Analytical Methods for Determination of Selective Serotonin Reuptake Inhibitor Antidepressants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impact of CYP2C19 Genotype on Sertraline Exposure in 1200 Scandinavian Patients
www.nature.com/npp ARTICLE Impact of CYP2C19 genotype on sertraline exposure in 1200 Scandinavian patients Line S. Bråten 1,2, Tore Haslemo1,2, Marin M. Jukic3,4, Magnus Ingelman-Sundberg 3, Espen Molden1,5 and Marianne K. Kringen1,2 Sertraline is an (SSRI-)antidepressant metabolized by the polymorphic CYP2C19 enzyme. The aim of this study was to investigate the impact of CYP2C19 genotype on the serum concentrations of sertraline in a large patient population. Second, the proportions of patients in the various CYP2C19 genotype-defined subgroups obtaining serum concentrations outside the therapeutic range of sertraline were assessed. A total of 2190 sertraline serum concentration measurements from 1202 patients were included retrospectively from the drug monitoring database at Diakonhjemmet Hospital in Oslo. The patients were divided into CYP2C19 genotype-predicted phenotype subgroups, i.e. normal (NMs), ultra rapid (UMs), intermediate (IMs), and poor metabolisers (PMs). The differences in dose-harmonized serum concentrations of sertraline and N-desmethylsertraline-to-sertraline metabolic ratio were compared between the subgroups, with CYP2C19 NMs set as reference. The patient proportions outside the therapeutic concentration range were also compared between the subgroups with NMs defined as reference. Compared with the CYP2C19 NMs, the sertraline serum concentration was increased 1.38-fold (95% CI 1.26–1.50) and 2.68-fold (95% CI 2.16–3.31) in CYP2C19 IMs and PMs, respectively (p < 0.001), while only a marginally lower serum concentration (−10%) was observed in CYP2C19 UMs (p = 0.012). The odds ratio for having a sertraline concentration above the therapeutic reference range was 1.97 (95% CI 1.21–3.21, p = 0.064) and 8.69 (95% CI 3.88–19.19, p < 0.001) higher for IMs and PMs vs. -
ZOLOFT® 50 Mg and 100 Mg Tablets
NEW ZEALAND DATA SHEET 1. PRODUCT NAME ZOLOFT® 50 mg and 100 mg tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each 50 mg tablet contains sertraline hydrochloride equivalent to 50 mg sertraline. Each 100 mg tablet contains sertraline hydrochloride equivalent to 100 mg sertraline. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM ZOLOFT 50 mg tablets: white film-coated tablets marked with the Pfizer logo on one side and “ZLT” scoreline “50” on the other. Approximate tooling dimensions are 1.03 cm x 0.42 cm x 0.36 cm. ZOLOFT 100 mg tablets: white film-coated tablets marked with the Pfizer logo on one side and “ZLT-100” or “ZLT 100” on the other. Approximate tooling dimensions are 1.31 cm x 0.52 cm x 0.44 cm. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Adults ZOLOFT is indicated for the treatment of symptoms of depression, including depression accompanied by symptoms of anxiety, in patients with or without a history of mania. Following satisfactory response, continuation with ZOLOFT therapy is effective in preventing relapse of the initial episode of depression or recurrence of further depressive episodes. ZOLOFT is indicated for the treatment of obsessive compulsive disorder (OCD). Following initial response, sertraline has been associated with sustained efficacy, safety and tolerability in up 2 years of treatment of OCD. ZOLOFT is indicated for the treatment of panic disorder, with or without agoraphobia. ZOLOFT is indicated for the treatment of post-traumatic stress disorder (PTSD). ZOLOFT is indicated for the treatment of social phobia (social anxiety disorder). -
Use of Human Plasma Samples to Identify Circulating Drug Metabolites That Inhibit Cytochrome P450 Enzymes
