The K14 human skeleton was excavated in 1954 (24) and recently dated to 33,250 ± 500 radiocarbon years BP (25), 38.7-36.2 thousand calendar years BP (ka cal BP), in agreement with the stratigraphic position of the burial that cuts into the Campanian Ignimbrite ash layer dated to c. 39.3 ka cal BP (26). Below the skeleton there is a distinctive early UP industry, with end scrapers, burins, prismatic cores and bone artifacts (Layer IV); the cultural layer above (Layer III) has a regionally local character (27, 28) (SOM S1-S2). We performed 13 DNA extractions from a total of 1.285 grams of the left tibia (dorsal side of the shaft), using two extraction methods based on silica purification (29, 30). We first constructed 7 Illumina libraries and validated the presence of typical signatures of post-mortem DNA damage, using a fraction of DNA extracts (SOM S3). The remaining extracts were built into 63 libraries following enzymatic USER treatment to limit the impact of nucleotide mis-incorporations in downstream analyses (31) (SOM Table S2). Additionally, a limited fraction of two DNA extracts was purified for methylated DNA fragments using Methyl Binding Domain (MBD)-enrichment (32) before USER treatment and library building, for a total of 8 DNA libraries. Following stringent quality criteria for read alignment, we identified a total number of 175.2 million unique reads aligning against the human reference genome hg19, representing an average depth-of- coverage of 2.84X (SOM S4). The eight USER treated DNA libraries that exhibited limited error rate and contamination levels were selected for further analyses. This restricted the dataset to 148.9 million unique reads, representing a final depth-of-coverage of 2.42X. We exploited the fact that K14 was a male and used the heterozygosity levels present in the X chromosome to estimate overall levels of contamination around 2.0% (SOM S5-S6;Table S5). Note that the population genetics analyses results are robust to contamination of that level. In particular we replicated the main analyses with selected libraries with varying contamination levels and observed no qualitative effect on the results (see SOM S9 for details). Mitochondrial analyses confirmed the sequence previously reported for K14 (haplogroup U2, (33)), which supports data authenticity. The Y chromosome belongs to haplogroup C M130, the same as in La Braña – a late Mesolithic hunter-gatherer (MHG) from northern Spain (22) (SOM S7). To identify patterns of shared ancestry and admixture among K14, other ancient genomes and contemporary Eurasians (based on a single-nucleotide polymorphism (SNP) array panel of 2091 individuals from 167 populations), we carried out a series of analyses – model-based clustering and principal component analysis (PCA) - to show the contribution of diverse genetic components within K14; D-statistics to explore the affinity of K14 to pairs of populations (using Mbuti Pygmy as an outgroup); f4 statistics to test whether a given modern population is equidistant to an ancient individual and a particular recent group (here Sardinians), given an outgroup (here Papuans); and f3 statistics to explore both patterns of admixture (“admixture” f3) and shared ancestry (“outgroup” f3). Key results were also replicated using two whole-genome sequencing datasets of modern individuals from worldwide populations (23, 34). Model-based clustering analyses (35) show that K14 has different genetic components of substantial size (Fig. 1B, SOM S10), suggesting the sharing of sets of alleles with different Eurasian groups. The largest fraction of K14’s ancestry derives from a component that is maximized in European MHGs, and also predominant in contemporary northern and eastern Europeans. The genetic affinity of K14 to contemporary Europeans is also observed using “outgroup” f3-statistics (36). Using Mbuti Pygmy as outgroup, we find that among a panel of 167 contemporary populations, Europeans have the greatest affinity (i.e. the largest f3) to K14 (Figure 1C). This conclusion is also formally supported by comparing pairs of populations to K14 using the