1521-009X/44/8/1217–1228$25.00 http://dx.doi.org/10.1124/dmd.116.071084 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:1217–1228, August 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Use of Human Plasma Samples to Identify Circulating Drug Metabolites that Inhibit Cytochrome P450 Enzymes Heather Eng and R. Scott Obach Pfizer Inc., Groton, Connecticut Received April 19, 2016; accepted June 3, 2016 ABSTRACT Drug interactions elicited through inhibition of cytochrome P450 fractions were tested for inhibition of six human P450 enzyme (P450) enzymes are important in pharmacotherapy. Recently, activities (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and greater attention has been focused on not only parent drugs CYP3A4). Observation of inhibition in fractions that correspond to inhibiting P450 enzymes but also on possible inhibition of these the retention times of metabolites indicates that the metabolite Downloaded from enzymes by circulating metabolites. In this report, an ex vivo method has the potential to contribute to P450 inhibition in vivo. Using whereby the potential for circulating metabolites to be inhibitors of this approach, norfluoxetine, hydroxyitraconazole, desmethyldiltia- P450 enzymes is described. To test this method, seven drugs and zem, desacetyldiltiazem, desethylamiodarone, hydroxybupropion, their known plasma metabolites were added to control human erythro-dihydrobupropion, and threo-dihydrobupropion were iden- plasma at concentrations previously reported to occur in humans -
Aerobic Treatment of Selective Serotonin Reuptake Inhibitors in Landfill Leachate Ove Bergersen1*, Kine Østnes Hanssen2 and Terje Vasskog2,3
Bergersen et al. Environmental Sciences Europe (2015) 27:6 DOI 10.1186/s12302-014-0035-0 RESEARCH Open Access Aerobic treatment of selective serotonin reuptake inhibitors in landfill leachate Ove Bergersen1*, Kine Østnes Hanssen2 and Terje Vasskog2,3 Abstract Background: Pharmaceuticals used in human medical care are not completely eliminated in the human body and can enter the municipal sewage sludge system and leachate water from landfill both as the parent compound and as their biologically active metabolites. The selective serotonin reuptake inhibitors (SSRIs) have a large potential for unwanted effects on nontarget organisms in the environment. Leachates from active or old closed landfills are often treated with continuous stirring and simple aeration in a pond/lagoon before infiltration into the environment. The aim of this work was to simulate the reduction of five SSRIs (citalopram, fluoxetine, paroxetine, sertraline and fluvoxamine) and three of their metabolites (desmethylcitalopram, didesmethylcitalopram and norfluoxetine) during aerobic treatment of leachate from landfills. This landfill leachate-simulation experiment was performed to see what happens with the pharmaceuticals during aerated treatment and continuous stirring of landfill leachate for 120 h. It is important to establish whether different pollutants such as pharmaceuticals can be removed (oxidized or otherwise degraded) or not before infiltration into the environment. Results: All the SSRIs had a significant concentration reduction during the aeration treatment process. Total SSRI concentrations were reduced significantly during aerobic treatment, and the individual SSRIs were reduced by 89% to 100% after 120 h. Among the high-concentration samples, fluoxetine (10 mg L−1) was the least degraded with 93% concentration reduction. -
Development of Pain-Free Methods for Analyzing 231 Multiclass Drugs and Metabolites by LC-MS/MS
Clinical, Forensic & Toxicology Article “The Big Pain”: Development of Pain-Free Methods for Analyzing 231 Multiclass Drugs and Metabolites by LC-MS/MS By Sharon Lupo As the use of prescription and nonprescription drugs grows, the need for fast, accurate, and comprehensive methods is also rapidly increasing. Historically, drug testing has focused on forensic applications such as cause of death determinations or the detection of drug use in specific populations (military, workplace, probation/parole, sports doping). However, modern drug testing has expanded well into the clinical arena with a growing list of target analytes and testing purposes. Clinicians often request the analysis of large panels of drugs and metabolites that can be used to ensure compliance with prescribed pain medication regimens and to detect abuse or diversion of medications. With prescription drug abuse reaching epidemic levels [1], demand is growing for analytical methods that can ensure accurate results for comprehensive drug lists with reasonable analysis times. LC-MS/MS is