D statistics of the form D(Mbuti Pygmy, K14; Population 1, Population 2). This statistic is expected to be equal to zero if K14 is symmetrically related to Population 1 and Population 2, whereas its expectation is negative (positive) if K14 is more closely related to Population 1 (Population 2). For pairs of populations involving East Asians (Population 1) and Europeans (Population 2), K14 is always significantly closer related to Europeans (e.g. Z = 12.1, (Han, Lithuanians)), in all datasets analyzed (SOM S9;Table S7). We also confirm that these results are robust to possible contamination from a modern DNA source, by
Recommended publications
  • Genetic Inferences on Human Evolutionary History in Southern Arabia and the Levant
    GENETIC INFERENCES ON HUMAN EVOLUTIONARY HISTORY IN SOUTHERN ARABIA AND THE LEVANT By DEVEN N. VYAS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Deven N. Vyas To my parents, sisters, and nephews and in memory of my grandmother, Ba. ACKNOWLEDGMENTS First, I would also like to thank my parents and sisters and the rest of my family for all their love and support. I want to thank my advisor and mentor, Dr. Connie J. Mulligan for all her advice, support, and guidance throughout my graduate career. I would also like to thank my other committee members, Dr. Steven A. Brandt, Dr. John Krigbaum, and Dr. David L. Reed for their input and guidance. I would also like to thank the many former and current postdocs, graduate students, and undergraduate students from the Mulligan lab including Dr. David A. Hughes, Dr. Laurel N. Pearson, Dr. Jacklyn Quinlan, Dr. Aida T. Miró-Herrans, Dr. Tamar E. Carter, Dr. Peter H. Rej, Christopher J. Clukay, Kia C. Fuller, Félicien M. Maisha, and Chu Hsiao for all their advice throughout the years as well as prior lab members Dr. Andrew Kitchen and Dr. Ryan L. Raaum who gave me much advice and guidance from afar. Finally, I would like to express thank the Yemeni people without whose participation none of this research would have been possible. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .......................................................................................................... 8 LIST OF OBJECTS ......................................................................................................
    [Show full text]
  • The Pioneer Settlement of Modern Humans in Asia
    Nucleic Acids and Molecular Biology, Vol. 18 Hans-Jürgen Bandelt, Vincent Macaulay, Martin Richards (Eds.) Human Mitochondrial DNA and the Evolution of Homo sapiens © Springer-Verlag Berlin Heidelberg 2006 The Pioneer Settlement of Modern Humans in Asia Mait Metspalu (u) · Toomas Kivisild · Hans-Jürgen Bandelt · Martin Richards · Richard Villems Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, Tartu, Estonia [email protected] 1 Introduction Different hypotheses, routes, and the timing of the out-of-Africa migration are the focus of another chapter of this book (Chap. 10). However, in order to dig more deeply into discussions about pioneer settlement of Asia, it is necessary to emphasize here that many recent genetic, archaeological, and anthropological studies have started to favour the Southern Coastal Route (SCR) concept as the main mechanism of the primary settlement of Asia (Lahr and Foley 1994; Quintana-Murci et al. 1999; Stringer 2000; Kivisild et al. 2003, 2004); see also Oppenheimer (2003). The coastal habitat as the medium for humans to penetrate from East Africa to Asia and Australasia was perhaps first envisaged by the evolution- ary geographer Carl Sauer, who considered the populations taking this route as adapted to the ecological niche of the seashore (Sauer 1962). After reach- ing Southwest Asia, modern humans had a choice of two potential routes by which to colonize the rest of Asia. These two were separated by the world’s mightiest mountain system—the Himalayas. The pioneer settlers could con- tinue taking the SCR or they could change their habitat and turn instead to the north, passing through Central Asia and southern Siberia (or via the route that later became known as the Silk Road).
    [Show full text]
  • Projecting Ancient Ancestry in Modern-Day Arabians and Iranians: a Key Role of the Past Exposed Arabo-Persian Gulf on Human Migrations
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432678; this version posted February 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Projecting ancient ancestry in modern-day Arabians and Iranians: a key role of the past exposed Arabo-Persian Gulf on human migrations Joana C. Ferreira1,2,3, Farida Alshamali4, Francesco Montinaro5,6, Bruno Cavadas1,2, Antonio Torroni7, Luisa Pereira1,2, Alessandro Raveane7,8, Veronica Fernandes1,2 1 i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal 2 IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal 3 ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal 4 Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai, United Arab Emirates 5 Department of Biology-Genetics, University of Bari, Bari, 70126, Italy. 6 Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia 7 Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy 8 Laboratory of Haematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy Keywords: Arabian Peninsula; Iran; basal Eurasian lineage; ancient and archaic ancestry; out of Africa migration; main human population groups stratification Corresponding author: Veronica Fernandes, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432678; this version posted February 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Initial Upper Palaeolithic Humans in Europe Had Recent Neanderthal Ancestry
    Article Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry https://doi.org/10.1038/s41586-021-03335-3 Mateja Hajdinjak1,2 ✉, Fabrizio Mafessoni1, Laurits Skov1, Benjamin Vernot1, Alexander Hübner1,3, Qiaomei Fu4, Elena Essel1, Sarah Nagel1, Birgit Nickel1, Julia Richter1, Received: 7 July 2020 Oana Teodora Moldovan5,6, Silviu Constantin7,8, Elena Endarova9, Nikolay Zahariev10, Accepted: 5 February 2021 Rosen Spasov10, Frido Welker11,12, Geoff M. Smith11, Virginie Sinet-Mathiot11, Lindsey Paskulin13, Helen Fewlass11, Sahra Talamo11,14, Zeljko Rezek11,15, Svoboda Sirakova16, Nikolay Sirakov16, Published online: 7 April 2021 Shannon P. McPherron11, Tsenka Tsanova11, Jean-Jacques Hublin11,17, Benjamin M. Peter1, Open access Matthias Meyer1, Pontus Skoglund2, Janet Kelso1 & Svante Pääbo1 ✉ Check for updates Modern humans appeared in Europe by at least 45,000 years ago1–5, but the extent of their interactions with Neanderthals, who disappeared by about 40,000 years ago6, and their relationship to the broader expansion of modern humans outside Africa are poorly understood. Here we present genome-wide data from three individuals dated to between 45,930 and 42,580 years ago from Bacho Kiro Cave, Bulgaria1,2. They are the earliest Late Pleistocene modern humans known to have been recovered in Europe so far, and were found in association with an Initial Upper Palaeolithic artefact assemblage. Unlike two previously studied individuals of similar ages from Romania7 and Siberia8 who did not contribute detectably to later populations, these individuals are more closely related to present-day and ancient populations in East Asia and the Americas than to later west Eurasian populations. This indicates that they belonged to a modern human migration into Europe that was not previously known from the genetic record, and provides evidence that there was at least some continuity between the earliest modern humans in Europe and later people in Eurasia.
    [Show full text]
  • Indigenous Arabs Are Descendants of the Earliest Split from Ancient Eurasian Populations
    Downloaded from genome.cshlp.org on March 16, 2016 - Published by Cold Spring Harbor Laboratory Press Research Indigenous Arabs are descendants of the earliest split from ancient Eurasian populations Juan L. Rodriguez-Flores,1,8 Khalid Fakhro,2,3,8 Francisco Agosto-Perez,1,4 Monica D. Ramstetter,4 Leonardo Arbiza,4 Thomas L. Vincent,1 Amal Robay,3 Joel A. Malek,3 Karsten Suhre,5 Lotfi Chouchane,3 Ramin Badii,6 Ajayeb Al-Nabet Al-Marri,6 Charbel Abi Khalil,3 Mahmoud Zirie,7 Amin Jayyousi,7 Jacqueline Salit,1 Alon Keinan,4 Andrew G. Clark,4 Ronald G. Crystal,1,9 and Jason G. Mezey1,4,9 1Department of Genetic Medicine, Weill Cornell Medical College, New York, New York 10065, USA; 2Sidra Medical and Research Center, Doha, Qatar; 3Department of Genetic Medicine, Weill Cornell Medical College–Qatar, Doha, Qatar; 4Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14850, USA; 5Bioinformatics Core, Weill Cornell Medical College–Qatar, Doha, Qatar; 6Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar; 7Department of Medicine, Hamad Medical Corporation, Doha, Qatar An open question in the history of human migration is the identity of the earliest Eurasian populations that have left con- temporary descendants. The Arabian Peninsula was the initial site of the out-of-Africa migrations that occurred between 125,000 and 60,000 yr ago, leading to the hypothesis that the first Eurasian populations were established on the Peninsula and that contemporary indigenous Arabs are direct descendants of these ancient peoples. To assess this hypoth- esis, we sequenced the entire genomes of 104 unrelated natives of the Arabian Peninsula at high coverage, including 56 of indigenous Arab ancestry.