an excellent technique for this work because it offers greater sensitivity and specificity than immunoassay and—with a highly selective and retentive Raptor™ Biphenyl column—can provide definitive results for a wide range of compounds. Typically, forensic and pain management drug testing consists of an initial screening analysis, which is qualitative, quick, and requires only minimal sample preparation. Samples that test positive during screening are then subjected to a quantitative confirmatory analysis. Whereas screening assays may cover a broad list of compounds and are generally less sensitive and specific, confirmation testing provides fast, targeted analysis using chromatographic conditions that are optimized for specific panels. -
And N-Demethylation of Venlafaxine in Vitro by Human Liver Microsomes
O- and N-demethylation of Venlafaxine In Vitro by Human Liver Microsomes and by Microsomes from cDNA-Transfected Cells: Effect of Metabolic Inhibitors and SSRI Antidepressants Steven M. Fogelman, Jürgen Schmider, Karthik Venkatakrishnan, Lisa L. von Moltke, Jerold S. Harmatz, Richard I. Shader, and David J. Greenblatt The biotransformation of venlafaxine (VF) into its two to the formation of NDV for all four livers tested. major metabolites, O-desmethylvenlafaxine (ODV) and Parameters determined by applying a single-enzyme model 5 / / 5 N-desmethylvenlafaxine (NDV) was studied in vitro with were Vmax 2.14 nmol min mg protein, and Km 2504 human liver microsomes and with microsomes containing mM. Ketoconazole was a potent inhibitor of NDV individual human cytochromes from cDNA-transfected production, although its inhibitory activity was not as great human lymphoblastoid cells. VF was coincubated with as observed with pure 3A substrates. NDV formation was selective cytochrome P450 (CYP) inhibitors and several also reduced by 42% by a polyclonal rabbit antibody against selective serotonin reuptake inhibitors (SSRIs) to assess rat liver CYP3A1. Studies using expressed cytochromes their inhibitory effect on VF metabolism. Formation rates showed that NDV was formed by CYP2C9, 22C19, and for ODV incubated with human microsomes were 23A4. The highest intrinsic clearance was attributable to consistent with Michaelis-Menten kinetics for a single- CYP2C19 and the lowest to CYP3A4. However the high in enzyme mediated reaction with substrate inhibition. Mean vivo abundance of 3A isoforms will magnify the 5 parameters determined by non-linear regression were: Vmax importance of this cytochrome. Fluvoxamine (FX), at a / / 5 m m 0.36 nmol min mg protein, Km 41 M, and Ks 22901 concentration of 20 M, decreased NDV production by m M (Ks represents a constant which reflects the degree of 46% consistent with the capacity of FX to inhibit CYP3A, substrate inhibition). -
Determination of Sertraline and Its Metabolite by High-Pressure Liquid Chromatography in Plasma
ACADEMIA ROMÂNĂ Rev. Roum. Chim., Revue Roumaine de Chimie 2015, 60(5-6), 543-548 http://web.icf.ro/rrch/ DETERMINATION OF SERTRALINE AND ITS METABOLITE BY HIGH-PRESSURE LIQUID CHROMATOGRAPHY IN PLASMA Nazan YUCE-ARTUN,a Erguvan Tuğba ÖZEL KIZIL,b Bora BASKAK,b Halise Devrimci ÖZGÜVEN,b Yalçın DUYDUc and Halit Sinan SUZENc,* aBiotechnology Institute, Ankara University, Golbasi, Ankara, Turkey bDepartment of Psychiatry, School of Medicine, Ankara University, Dikimevi, Ankara, Turkey cDepartment of Toxicology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey Received November 10, 2014 A fast, simple and sensitive high-pressure liquid chromatography (HPLC) method with UV detection was developed for frequently prescribed antidepressant, sertraline (SERT) and its main B metabolite N-desmethylsertraline (DSERT), in human plasma. SERT and DSERT were extracted by an optimized solid phase chromatographic (SPE) method using C-18 cartridges and DSE SER Clomipramine was used as external standard (ES). The analytes ES were separated on C18, 4.6 mm × 150 mm, 5 µm column at 50 °C with a mobile phase of 45% acetonitrile + 55% NaH2PO4 at a flow rate of 0.4 mL/min. Detector responses monitored at 4 different wave-lengths; 200-205-210-215 nm. The method proved to be rapid and effective for the plasma sample analyses of therapeutic