    [Show full text]
  • Indigenous Arabs Are Descendants of the Earliest Split from Ancient Eurasian Populations
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Indigenous Arabs are Descendants of the Earliest Split from Ancient Eurasian Populations Juan L. Rodriguez-Flores1*, Khalid Fakhro2,3*, Francisco Agosto-Perez1,4, Monica D. Ramstetter4, Leonardo Arbiza4, Thomas L. Vincent1, Amal Robay3, Joel A. Malek3, Karsten Suhre5, Lotfi Chouchane3, Ramin Badii6, Ajayeb Al-Nabet Al-Marri6, Charbel Abi Khalil3, Mahmoud Zirie7, Amin Jayyousi7, Jacqueline Salit1, Alon Keinan4, Andrew G. Clark4, Ronald G. Crystal1** and Jason G. Mezey1,4** 1Department of Genetic Medicine Weill Cornell Medical College New York, New York, 2Sidra Medical and Research Center Doha, Qatar, 3Department of Genetic Medicine Weill Cornell Medical College – Qatar Doha, Qatar, 4Department of Biological Statistics and Computational Biology Cornell University Ithaca, NY, 5Bioinformatics Core Weill Cornell Medical College – Qatar Doha, Qatar and 6Laboratory Medicine and Pathology 7Department of Medicine Hamad Medical Corporation Doha, Qatar * JLRF and KF contributed equally to this study ** JGM and RGC contributed equally as senior investigators for this study Running head: Uninterrupted ancestry in Arabia Correspondence: Department of Genetic Medicine Weill Cornell Medical College 1300 York Avenue, Box 164 New York, New York 10065 Phone: (646) 962-4363 Fax: (646) 962-0220 E-mail: [email protected] Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract An open question in the history of human migration is the identity of the earliest Eurasian populations that have left contemporary descendants. The Arabian Peninsula was the initial site of the out of Africa migrations that occurred between 125,000 - 60,000 years ago, leading to the hypothesis that the first Eurasian populations were established on the Peninsula and that contem- porary indigenous Arabs are direct descendants of these ancient peoples.
    [Show full text]
  • Paleolithic DNA from the Caucasus Reveals Core of West Eurasian Ancestry
    bioRxiv preprint doi: https://doi.org/10.1101/423079; this version posted September 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Paleolithic DNA from the Caucasus reveals 2 core of West Eurasian ancestry 3 4 Iosif Lazaridis1,2, Anna Belfer-Cohen3, Swapan Mallick1, Nick Patterson2, Olivia 5 Cheronet4,5,6, Nadin Rohland1, Guy Bar-Oz7, Ofer Bar-Yosef8, Nino Jakeli9, Eliso 6 Kvavadze9, David Lordkipanidze9, Zinovi Matzkevich10, Tengiz Meshveliani9, Brendan J. 7 Culleton11, Douglas J. Kennett11, Ron Pinhasi4 §, David Reich1,2,12§ 8 9 1 Department of Genetics, Harvard Medical School, New Research Building, 77 Ave. Louis Pasteur, 10 Boston, MA 02115, USA 11 2 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02141, USA 12 3 Institute of Archaeology, The Hebrew University of Jerusalem, Mt. Scopus, Jerusalem 9190501, 13 Israel 14 4 Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria. 15 5 Earth Institute, University College Dublin, Dublin 4, Ireland. 16 6 School of Archaeology, University College Dublin, Dublin 4, Ireland. 17 7 Zinman Institute of Archaeology, University of Haifa, Haifa 3498838, Israel 18 8 Department of Anthropology, Peabody Museum, Harvard University, Cambridge, MA 02138, USA 19 9 Georgian National Museum, 3 Purtseladze St., Tbilisi 0105, Georgia 20 10 Israel
    [Show full text]
  • Dissertationes Biologicae Universitatis Tartuensis 114 Dissertationes Biologicae Universitatis Tartuensis 114
    DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 114 DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 114 THROUGH THE COURSE OF PREHISTORY IN INDIA: TRACING THE mtDNA TRAIL MAIT METSPALU TARTU UNIVERSITY PRESS Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia Dissertation is accepted for the commencement of the degree of Doctor of Philosophy (in molecular biology) on 14.11.2005, by the Council of the Institute of Molecular and Cell Biology, University of Tartu. Opponent: Antonio Salas Ellacuriaga, PhD, Institute of Legal Medicine, Faculty of Medicine University of Santiago de Compostela Commencement: Room No 217, Riia 23, Tartu, on December 19th, at 14.00 The publication of this dissertation is granted by the University of Tartu ISSN 1024–6479 ISBN 9949–11–201–X (trükis) ISBN 9949–11–202–8 (PDF) Autoriõigus Mait Metspalu, 2005 Tartu Ülikooli Kirjastus www.tyk.ee Tellimus nr. 578 CONTENTS LIST OF ORIGINAL PUBLICATIONS............................................................. 