drug monitoring for sertraline treated patients. INTRODUCTION* depression, panic disorder, generalised anxiety disorder, and social phobia.2 Like other SSRIs, it High rates of poor compliance, considerable has a wide therapeutic index and seems to be better genetic variability in metabolism, and the clinical tolerated than tricyclic antidepressants.3 The drug heterogeneity of depression are the main problems is slowly absorbed with a time to peak plasma for the practical application of selective serotonin concentration of approximately 4–8 h and an reuptake inhibitors (SSRI).1 Therapeutic drug elimination half life of 22–35 h. -
Tools for Optimising Pharmacotherapy in Psychiatry (Therapeutic Drug Monitoring, Molecular Brain Imaging and Pharmacogenetic Tests): Focus on Antidepressants
The World Journal of Biological Psychiatry ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/iwbp20 Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants C. B. Eap, G. Gründer, P. Baumann, N. Ansermot, A. Conca, E. Corruble, S. Crettol, M. L. Dahl, J. de Leon, C. Greiner, O. Howes, E. Kim, R. Lanzenberger, J. H. Meyer, R. Moessner, H. Mulder, D. J. Müller, M. Reis, P. Riederer, H. G. Ruhe, O. Spigset, E. Spina, B. Stegman, W. Steimer, J. Stingl, S. Suzen, H. Uchida, S. Unterecker, F. Vandenberghe & C. Hiemke To cite this article: C. B. Eap, G. Gründer, P. Baumann, N. Ansermot, A. Conca, E. Corruble, S. Crettol, M. L. Dahl, J. de Leon, C. Greiner, O. Howes, E. Kim, R. Lanzenberger, J. H. Meyer, R. Moessner, H. Mulder, D. J. Müller, M. Reis, P. Riederer, H. G. Ruhe, O. Spigset, E. Spina, B. Stegman, W. Steimer, J. Stingl, S. Suzen, H. Uchida, S. Unterecker, F. Vandenberghe & C. Hiemke (2021): Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants, The World Journal of Biological Psychiatry, DOI: 10.1080/15622975.2021.1878427 To link to this article: https://doi.org/10.1080/15622975.2021.1878427 © 2021 The Author(s). Published by Informa Published online: 12 May 2021. UK Limited, trading as Taylor & Francis Group. Submit your article to this journal Article views: 1134 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=iwbp20 THE WORLD JOURNAL OF BIOLOGICAL PSYCHIATRY https://doi.org/10.1080/15622975.2021.1878427 REVIEW ARTICLE Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants a,b,c,d,eà fà g a h,i j,k C. -
Wo 2009/095395 A2
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 6 August 2009 (06.08.2009) PCT WO 2009/095395 A2 (51) International Patent Classification: Werner [CA/CA], 39 Harper Street, Waterdown, Ontario A61K 9/32 (2006.01) A61K 31/343 (2006.01) LOR 2H3 (CA). XIAOPIN, Jin [CA/CA], 3805 Peri win A61K 9/36 (2006.01) A61K 31/554 (2006.01) kle Crescent, Mississauga, Ontario L5N 6W8 (CA). A61K 31/137 (2006.01) (74) Agent: DUNNE, Sinead, TOMKINS & CO., 5 Dartmouth (21) International Application Number: Road, Dublin 6 (IE). PCT/EP2009/050924 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: 28 January 2009 (28.01.2009) AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, (25) Filing Language: English CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, (26) Publication Language: English IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (30) Priority Data: LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, 61/023,951 28 January 2008 (28.01.2008) US MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TJ, (71) Applicant (for all designated States except US): BIO- TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, VAIL LABORATORIES INTERNATIONAL SRL ZW [BB/BB], Welches, Barbados, West Indies, Christ Church 17154 (BB). -
(12) Patent Application Publication (10) Pub. No.: US 2010/0081713 A1 Sharma Et Al