7 ABBREVIATIONS............................................................................................. 8 1. INTRODUCTION........................................................................................... 9 2. LITERATURE OVERVIEW ........................................................................ 10 2.1. Some recent developments regarding the properties of mtDNA in respect to phylogenetic studies......................................................... 10 2.1.1. Mitochondrial Steve – a
    [Show full text]
  • Supplementary Fig. 1. Outgroup F3-Statistics for Kotias, Satsurblia
    Supplementary Fig. 1. Outgroup f3-statistics for Kotias, Satsurblia and Bichon which show the extent of shared drift with other ancient samples (OA) since they diverged from an African (Yoruban) outgroup. Satsurblia and Kotias share the most drift with each other while Bichon is closest to other western hunter-gatherers. Bars dissecting the points show standard error. HG, hunter-gatherer; EN, Early Neolithic; MN, Middle Neolithic; CA, Copper Age; BA, Bronze Age; IA, Iron Age. Supplementary Fig. 2. Inferred topology for ancient and modern populations. This was built on the model proposed by Lazaridis et al.1. A. Caucasus hunter-gatherers descend from a basal Eurasian branch. This is supported by both D and f3 statistics (Supplementary Tables 4,6,8). B. Early Europeans farmers have admixed with WHG. This is supported by D-statistics (Supplementary Table 8) and ADMIXTURE analysis (Fig. 1B). Ancient samples are shown in yellow, inferred populations in blue and modern populations in purple. Dotted lines show descent with admixture while solid lines depict descent without admixture. Supplementary Fig. 3. Outgroup f3-statistics indicating the amount of shared drift between ancient samples and modern populations since they diverged from an African outgroup. Warmer colours indicate more shared drift than cooler colours. A. f3(Satsurblia, modern population; Yoruba) which shows, similar to Kotias (Figure 4A), that Satsurblia shares the most affinity to modern populations from the Caucasus. B. f3 (Bichon, modern population; Yoruba) which shows that Bichon shares the most drift with modern populations from Northern Europe. Supplementary Fig. 4. The impact of CHG on the European gene pool subsequent to the Neolithic expansion.
    [Show full text]
  • Ancient Genomics of Modern Humans: the First Decade
    GG19CH17_Mathieson ARI 28 July 2018 12:51 Annual Review of Genomics and Human Genetics Ancient Genomics of Modern Humans: The First Decade Pontus Skoglund1 and Iain Mathieson2 1Francis Crick Institute, London NW1 1AT, United Kingdom; email: [email protected] 2Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19103, USA; email: [email protected] Annu. Rev. Genom. Hum. Genet. 2018. Keywords 19:381–404 human origins, Holocene, migration, adaptation, ancient DNA, First published as a Review in Advance on April 25, 2018 paleogenomics The Annual Review of Genomics and Human Genetics Abstract is online at genom.annualreviews.org The first decade of ancient genomics has revolutionized the study of hu- https://doi.org/10.1146/annurev-genom-083117- 021749 man prehistory and evolution. We review new insights based on prehis- Access provided by North Dakota INBRE on 11/19/18. For personal use only. toric modern human genomes, including greatly increased resolution of the Copyright c 2018 by Annual Reviews. All rights reserved timing and structure of the out-of-Africa expansion, the diversification of present-day non-African populations, and the earliest expansions of those Annu. Rev. Genom. Hum. Genet. 2018.19:381-404. Downloaded from www.annualreviews.org populations into Eurasia and America. Prehistoric genomes now document population transformations on every inhabited continent—in particular the effect of agricultural expansions in Africa, Europe, and Oceania—and record a history of natural selection that shapes present-day phenotypic diversity. Despite these advances, much remains unknown, in particular about the ge- nomic histories of Asia (the most populous continent) and Africa (the conti- nent that contains the most genetic diversity).
    [Show full text]
  • Ancient Human Genomes Suggest Three Ancestral Populations for Present-Day Europeans
    Ancient human genomes suggest three ancestral populations for present-day Europeans The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lazaridis, I., N. Patterson, A. Mittnik, G. Renaud, S. Mallick, K. Kirsanow, P. H. Sudmant, et al. 2014. “Ancient human genomes suggest three ancestral populations for present-day Europeans.” Nature 513 (7518): 409-413. doi:10.1038/nature13673. http:// dx.doi.org/10.1038/nature13673. Published Version doi:10.1038/nature13673 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:14351136 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Nature. Author manuscript; available in PMC 2015 March 18. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nature. 2014 September 18; 513(7518): 409–413. doi:10.1038/nature13673. Ancient human genomes suggest three ancestral populations for present-day Europeans A full list of authors and affiliations appears at the end of the article. Abstract We sequenced the genomes of a ~7,000 year old farmer from Germany and eight ~8,000 year old hunter-gatherers from Luxembourg and Sweden. We analyzed these and other ancient genomes1–4 with 2,345 contemporary humans to show that most present Europeans derive from at least three highly differentiated populations: West European Hunter-Gatherers (WHG), who contributed ancestry to all Europeans but not to Near Easterners; Ancient North Eurasians (ANE) related to Upper Paleolithic Siberians3, who contributed to both Europeans and Near Easterners; and Early European Farmers (EEF), who were mainly of Near Eastern origin but also harbored WHG-related ancestry.
    [Show full text]
  • Projecting Ancient Ancestry in Modern-Day Arabians and Iranians: a Key Role of the Past Exposed Arabo-Persian Gulf on Human Migrations
    GBE Projecting Ancient Ancestry in Modern-Day Arabians and Iranians: A Key Role of the Past Exposed Arabo-Persian Gulf on Human Migrations Joana C. Ferreira1,2,3, Farida Alshamali4, Francesco Montinaro5,6,BrunoCavadas1,2, Antonio Torroni7,Luisa Pereira1,2, Alessandro Raveane 7,8, and Veronica Fernandes 1,2,* Downloaded from https://academic.oup.com/gbe/article/13/9/evab194/6364187 by guest on 30 September 2021 1i3S—Instituto de Investigac¸ao~ e Inovac¸ao~ em Saude, Universidade do Porto, Portugal 2IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal 3ICBAS—Instituto de Ciencias^ Biomedicas Abel Salazar, Universidade do Porto, Portugal 4Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai, United Arab Emirates 5Department of Biology-Genetics, University of Bari, Italy 6Estonian Biocentre, Institute of Genomics, University of Tartu, Estonia 7Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Italy 8Laboratory of Haematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy *Corresponding author: E-mail: [email protected]. Accepted: 17 August 2021 Abstract The Arabian Peninsula is strategic for investigations centered on the early structuring of modern humans in the wake of the out-of- Africa migration. Despite its poor climatic conditions for the recovery of ancient human DNA evidence, the availability of both genomic data from neighboring ancient specimens and informative statistical tools allow modeling the ancestry of local modern populations. We applied this approach to a data set of 741,000 variants screened in 291 Arabians and 78 Iranians, and obtained insightful evidence. The west-east axis was a strong forcer of population structure in the Peninsula, and, more importantly, there were clear continuums throughout time linking western Arabia with the Levant, and eastern Arabia with Iran and the Caucasus.
    [Show full text]