US 20100081713A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0081713 A1 Sharma et al. (43) Pub. Date: Apr. 1, 2010 (54) COMPOSITIONS AND METHODS FOR (22) Filed: Mar. 18, 2009 TREATINGVIRAL INFECTIONS Related U.S. Application Data (75) Inventors: Geeta Sharma, Singapore (SG); (60) Provisional application No. 61/069,917, filed on Mar. Ralf Altmeyer, Singapore (SG); 19, 2008. Vishal Pendharker, Singapore (SG); Yu Chen, Singapore (SG); Publication Classification Michael Foley, Chestnut Hill, MA (51) Int. Cl. (US) A63L/35 (2006.01) A6II 3L/25 (2006.01) Correspondence Address: A63L/35 (2006.01) Gearhart Law LLC A6II 3/13 (2006.01) 4 Femdale Avenue A6IP3L/2 (2006.01) Chatham, NJ 07928 (US) (52) U.S. Cl. .......... 514/459; 514/529; 514/647: 514/662 (73) Assignee: CombinatoRx, (Singapore) Pte. (57) ABSTRACT Ltd. The present invention provides compositions, methods, and kits for treating or preventing a viral infection (e.g., an infec (21) Appl. No.: 12/406,716 tion caused by an influenza virus). Patent Application Publication Apr. 1, 2010 Sheet 1 of 2 US 2010/0081713 A1 ------ 80 r -0. Vehicle 0.5% HPMC g - - Sertraline-30mg/kg/day - £ 60 “A Sertraline-100mg/kg/day/kg/day i -v. Oseltamivir-30mg/kg/day ...i -0. Oseltamivir-100mg/kg/day -0. (Sertraline 30mg/kg+ . 40 Prednisolone 0.1 mg/Kg) Figure 1 Patent Application Publication Apr. 1, 2010 Sheet 2 of 2 US 2010/0081713 A1 100 468OOO 2 O Wehicle Sentraline 10 mg/kg Sentraline 30mg/kg Setraline 100mg/kg Figure 2 US 2010/008 1713 A1 Apr. -
LEGISLATIVE ASSEMBLY Question on Notice
LEGISLATIVE ASSEMBLY Question On Notice Thursday, 15 February 2018 2560. Ms M. M Quirk to the Minister for Police; I refer to the commencement of operation of the Road Traffic Amendment Act 2016 in March 2017 which introduced compulsory blood or urine samples to be taken from drivers involved in serious crashes, and I ask: (a) since March 2017 how many such samples have been taken; (b) for what specific substances are those blood or urine samples tested; (c) what are the results of those tests to date; and (d) what percentage of drivers have been found to have ingested more than one substance capable of impairing driving skills? Answer (a) The compulsory taking of blood from all drivers involved in serious crashes commenced on 10 March 2017. Between 10 March 2017 and 22 February 2018 (inclusive) a total of 398 blood test samples have been collected under the provision of the Road Traffic Amendment Act 2016. There have been no urine tests collected. (b) Please see attached table for a list of substances in blood sample that are identifiable in ChemCentre toxicology analysis (Paper Number). (c) Of the 398 blood samples collected, 48 are pending results of ChemCentre analysis. Of the 350 analysed, 259 samples had a specific substance(s) detected and 91 samples had no specific substance detected. d) Of the 259 samples with specific substance(s) detected, 92% were found to have multiple substances (more than one). Detectable Substances in Blood Samples capable of identification by the ChemCentre WA. ACETALDEHYDE AMITRIPTYLINE/NORTRIPTYLINE -
2007211054153232113023July
e180 PHARMACOTHERAPY Volume 34, Number 10, 2014 betic medications were also recorded. Incidence of hypoglycemic 2014 ACCP Annual Meeting episodes was compared using the chi square test. Austin, TX RESULTS: Seventy seven patients were included in the analysis. Fifty two percent of patients (n=40) were ≥ 65 years old, and (Pharmacotherapy 2014;34(10):e180–e298) doi: 10.1002/phar.1497 55% (n=43) had CrCl > 60 mL/minutes. Overall, there were 36 hypoglycemic episodes that occured in 311 “glyburide patient days”. There were a total of 28 and 8 episodes in patients ORIGINAL RESEARCH ≥65 years and <65 years old, respectively (RR 4.907, CI 2.29– 10.52). There were 16 and 19 hypoglycemic episodes in patients Adult Medicine with CrCl > 60 mL/minutes and CrCl ≤ 60 mL/minutes, respec- tively (RR 2.24, CI 1.18–4.25). Thirty percent (n=10) of episodes 1. Tolvaptan for euvolemic and hypervolemic hyponatremia in the occured in patients receiveing both glyburide and long-acting acute care setting. Jacqueline L. Olin, M.S., Pharm.D., BCPS, insulin (n=20). CDE, CPP, FASHP1, Gwen Mitchell, Pharm.D., BCPS2, Henry 3 CONCLUSION: In an effort to prevent hypoglycemia during Cremisi, M.D. ; (1)Wingate University School of Pharmacy, hospitalization, discontinuation of glyburide and use of alterna- Wingate, NC; (2)Department of Pharmacy, Novant Health tive antidiabetic medications upon admission is prudent, espe- Matthews Medical Center, Matthews, NC; (3)Novant Health cially in patients ≥65 years old, with CrCl ≤ 60 mL/minutes, or Inpatient Care Specialists, Novant Health Matthews Medical concomitantly receiving long-acting insulin.